首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tpt1, an essential component of the fungal and plant tRNA splicing machinery, catalyzes transfer of an internal RNA 2′-PO4 to NAD+ yielding RNA 2′-OH and ADP-ribose-1′,2′-cyclic phosphate products. Here, we report NMR structures of the Tpt1 ortholog from the bacterium Runella slithyformis (RslTpt1), as apoenzyme and bound to NAD+. RslTpt1 consists of N- and C-terminal lobes with substantial inter-lobe dynamics in the free and NAD+-bound states. ITC measurements of RslTpt1 binding to NAD+ (KD ∼31 μM), ADP-ribose (∼96 μM) and ADP (∼123 μM) indicate that substrate affinity is determined primarily by the ADP moiety; no binding of NMN or nicotinamide is observed by ITC. NAD+-induced chemical shift perturbations (CSPs) localize exclusively to the RslTpt1 C-lobe. NADP+, which contains an adenylate 2′-PO4 (mimicking the substrate RNA 2′-PO4), binds with lower affinity (KD ∼1 mM) and elicits only N-lobe CSPs. The RslTpt1·NAD+ binary complex reveals C-lobe contacts to adenosine ribose hydroxyls (His99, Thr101), the adenine nucleobase (Asn105, Asp112, Gly113, Met117) and the nicotinamide riboside (Ser125, Gln126, Asn163, Val165), several of which are essential for RslTpt1 activity in vivo. Proximity of the NAD+ β-phosphate to ribose-C1″ suggests that it may stabilize an oxocarbenium transition-state during the first step of the Tpt1-catalyzed reaction.  相似文献   

2.
In most living organisms, isocitrate dehydrogenases (IDHs) convert isocitrate into ɑ-ketoglutarate (ɑ-KG). Phylogenetic analyses divide the IDH protein family into two subgroups: types I and II. Based on cofactor usage, IDHs are either NAD+-specific (NAD-IDH) or NADP+-specific (NADP-IDH); NADP-IDH evolved from NAD-IDH. Type I IDHs include NAD-IDHs and NADP-IDHs; however, no type II NAD-IDHs have been reported to date. This study reports a novel type II NAD-IDH from the marine bacterium Congregibacter litoralis KT71 (ClIDH, GenBank accession no. EAQ96042). His-tagged recombinant ClIDH was produced in Escherichia coli and purified; the recombinant enzyme was NAD+-specific and showed no detectable activity with NADP+. The K m values of the enzyme for NAD+ were 262.6±7.4 μM or 309.1±11.2 μM with Mg2+ or Mn2+ as the divalent cation, respectively. The coenzyme specificity of a ClIDH Asp487Arg/Leu488His mutant was altered, and the preference of the mutant for NADP+ was approximately 24-fold higher than that for NAD+, suggesting that ClIDH is an NAD+-specific ancestral enzyme in the type II IDH subgroup. Gel filtration and analytical ultracentrifugation analyses revealed the homohexameric structure of ClIDH, which is the first IDH hexamer discovered thus far. A 163-amino acid segment of CIIDH is essential to maintain its polymerization structure and activity, as a truncated version lacking this region forms a non-functional monomer. ClIDH was dependent on divalent cations, the most effective being Mn2+. The maximal activity of purified recombinant ClIDH was achieved at 35°C and pH 7.5, and a heat inactivation experiment showed that a 20-min incubation at 33°C caused a 50% loss of ClIDH activity. The discovery of a NAD+-specific, type II IDH fills a gap in the current classification of IDHs, and sheds light on the evolution of type II IDHs.  相似文献   

3.
The typical procedure for determining NAD+-malic enzyme (EC 1.1.1.39) is to calculate the enzyme rate to be ΔA340/Δ time after the endogenous NAD+-malic dehydrogenase (EC 1.1.1.37) catalyzed reaction has reached equilibrium. This ignores the equilibrium shift of oxaloacetic acid and NADH during the course of the NAD+-malic enzyme reaction and causes an error that varies depending on the reagent [malate], [NAD+], pH and final [NADH]. For a ΔA340 of 0.02, the error is about 80% and for a ΔA340 of 0.30, 20%. We develop this argument, give supportive data and present a simple method to circumvent the error.  相似文献   

4.
Mycobacterium tuberculosis catalase‐peroxidase (KatG) is a bifunctional hemoprotein that has been shown to activate isoniazid (INH), a pro‐drug that is integral to frontline antituberculosis treatments. The activated species, presumed to be an isonicotinoyl radical, couples to NAD+/NADH forming an isoniazid‐NADH adduct that ultimately confers anti‐tubercular activity. To better understand the mechanisms of isoniazid activation as well as the origins of KatG‐derived INH‐resistance, we have compared the catalytic properties (including the ability to form the INH‐NADH adduct) of the wild‐type enzyme to 23 KatG mutants which have been associated with isoniazid resistance in clinical M. tuberculosis isolates. Neither catalase nor peroxidase activities, the two inherent enzymatic functions of KatG, were found to correlate with isoniazid resistance. Furthermore, catalase function was lost in mutants which lacked the Met‐Tyr‐Trp crosslink, the biogenic cofactor in KatG which has been previously shown to be integral to this activity. The presence or absence of the crosslink itself, however, was also found to not correlate with INH resistance. The KatG resistance‐conferring mutants were then assayed for their ability to generate the INH‐NADH adduct in the presence of peroxide (t‐BuOOH and H2O2), superoxide, and no exogenous oxidant (air‐only background control). The results demonstrate that residue location plays a critical role in determining INH‐resistance mechanisms associated with INH activation; however, different mutations at the same location can produce vastly different reactivities that are oxidant‐specific. Furthermore, the data can be interpreted to suggest the presence of a second mechanism of INH‐resistance that is not correlated with the formation of the INH‐NADH adduct.  相似文献   

5.
Catalase activity of the dual-function heme enzyme catalase-peroxidase (KatG) depends on several structural elements, including a unique adduct formed from covalently linked side chains of three conserved amino acids (Met-255, Tyr-229, and Trp-107, Mycobacterium tuberculosis KatG numbering) (MYW). Mutagenesis, electron paramagnetic resonance, and optical stopped-flow experiments, along with calculations using density functional theory (DFT) methods revealed the basis of the requirement for a radical on the MYW-adduct, for oxyferrous heme, and for conserved residues Arg-418 and Asp-137 in the rapid catalase reaction. The participation of an oxyferrous heme intermediate (dioxyheme) throughout the pH range of catalase activity is suggested from our finding that carbon monoxide inhibits the activity at both acidic and alkaline pH. In the presence of H2O2, the MYW-adduct radical is formed normally in KatG[D137S] but this mutant is defective in forming dioxyheme and lacks catalase activity. KatG[R418L] is also catalase deficient but exhibits normal formation of the adduct radical and dioxyheme. Both mutants exhibit a coincidence between MYW-adduct radical persistence and H2O2 consumption as a function of time, and enhanced subunit oligomerization during turnover, suggesting that the two mutations disrupting catalase turnover allow increased migration of the MYW-adduct radical to protein surface residues. DFT calculations showed that an interaction between the side chain of residue Arg-418 and Tyr-229 in the MYW-adduct radical favors reaction of the radical with the adjacent dioxyheme intermediate present throughout turnover in WT KatG. Release of molecular oxygen and regeneration of resting enzyme are thereby catalyzed in the last step of a proposed catalase reaction.  相似文献   

6.
KatG (catalase-peroxidase) in Mycobacterium tuberculosis is responsible for activation of isoniazid (INH), a pro-drug used to treat tuberculosis infections. Resistance to INH is a global health problem most often associated with mutations in the katG gene. The origin of INH resistance caused by the KatG[S315G] mutant enzyme is examined here. Overexpressed KatG[S315G] was characterized by optical, EPR, and resonance Raman spectroscopy and by studies of the INH activation mechanism in vitro. Catalase activity and peroxidase activity with artificial substrates were moderately reduced (50 and 35%, respectively), whereas the rates of formation of oxyferryl heme:porphyrin π-cation radical and the decay of heme intermediates were ∼2-fold faster in KatG[S315G] compared with WT enzyme. The INH binding affinity for the resting enzyme was unchanged, whereas INH activation, measured by the rate of formation of an acyl-nicotinamide adenine dinucleotide adduct considered to be a bactericidal molecule, was reduced by 30% compared with WT KatG. INH resistance is suggested to arise from a redirection of catalytic intermediates into nonproductive reactions that interfere with oxidation of INH. In the resting mutant enzyme, a rapid evolution of 5-c heme to 6-c species occurred in contrast with the behavior of WT KatG and KatG[S315T] and consistent with greater flexibility at the heme edge in the absence of the hydroxyl of residue 315. Insights into the effects of mutations at residue 315 on enzyme structure, peroxidation kinetics, and specific interactions with INH are presented.Tuberculosis infection kills nearly 2 million people a year and is the leading cause of death due to infectious diseases in adults and in AIDS patients (1). The infection is usually treatable, and isoniazid (isonicotinic acid hydrazide (INH))4 has been a first line antibiotic against Mycobacterium tuberculosis since 1952 (2). The management of the disease is complicated by the fact that bacterial strains have been steadily acquiring and accumulating mutations that confer resistance to INH and other drugs (36). Recently, the appearance of multidrug-resistant tuberculosis, resistant to at least two first line antibiotics, and extensively drug-resistant bacteria (defined as multidrug-resistant tuberculosis plus resistance to at least one fluoroquinolone and at least one of the injectable second line drugs) has made the disease virtually incurable in a growing number of cases (7, 8). Despite the widespread emergence of antibiotic-resistant strains, the molecular mechanisms by which enzyme targets or pro-drug activating enzymes confer resistance are poorly understood.The pro-drug INH requires activation by M. tuberculosis catalase-peroxidase KatG, a heme enzyme classified in the Class I superfamily of fungal, plant, and bacterial peroxidases (9). KatG is important for the virulence of M. tuberculosis due to its role in oxidative stress management (10). This enzyme exhibits both high catalase activity and a broad spectrum peroxidase activity (9, 11) for which a physiologically relevant substrate has not been identified. In vitro, INH is oxidized by KatG (1215) to an acylating species, most likely an acyl radical, that forms an adduct (IN-NAD) when it reacts with NAD+ (16). This modified cofactor then acts as a potent inhibitor of the M. tuberculosis enoyl-acyl carrier protein reductase, InhA, and interferes with cell wall biosynthesis (17, 18). The most common INH resistance mutations in M. tuberculosis clinical isolates occur in katG (19), although mutations in other genes, including inhA, and the promoter for this enzyme (mabA-inhA operon) may cause resistance (2022). Dihydrofolate reductase has also been recently proposed as a target of isoniazid that can be inhibited by an IN-NADP adduct (23, 24). Issues remain to be resolved about INH action as well as resistance in a large set of clinical isolates.Replacements at residue Ser315 are the most commonly encountered in the mutated katG gene of INH-resistant strains (19, 22, 2528). Among these, S315T, which confers high level drug resistance (up to a 200-fold increase in minimum inhibitory concentration (MIC) that kills 50% of bacteria (29)) is the most frequent and is found in more than 50% of INH-resistant isolates of M. tuberculosis. In vitro, this mutant enzyme exhibits a very poor rate of peroxidation/activation of the antibiotic, although the enzyme has close to normal catalase activity and peroxidase activity with substrates other than INH (3032). According to the crystal structure of KatG[S315T] (33), the replacement of serine by threonine leads to a structurally modified substrate access channel. This channel leads from the surface of the enzyme to the heme edge at the propionate of pyrrole IV. Residues Asp137 and Ser315 delimit the narrowest region of the channel, which is reduced in width from 6 to 4.7 Å. The methyl group of threonine effectively restricts accessibility to the heme pocket and apparently interferes with specific interactions required for binding and activation of the drug. Although a binding site for INH in KatG is not specifically defined by x-ray crystallography at this time, a recently reported CCP-INH structure (yeast CCP is a homologous Class I peroxidase) presents what should be an excellent model of drug binding in KatG (34). Hydrogen bonds between the backbone carbonyl of Ser185 (Ser315 in M. tuberculosis KatG), a water molecule, and the pyridine nitrogen of the drug are found in the CCP-INH complex. Thus, it is reasonable that mutations at residue 315 in KatG have an impact on drug binding and activation but little impact on catalase or peroxidase activity with substrates that may not require the same specific interactions as high affinity INH binding.Beyond these studies, there is a substantial gap in the knowledge of the relationship between INH resistance due to the numerous other mutations in the katG gene and the lost drug activation function of the mutant enzymes. The main goal of the present study was to examine KatG[S315G] in vitro. We report the generation, overexpression, purification, and characterization of this enzyme found in clinical isolates of M. tuberculosis having low level INH resistance with MIC values up to 40-fold higher than WT strains (8 μg/μl versus 0.05 μg/μl) (22, 25). An interesting aspect of the problem is that in KatG[S315T], a steric influence on INH binding strongly interferes with activation, whereas resistance is still present with the glycine replacement of serine 315, which would not be assumed to interfere with substrate access or binding at the same locus.The application of optical stopped-flow spectrophotometry, isothermal titration calorimetry (ITC), optical titration, EPR spectroscopy, and rapid freeze-quench EPR (RFQ-EPR) allowed us to probe the functional and structural consequences of the mutation on INH activation. Our results strongly suggest that resistance is due to catalytic changes rather than major changes in specific interactions between the enzyme and INH. Importantly, the results demonstrate the validity of an in vitro INH activation approach used here, since we find a correlation between our observations and the in vivo behavior of INH-resistant M. tuberculosis strains for both KatG[S315T] and KatG[S315G].  相似文献   

7.
8.
A mechanism by which intact potato (Solanum tuberosum) mitochondria may regulate the matrix NAD content was studied in vitro. If mitochondria were incubated with NAD+ at 25°C in 0.3 molar mannitol, 10 millimolar phosphate buffer (pH 7.4), 5 millimolar MgCl2, and 5 millimolar α-ketoglutarate, the NAD pool size increased with time. In the presence of uncouplers, net uptake was not only inhibited, but NAD+ efflux was observed instead. Furthermore, the rate of NAD+ accumulation in the matrix space was strongly inhibited by the analog N-4-azido-2-nitrophenyl-4-aminobutyryl-3′-NAD+. When suspended in a medium that avoided rupture of the outer membrane, intact purified mitochondria progressively lost their NAD+ content. This led to a slow decrease of NAD+-linked substrates oxidation by isolated mitochondria The rate of NAD+ efflux from the matrix space was strongly temperature dependent and was inhibited by the analog inhibitor of NAD+ transport indicating that a carrier was required for net flux in either direction. It is proposed that uptake and efflux operate to regulate the total matrix NAD pool size.  相似文献   

9.
KatG from Mycobacterium tuberculosis is a heme-containing catalase-peroxidase, which belongs to the class I peroxidases and is important for activation of the prodrug isoniazid (INH), a front-line antituberculosis drug. In many clinical isolates, resistance to INH has been linked to mutations on the katG gene, and the most prevalent mutation, S315T, suggests that modification of the heme pocket has occurred. Electronic absorption and resonance Raman spectra of ferric wild-type (WT) KatG and its INH-resistant mutant KatG(S315T) at different pH values and their complexes with INH and benzohydroxamic acid (BHA) are reported. At neutral pH, a quantum mechanically mixed spin state (QS) is revealed, which coexists with five-coordinate and six-coordinate high-spin hemes in WT KatG. The QS heme is the major species in KatG(S315T). Addition of either INH or BHA to KatG induces only minor changes in the resonance Raman spectra, indicating that both compounds do not directly interact with the heme iron. New vibrational modes are observed at 430, 473, and 521 cm(-1), and these modes are indicative of a change in conformation in the KatG heme pocket. The intensity of these modes and the relative population of the QS heme are stable in KatG(S315T) but not in the WT enzyme. This indicates that there are differences in heme pocket stability between WT KatG and KatG(S315T). We will discuss the stabilization of the QS heme and propose a model for the inhibition of INH oxidation by KatG(S315T).  相似文献   

10.
The kinetic characteristics of NAD malic enzyme purified to homogeneity from cauliflower florets have been examined. Free NAD+ is the active form of this coenzyme. Double-reciprocal plots of data obtained by varying NAD+ and malate2? at a saturating concentration of Mg2+ or by varying Mg2+ and NAD+ at a saturating level of malate2? are of intersecting type. This indicates that NAD malic enzyme obeys a sequential mechanism. Analysis of these sets of data suggests that each of these substrate pairs binds randomly to the enzyme. However, each substrate binds tighter when others are already present on the enzyme. NAD malic enzyme cannot decarboxylate malate2? in the absence of either Mg2+ or NAD+. Arrhenius plots of the NAD-linked reaction are concave downward, indicating the existence of two rate-determining steps with activation energies of 26.5 and 14.2 kcal/mol, respectively. In addition to Mg2+, the enzyme can also use Mn2+ and Co2+. Using Co2+ in place of Mg2+ does not change Vmax or Km,malate2? but the Km for metal and NAD+ are greatly decreased. At pH 7.0 and above, Mn2+ isotherms and malate2? curves with Mn2+ are nonlinear and appear to be composed of two separate saturation curves. NAD malic enzyme is completely and irreversibly inactivated by N-ethylmaleimide. The enzyme is also irreversibly inactivated approximately 50% by KCNO.  相似文献   

11.
Addition of NAD+ to purified potato (Solanum tuberosum L.) mitochondria respiring α-ketoglutarate and malate in the presence of the electron transport inhibitor rotenone, stimulated O2 uptake. This stimulation was prevented by incubating mitochondria with N-4-azido-2-nitrophenyl-aminobutyryl-NAD+ (NAP4-NAD+), an inhibitor of NAD+ uptake, but not by 1 mm EGTA, an inhibitor of external NADH oxidation. NAD+-stimulated malate-cytochrome c reductase activity, and reduction of added NAD+ by intact mitochondria, could be duplicated by rupturing the mitochondria and adding a small quantity to the cuvette. The extent of external NAD+ reduction was correlated with the amount of extra mitochondrial malate dehydrogenase present. Malate oxidation by potato mitochondria depleted of endogenous NAD+ by storing on ice for 72 hours, was completely dependent on added NAD+, and the effect of NAD+ on these mitochondria was prevented by incubating them with NAP4-NAD+. External NAD+ reduction by these mitochondria was not affected by NAP4-NAD+. We conclude that all effects of exogenous NAD+ on plant mitochondrial respiration can be attributed to net uptake of the NAD+ into the matrix space.  相似文献   

12.
A tertiary amine monoxygenase from a Pseudomonas sp. was partially purified (35-fold) and characterized. In the presence of nitrilotriacetate (NTA), O2, NADH, and Mn2+, the enzyme yielded two sets of products: iminodiacetate, glyoxylate, NAD+ and H2O; or H2O2 and NAD+. Which set of products predominated was a function of enzyme concentration, ionic strength of solution, pH, and cation supplied. NTA functioned both as a modifiable substrate and as a stimulator of NADH oxidase activity. A requirement for preincubation with Mn2+ and NTA to eliminate enzyme hysteresis and the similar Km values for NTA and Mn2+ suggested that the substrate and metal were bound as a unit by the enzyme.  相似文献   

13.
Wang P  Jin M  Su R  Song P  Wang M  Zhu G 《Biochimie》2011,93(9):1470-1475
Streptococcus suis, a Gram-positive coccus, is an emerging zoonotic pathogen for both humans and pigs, but little is known about the properties of its metabolic enzymes. Isocitrate dehydrogenase (IDH) is a key regulatory enzyme in the citric acid cycle that catalyzes the oxidative decarboxylation of isocitrate yielding α-ketoglutarate and NAD(P)H. Here, we report the overexpression and enzymatic characterization of IDH from S. suis Serotype 2 Chinese highly virulent strain 05ZYH33 (SsIDH). The molecular weight of SsIDH was estimated to be 74 kDa by gel filtration chromatography, suggesting a homodimeric structure. Additionally, SsIDH was divalent cation-dependent and Mg2+ was found to be the most effective cation. The optimal pH of SsIDH was 7.0 (Mn2+) and 8.5 (Mg2+), and the maximum activity was around 30 °C (Mn2+) and 50 °C (Mg2+), respectively. Heat inactivation studies showed that SsIDH retained 50% activity after 20 min of incubation at 49 °C. Sequence comparison revealed that SsIDH had a significantly homologous identity to bacterial homodimeric IDHs. The recombinant SsIDH displayed a 117-fold (kcat/Km) preference for NAD+ over NADP+ with Mg2+, and a 80-fold greater specificity for NAD+ than NADP+ with Mn2+. Therefore, SsIDH has remarkably high coenzyme preference toward NAD+. This current work is expected to shed light on the functions of metabolic enzymes in S. suis and provide useful information for SsIDH to be considered as a possible candidate for serological diagnostics and detection of S. suis infection.  相似文献   

14.
Isonicotinic acid hydrazide (Isoniazid, INH) is one of the major drugs worldwide used in the chemotherapy of tuberculosis. Many investigators have emphasized that INH activation is associated with mycobacterial catalase-peroxidase (katG). However, INH activation mechanism is not completely understood. In this study, katG of M. bovis BCG was separated and purified into two katGs, katG I (named as relatively higher molecular weight than katG II) and katG II, indicating that there is some difference in protein structure between two katGs. The molecular weight of the enzymes of katG I and katG II was estimated to be approximately 150,000 Da by gel filtration, and its subunit was 75,000 Da as determined by SDS-PAGE, indicating that purified enzyme was composed of two identical subunits. The specific activity of the purified enzyme katG I was 991.1 (units/mg). The enzymes were then investigated in INH activation by using gas chromatography mass spectrometry (GC-MS). The analysis of GC-MS showed that the katG I from M. bovis BCG directly converted INH (Mr, 137) to isonicotinamide (Mr, 122), not to isonicotinic acid (Mr, 123), in the presence or absence of H2O2. Therefore, this is the first report that katG I, one of two katGs with almost same molecular weight existed in M. bovis BCG, converts INH to isonicotinamide and this study may give us important new light on the activation mechanism of INH by KatG between M. bovis BCG and M. tuberculosis.  相似文献   

15.
Catalase-peroxidases (KatGs) are unique bifunctional heme peroxidases that exhibit peroxidase and substantial catalase activities. Nevertheless, the reaction pathway of hydrogen peroxide dismutation, including the electronic structure of the redox intermediate that actually oxidizes H2O2, is not clearly defined. Several mutant proteins with diminished overall catalase but wild-type-like peroxidase activity have been described in the last years. However, understanding of decrease in overall catalatic activity needs discrimination between reduction and oxidation reactions of hydrogen peroxide. Here, by using sequential-mixing stopped-flow spectroscopy, we have investigated the kinetics of the transition of KatG compound I (produced by peroxoacetic acid) to its ferric state by trapping the latter as cyanide complex. Apparent bimolecular rate constants (pH 6.5, 20 °C) for wild-type KatG and the variants Trp122Phe (lacks KatG-typical distal adduct), Asp152Ser (controls substrate access to the heme cavity) and Glu253Gln (channel entrance) are reported to be 1.2 × 104 M− 1 s− 1, 30 M− 1 s− 1, 3.4 × 103 M− 1 s− 1, and 8.6 × 103 M− 1 s− 1, respectively. These findings are discussed with respect to steady-state kinetic data and proposed reaction mechanism(s) for KatG. Assets and drawbacks of the presented method are discussed.  相似文献   

16.
The NAD+-dependent isocitrate dehydrogenase from etiolated pea (Pisum sativum L.) mitochondria was purified more than 200-fold by dye-ligand binding on Matrix Gel Blue A and gel filtration on Superose 6. The enzyme was stabilized during purification by the inclusion of 20% glycerol. In crude matrix extracts, the enzyme activity eluted from Superose 6 with apparent molecular masses of 1400 ± 200, 690 ± 90, and 300 ± 50 kD. During subsequent purification steps the larger molecular mass species disappeared and an additional peak at 94 ± 16 kD was evident. The monomer for the enzyme was tentatively identified at 47 kD by sodium dodecyl-polyacrylamide gel electrophoresis. The NADP+-specific isocitrate dehydrogenase activity from mitochondria eluted from Superose 6 at 80 ± 10 kD. About half of the NAD+ and NADP+-specific enzymes remained bound to the mitochondrial membranes and was not removed by washing. The NAD+-dependent isocitrate dehydrogenase showed sigmodial kinetics in response to isocitrate (S0.5 = 0.3 mm). When the enzyme was aged at 4°C or frozen, the isocitrate response showed less allosterism, but this was partially reversed by the addition of citrate to the reaction medium. The NAD+ isocitrate dehydrogenase showed standard Michaelis-Menten kinetics toward NAD+ (Km = 0.2 mm). NADH was a competitive inhibitor (Ki = 0.2 mm) and, unexpectedly, NADPH was a noncompetitive inhibitor (Ki = 0.3 mm). The regulation by NADPH may provide a mechanism for coordination of pyridine nucleotide pools in the mitochondria.  相似文献   

17.
An NAD+-dependent xylitol dehydrogenase (XDH) from Fusarium oxysporum, a key enzyme in the conversion of xylose to ethanol, was purified to homogeneity and characterised. It was homodimeric with a subunit of M r 48 000, and pI 3.6. It was optimally active at 45 °C and pH 9–10. It was fully stable at pH 6–7 for 24 h and 30 °C. K m values for d-xylitol and NAD+ were 94 mM and 0.14 mM, respectively. Mn2+ at 10 mM increased XDH activity 2-fold and Cu2+ at 10 mM inhibited activity completely.  相似文献   

18.
The reaction of Mycobacterium tuberculosis KatG and the mutant KatG(S315T) with two different organic peroxides is studied using resonance Raman spectroscopy. For the first time, an intermediate is observed in a catalase-peroxidase with vibrations that are characteristic of Compound II. The observation of this intermediate is consistent with photoreduction of Compound I and is in agreement with the formation of Compound I during the catalytic cycle of KatG. The same intermediate is detected in KatG(S315T), a mutant associated with resistance to isoniazid (INH), but with a lower yield, indicating that the organic peroxides cannot react with the heme iron in KatG(S315T) as efficiently as in wild-type KatG. Our results are consistent with catalytic competence of the S315T mutant and support the model that the S315T mutation confers antibiotic resistance by modifying the interaction between the enzyme and the drug.  相似文献   

19.
The anaerobic acetogenic bacterium Acetobacterium woodii has a novel Na+-translocating electron transport chain that couples electron transfer from reduced ferredoxin to NAD+ with the generation of a primary electrochemical Na+ potential across its cytoplasmic membrane. In previous assays in which Ti3+ was used to reduce ferredoxin, Na+ transport was observed, but not a Na+ dependence of the electron transfer reaction. Here, we describe a new biological reduction system for ferredoxin in which ferredoxin is reduced with CO, catalyzed by the purified acetyl-CoA synthase/CO dehydrogenase from A. woodii. Using CO-reduced ferredoxin, NAD+ reduction was highly specific and strictly dependent on ferredoxin and occurred at a rate of 50 milliunits/mg of protein. Most important, this assay revealed for the first time a strict Na+ dependence of this electron transfer reaction. The Km was 0.2 mm. Na+ could be partly substituted by Li+. Na+ dependence was observed at neutral and acidic pH values, indicating the exclusive use of Na+ as a coupling ion. Electron transport from reduced ferredoxin to NAD+ was coupled to electrogenic Na+ transport, indicating the generation of Δμ̃Na+. Vice versa, endergonic ferredoxin reduction with NADH as reductant was possible, but only in the presence of Δμ̃Na+, and was accompanied by Na+ efflux out of the vesicles. This is consistent with the hypothesis that Rnf also catalyzes ferredoxin reduction at the expense of an electrochemical Na+ gradient. The physiological significance of this finding is discussed.  相似文献   

20.
Crystal structures of short chain dehydrogenase-like l-threonine dehydrogenase from Cupriavidus necator (CnThrDH) in the apo and holo forms were determined at 2.25 and 2.5 Å, respectively. Structural comparison between the apo and holo forms revealed that four regions of CnThrDH adopted flexible conformations when neither NAD+ nor l-Thr were bound: residues 38–59, residues 77–87, residues 180–186, and the catalytic domain. Molecular dynamics simulations performed at the 50-ns time scale revealed that three of these regions remained flexible when NAD+ was bound to CnThrDH: residues 80–87, residues 180–186, and the catalytic domain. Molecular dynamics simulations also indicated that the structure of CnThrDH changed from a closed form to an open form upon NAD+ binding. The newly formed cleft in the open form may function as a conduit for substrate entry and product exit. These computational results led us to hypothesize that the CnThrDH reaction progresses by switching between the closed and open forms. Enzyme kinetics parameters of the L80G, G184A, and T186N variants also supported this prediction: the kcat/Km, l-Thr value of the variants was >330-fold lower than that of the wild type; this decrease suggested that the variants mostly adopt the open form when l-Thr is bound to the active site. These results are summarized in a schematic model of the stepwise changes in flexibility and structure that occur in CnThrDH upon binding of NAD+ and l-Thr. This demonstrates that the dynamical structural changes of short chain dehydrogenase-like l-threonine dehydrogenase are important for the reactivity and specificity of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号