首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expressions of Wolfet al. (1951) and Renkin (1956) for the kinetics of artificial kidneys are generalized to include the effects of filtration. IfB is the bath volume,b the relevant volume of distribution,f the filtration rate,t the time, andA 0,B 0,b 0 representA, B, andb at timet=0, then the plasma concentrationA is given by
$$\frac{A}{{A_0 }} = \frac{{B_0 }}{{B_0 + b_0 }}e^{ - \frac{{\left( {B_0 + b_0 } \right)}}{{B_0 }}\frac{{D_f }}{{b_0 }}K\left( {ft} \right)t} + \frac{{b_0 }}{{B_0 + b_0 }}$$  相似文献   

2.
The thermodynamic functions of biopolymer hydration were investigated by multitemperature vapor pressure studies. Desorption measurements were performed that allowed determination of reversible isotherms in the hydration range of 0.1 to 0.3–0.5 g H2O/g dry polymer. These isotherms are accessible to thermodynamic interpretation and are relevant to the interaction of water with biopolymers in their solution conformation. The results obtained on a series of different biopolymers (lysozyme, α-chymotrypsin, apo-lactoferrin, and desoxyribonucleic acid), show the following common features of interest: (1) The differential excess enthalpies (ΔHe ) and entropies (ΔSe ) are negative, and exhibit pronounced anomalies in a well-defined low-humidity range (approx. 0.1 g H2O/g dry polymer). These initial extrema are interpretable by structural changes, induced in the native biopolymer structures by water removal below a critical degree of hydration. (2) The ΔHe and ΔSe terms exhibit statistically significant linear enthalpy–entropy compensation effects in all biopolymer–water systems investigated. The compensation temperatures \documentclass{article}\pagestyle{empty}\begin{document}$ \hat \beta = \overline {\Delta H} ^e /\overline {\Delta S} ^e $\end{document} are approximately identical for all biopolymers, ranging from 360 to 500 K. The compensation effects are attributable to phase transitions of water molecules between the bulk liquid and the inner-sphere hydration shell of native biopolymers. (3) The negative excess free energies (ΔGe ) decrease monotonically with increasing water content and are close to zero at 0.3 to 0.5 g H2O/g polymer. This result indicates that only transitions between the bulk liquid and the inner-sphere hydration shell are associated with significant net free energy effects. The outer-sphere hydration water is thermodynamically comparable to bulk water. The importance of the proportionality factor \documentclass{article}\pagestyle{empty}\begin{document}$ \hat \beta $\end{document} in the control of the free energy term is discussed.  相似文献   

3.
We investigated the interaction (hyper)polarizability of neon–dihydrogen pairs by performing high-level ab initio calculations with atom/molecule-specific, purpose-oriented Gaussian basis sets. We obtained interaction-induced electric properties at the SCF, MP2, and CCSD levels of theory. At the CCSD level, for the T-shaped configuration, around the respective potential minimum of 6.437 a0, the interaction-induced mean first hyperpolarizability varies for 5?<? R/a0?<?10 as
$$ \left[{\overline{\beta}}_{\mathrm{int}}(R)\hbox{-} {\overline{\beta}}_{\mathrm{int}}\left({R}_{\mathrm{e}}\right)\right]/{e}^3{a_0}^3{E_{\mathrm{h}}}^{-2}=-0.91\left(R\hbox{-} {R}_{\mathrm{e}}\right)+0.50{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^2\hbox{--} 0.13{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^3+0.01{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^4. $$
Again, at the CCSD level, but for the L-shaped configuration around the respective potential minimum of 6.572 a0, this property varies for 5?<? R/a0?<?10 as
$$ \left[{\overline{\beta}}_{\mathrm{int}}(R)\hbox{-} {\overline{\beta}}_{\mathrm{int}}\left({R}_{\mathrm{e}}\right)\right]/{e}^3{a_0}^3{E_{\mathrm{h}}}^{-2}=-1.33\left(R\hbox{-} {R}_{\mathrm{e}}\right)+0.75{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^2-0.20{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^3+0.02{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^4. $$
Graphical Abstract Interaction-induced mean dipole polarizability (\( \overline{a} \)) for the T-shaped configuration of H2–Ne calculated at the SCF, MP2, and CCSD levels of theory
  相似文献   

4.
Due of its simplicity the shaking flask is used in serial studies, e.g. in the screening for secondary metabolites or in the optimization of fermentation processes. Experimental investigations in these small bioreactors are often the first step in developing a large-scale fermentation process.Movement of the flask should produce sufficient mixing, supply of oxygen, and removal of carbon dioxide. In the case of fluids with low or moderate viscosity, gas transport is the most important aspect. This publication summarizes data necessary to calculate the gas transport. These data are derived from the consideration of the gas diffusions through the cotton plug as well as from the substance transport between the gas and liquid phases. As a result suitable fermentation conditions can be selected. Finally, the performance limits of the shaking flask are illustrated using the example of the oxygen supply in a Streptomyces tendae fermentation.List of Symbols A s Cross section of plug - A Surface area of liquid in flask - a A/V F specific phase interface area - c Concentration - c * Saturation concentration - c Plug diffusion term - D Widest diameter of flask - Diffusion coefficients in multicomponent gas mix tures - Diffusion coefficients in binary gas mixtures - Diffusion coefficient of oxygen in the liquid - d Diameter of neck of flask - e Eccentricity - G Volume-based mass flow - G m Maximum volume-based mass flow - g Acceleration due to gravity - h Height coordinate - ¯H Mean height of plug - Hy p i/c *, Henry constant - K Consistency index - k D xy/D xz, Ratio of diffusion coefficients in binary gas mixtures - k M Monod constant - k L a Mass transport coefficient: gas/liquid - M Molecular weight - m Flow exponent - n Speed of shaking - p Pressure - p i Partial pressure of gas component i - q Area-based flow of volume - R , respiration ratio - Sc , Schmidt number - T Absolute temperature - V Flask volume - V F Volume of liquid in flask - w Velocity of the Stefan flow - x, y, z Ratios of the partial pressures of the gases O2, CO2, N2 - Rate of shear - Dynamic viscosity of the liquid - Kinematic viscosity of the liquid - Density of the liquid - x, Density of O2 gas - Surface tension Indices 0 State in gas volume of shaking flask - 1 State in outside air - G Gas volume - x, y, z O2, CO2, N2  相似文献   

5.
Summary Seedlings of paper birch (Betula papyrifera Marsh.), green ash (Fraxinus pennsylvanica Marsh.), and red pine (Pinus resinosa Ait.) fumigated with 0.2 ppm SO2 for 30 h at 30° C had higher leaf diffusive conductances (LDC) and absorbed more sulfur than seedlings fumigated at 12° C. Comparisons among the three species fumigated at the same temperature, however, do not support the view that a plant with higher LDC should absorb more SO2 than a plant with lower LDC. Mean relative growth rates ( ) of seedlings grown at 21° C after fumigation were variously affected by SO2. of green ash was not inhibited by SO2, but of roots of red pine seedlings was reduced by SO2, with greater inhibition in seedlings fumigated at 30° C. Root and shoot of paper birch seedlings were lowered by SO2, and effects of SO2 were about equal at both exposure temperatures. The data indicate that temperature can affect mechanisms of SO2 avoidance, tolerance, or both to various degrees in different species. Thus generalizations on the influence of exposure temperature on resistance of plants to SO2 may be inappropriate.Research supported by the College of Agricultural and Life Sciences, University of Wisconsin-Madison.  相似文献   

6.
Summary Metal coordination confers an extraordinary structural stability to the ferrichromes which, independent of their variable amino acid composition, results in a basically unperturbed conformation for all the homologous peptides in the series. The proton magnetic resonance (pmr) characteristics for Al3+ analogues (alumichromes) reflect this conformational isomorphism in usual solvents so that single site substitutions are clearly recognized in the pmr spectra. Thus, the substitution of glycine byl-alanine orl-serine introduce new resonances characteristic of the sidechains and alter the pattern of the amide NH pmr region in that doublets substitute for glycyl triplets at the same site. Since for glycine- andl-serine-containing alumichromes the resonances have already been identified, it is possible to unequivocally establish the primary structure of the twol-alanyl homologues ferrichrome C ( ) and sake colorant A ( ) on the basis of the comparative pmr spectra of their Al3+ analogues, namely, alumichrome C and alumisake. The resonance assignment, and hence the site occupancy, is substantiated by the temperature coefficients of the NH chemical shifts, rates of1H-2H exchange and homonuclear proton spin decoupling experiments centered on the NH spectral region. Occupancy of site 1 by a glycine residue is observed for all known ferrichromes, which serves to conserve a hairpin turn. This method of obtaining sequence information should prove of general use for other systems of homologous polypeptides, provided their conformations are not affected by the residue substitutions.  相似文献   

7.
Summary The changes in the cytoplasmic Cl concentration, [Cl] c , are monitored at the time of withdrawal (starvation) and subsequent replacement of Cl in the outside medium. The measurement technique exploits the involvement of Cl inChara excitation. The transient clamp current due to Cl,I Cl, is separated from other excitation transients through Hodgkin-Huxley (HH) equations, which have been adjusted toChara. TheI Cl amplitude depends on HH parameters, [Cl] c and the maximum membrane conductance to Cl, . The results are discussed in terms of these quantities.I Cl and were found to fall after 6–10 hr of Cl starvation, thus supporting the hypothesis that [Cl c decreases in Cl-free medium. The best HH fit to starved data was obtained with [Cl c =3.5mm. The time-course forI Cl decline is considerably slower than the time-course of the rise of the starvation-stimulated influx. As cells starved for periods longer than 24 hr are re-exposed to Cl, it is revealed that while [Cl] c remains low during long starvation, increases to values greater than those of the normal cells. Such differences among cells starved for various lengths of time have not been detected previously.  相似文献   

8.
In 19 tested persons in the resting lying position, we examined changes in the mean duration of R-R intervals and in parasympathetic chronotropic cardiac reactions (respiratory arrhythmia,RA, and swallowing-related tachycardia, ST) induced by intensified tonic parasympathetic influences after peroral administration of antagonists of muscarinic (M) receptors in small doses. Administration of 0.02 g of an extract of Belladonna, which contains alkaloids of the atropine group, led to a significant increase (P < 0.001). In this case, the RA at the natural frequency of breathing (P < 0.05) and ST (P < 0.001) simultaneously increased. Close correlation was observed both between initial values of the ST and in various tested persons (r = 0.87) and between changes in these values, which were induced by the action of small amounts of M antagonists (r = 84). In various persons, the RA during deep slowed breathing (6 min-1, RA6) demonstrated ambiguous modifications. In the structure of RA6, we identified two components: an inspiratory tachycardic (TC) and an expiratory bradycardic (BC). With intensification of the parasympathetic influences, the TC began to prevail; its increase was strongly related to a rise in the (r = 0.84). In contrast, correlation between changes in the BC and an increase in the was completely absent (r = 0.001). Therefore, small amounts of M antagonists intensify both the tonic component of parasympathetic control (increasing the ) and its dynamic indices, the magnitudes of the ST and RA. Tachycardia during swallowing and the inspiratory TC under conditions of deep slowed breathing are closely related to changes in the parasympathetic influences. The magnitude of the RA is the index, which reflects the tonic component of chtonotropic control under conditions of both slowed and natural breathing less adequately than the ST.  相似文献   

9.
In a continuing effort to further explore the use of the average local ionization energy $ \overline{\mathrm{I}}\left( \mathbf{r} \right) $ as a computational tool, we have investigated how well $ \overline{\mathrm{I}}\left( \mathbf{r} \right) $ computed on molecular surfaces serves as a predictive tool for identifying the sites of the more reactive electrons in several nonplanar defect-containing model graphene systems, each containing one or more pentagons. They include corannulene (C20H10), two inverse Stone-Thrower-Wales defect-containing structures C26H12 and C42H16, and a nanotube cap model C22H6, whose end is formed by three fused pentagons. Coronene (C24H12) has been included as a reference planar defect-free graphene model. We have optimized the structures of these systems as well as several monohydrogenated derivatives at the B3PW91/6-31G* level, and have computed their $ \overline{\mathrm{I}}\left( \mathbf{r} \right) $ on molecular surfaces corresponding to the 0.001 au, 0.003 au and 0.005 au contours of the electronic density. We find that (1) the convex sides of the interior carbons of the nonplanar models are more reactive than the concave sides, and (2) the magnitudes of the lowest $ \overline{\mathrm{I}}\left( \mathbf{r} \right) $ surface minima (the $ {{\overline{\mathrm{I}}}_{{\mathrm{S}\text{,}\min }}} $ ) correlate well with the interaction energies for hydrogenation at these sites. These $ {{\overline{\mathrm{I}}}_{{\mathrm{S}\text{,}\min }}} $ values decrease in magnitude as the nonplanarity of the site increases, consistent with earlier studies. A practical benefit of the use of $ \overline{\mathrm{I}}\left( \mathbf{r} \right) $ is that a single calculation suffices to characterize the numerous sites on a large molecular system, such as graphene and defect-containing graphene models.
Figure
Convex 0.001 au molecular surface of hydrogenated inverse Stone-Thrower-Wales defect-containing model 4H, with the hydrogen attached to one of the central carbons fusing the two pentagons  相似文献   

10.
Recent progress in genotyping and doubled haploid (DH) techniques has created new opportunities for development of improved selection methods in numerous crops. Assuming a finite number of unlinked loci () and a given total number (n) of individuals to be genotyped, we compared, by theory and simulations, three methods of marker-assisted selection (MAS) for gene stacking in DH lines derived from biparental crosses: (1) MAS for high values of the marker score (T, corresponding to the total number of target alleles) in the F2 generation and subsequently among DH lines derived from the selected F2 individual (Method 1), (2) MAS for augmented F2 enrichment and subsequently for T among DH lines from the best carrier F2 individual (Method 2), and (3) MAS for T among DH lines derived from the F1 generation (Method 3). Our objectives were to (a) determine the optimum allocation of resources to the F2n1* \, n_{1}^{*} ) and DH generations (n - n1* ) (n - n_{1}^{*} ) for Methods 1 and 2 by simulations, (b) compare the efficiency of all three methods for gene stacking by simulations, and (c) develop theory to explain the general effect of selection on the segregation variance and interpret our simulation results. By theory, we proved that for smaller values of , the segregation variance of T among DH lines derived from F2 individuals, selected for high values of T, can be much smaller than expected in the absence of selection. This explained our simulation results, showing that for Method 1, it is best to genotype more F2 individuals than DH lines ($ n_{1}^{*} :n > 0.5 $ n_{1}^{*} :n > 0.5 ), whereas under Method 2, the optimal ratio n1* :n n_{1}^{*} :n was close to 0.5. However, for ratios deviating moderately from the optimum, the mean [`(X)] \overline{X} of T in the finally selected DH line ( T\textDH* T_{\text{DH}}^{*} ) was hardly reduced. Method 3 had always the lowest mean [`(X)] \overline{X} of T\textDH* T_{\text{DH}}^{*} except for small numbers of loci ( = 4) and is favorable only if a small number of loci are to be stacked in one genotype and/or saving one generation is of crucial importance in cultivar development. Method 2 is under most circumstances the superior method, because it generally showed the highest mean [`(X)] \overline{X} and lowest SD of T\textDH* T_{\text{DH}}^{*} for the finally selected DH.  相似文献   

11.
Analysis of linkage disequilibrium (=mean squared correlation of allele frequencies at different gene loci) provides a means of estimating effective population size (N e) from a single sample, but this method has seen much less use than the temporal method (which requires at least two samples). It is shown that for realistic numbers of loci and alleles, the linkage disequilibrium method can provide precision comparable to that of the temporal method. However, computer simulations show that estimates of N e based on for unlinked, diallelic gene loci are sharply biased downwards ( in some cases) if sample size (S) is less than true N e. The bias is shown to arise from inaccuracies in published formula for when S and/or N e are small. Empirically derived modifications to for two mating systems (random mating and lifetime monogamy) effectively eliminate the bias (residual bias in % in most cases). The modified method also performs well in estimating N e in non-ideal populations with skewed sex ratio or non-random variance in reproductive success. Recent population declines are not likely to seriously affect , but if N has recently increased from a bottleneck can be biased downwards for a few generations. These results should facilitate application of the disequilibrium method for estimating contemporary N e in natural populations. However, a comprehensive assessment of performance of with highly polymorphic markers such as microsatellites is needed.The US Governmentȁ9s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

12.
The authors have developed a continuous recycle reactor which efficiently performs emulsion type enzymatic reactions. The reactor column is filled with immobilised lipase and the reactions are effected by pumping the pre-prepared oil-water emulsion through the bottom of the reactor. A part of the product was recycled back and this type of recycling greatly improves the productivity of fatty acid compared to continuous once-through reactor without recycling. The recycle reactor could be continuously run for 35 days without decrease in conversions. The performance of the reactor was interpreted by a model and the theoretical conversion was compared with the experimental data.List of Symbols F AO mol/min feed rate - K M g/l Michaelis constant - R recycle ratio - r 5 mol/(ml · min) reaction rate - S 0 g/l initial substrate concentration - V max mol/(ml · min) maximum reaction velocity - V R l void volume of the reactor - x s fractional conversion - Standard deviation   相似文献   

13.
In this paper it is shown that if N= \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop \sum \limits_{i = 1}^{S_h} $\end{document} cihNih, where cih are some non-negative integer numbers and Nih are such incidence matrices that Ah = \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop \sum \limits_{i = 1}^{S_h} $\end{document} i Nih is a balanced matrix defined by SHAH (1959), for h = 1, 2,…, p, then a block design with an incidence matrix Ñ = [N, N,…,N] is an equi-replicated balanced block design. Here the balance of a block design is defined in terms of the matrix M0 introduced by CALI?SKI (1971).  相似文献   

14.
Summary The effects of various convective and temperature regimes on heat production, evaporative heat loss, and thermal resistance were studied in deer mice,Peromyscus maniculatus. Heat production (measured as oxygen consumption) increased with increasing wind speed (V) and decreasing ambient temperature (T a), except atT a=35°C which was thermoneutral for allV from 0.05 through 3.75 m/s. Evaporative water loss ( ) increased with increasingT a, but wind had little effect on except at highT a. In the absence of forced convection, the animals' total resistance to heat transfer (r t) was high and stable atT a below thermoneutrality. However, at highV ther t increased steadily with decreasingT a. Although deer mice rarely experience high wind speeds in natural microhabitats, the convective regime is nevertheless important in determining rates of heat loss, and must be considered in studies of ecological energetics.Symbols and Abbreviations A animal surface area - HP n net metabolic heat production - EHL evaporative heat loss - MHP metabolic heat production - r t total resistance to heat transfer - r ext external resistance component of rt - RQ respiratory quotient - pc p volumetric specific heat of air - T a ambient temperature - t b body temperature - t e operative, or equivalent blackbody temperature of the environment - T sk skin temperature - T es standard operative temperature - V wind speed - oxygen consumption - carbon dioxide production - evaporative water loss  相似文献   

15.
Facilitation at crayfish neuromuscular junctions   总被引:1,自引:0,他引:1  
Electrophysical recordings from opener muscle fibers in the crayfishProcambarus clarkii (Fig. 1) show that pre-synaptic facilitation at terminals of the single excitatory axon usually decays in a dual-exponential fashion after a single pulse or after a train of pulses (Figs. 2, 3, 7, 9), as has been reported for frog neuromuscular junctions (Mallart and Martin, 1967) and squid giant synapses (Charlton and Bittner, 1974, 1976). Furthermore, the second component of decay at crayfish synapses is associated with a break in the monotonic decay of the first component, a result which suggests that the decay of facilitation is not due to the simple diffusion of some substance (such as calcium) from specialized release sites.The growth of facilitation at all opener synapses during trains of equalinterval stimuli could not be predicted by assuming that each pulse contributed an equal amount of facilitation which summed linearly with that remaining from all previous stimuli (Figs. 4, 6; Table 2), as reported for synapses in frog and squid. During high frequency stimulation (>40 Hz), those terminals which facilitate dramatically (highF e synapses) show much greater amounts of facilitation than that predicted by the linear summation model (Figs. 4, 8), whereas other terminals (lowF e synapses) show much less facilitation than predicted (Fig. 6). The rate of growth of facilitation was often very constant at various stimulus rates in highF e or mixed type synapses (Figs. 4, 8, 10)-a result not predicted by the linear summation model. Finally, when highF e synapses were stimulated at different frequencies, the rate of growth of facilitation changed dramatically in a fashion not predictable using linear summation (Mallert and Martin, 1967) or power law (Linder, 1974) models.  相似文献   

16.
Six female subjects, aged 24-34 years, performed shoulder-neck exercise for 1 h or until they were exhausted by holding out their arms horizontally at 60° to the sagittal plane. One continuous and six intermittent protocols were applied, all with a mean load corresponding to the torque of the arms, i.e. about 15% maximal voluntary contraction (MVC). The intermittent protocols varied according to cycle time (10 s, 60 s, 360 s) and duty cycle (0.33, 0.50, 0.67, 0.83). Electromyogram (EMG), mean arterial blood pressure ( a), heart rate (f c) and perceived fatigue were monitored at regular intervals during exercise. Blood concentrations of potassium, lactate and ammonia were determined in pre- and postexercise samples of venous blood. Before and up to 4 h after exercise, measurements were made of MVC, pressure pain threshold, proprioceptive performance, and of EMG, a and f c during 1-min arm-holding at 25% MVC. Endurance times ranged from about 10 min to more than 1 h, significantly relating to both cycle time and duty cycle. The a, f c EMG amplitude and perceived fatigue increased early during all protocols and continued to increase throughout the exercise period. Duty cycle influenced all of these variables, while only a and fatigue perception were related to cycle time. Cardiovascular and neuromuscular recovery was incomplete for hours after several of the protocols, as indicated for example by a sensitizised response to the 1-min armholding. The protocols differed substantially as regards the relationship between different responses. Thus, ranking of the protocols in terms of physiological strain was different, depending on the criterion variable. The result stresses the relevance of applying a comprehensive selection of variables when evaluating the responses to intermittent shoulder-neck exercise.  相似文献   

17.
The effect of stepwise increments of red light intensities on pulse-amplitude modulated (PAM) chlorophyll (Chl) fluorescence from leaves of A. thaliana and Z. mays was investigated. Minimum and maximum fluorescence were measured before illumination (F 0 and F M, respectively) and at the end of each light step ( $ F^{\prime}_{0} $ and $ F^{\prime}_{\text{M}} $ , respectively). Calculated $ F^{\prime}_{0} $ values derived from F 0, F M and $ F^{\prime}_{\text{M}} $ fluorescence according to Oxborough and Baker (1997) were lower than the corresponding measured $ F^{\prime}_{0} $ values. Based on the concept that calculated $ F^{\prime}_{0} $ values are under-estimated because the underlying theory ignores PSI fluorescence, a method was devised to gain relative PSI fluorescence intensities from differences between calculated and measured $ F^{\prime}_{0} $ . This method yields fluorometer-specific PSI data as its input data (F 0, F M, $ F^{\prime}_{0} $ and $ F^{\prime}_{\text{M}} $ ) depend solely on the spectral properties of the fluorometer used. Under the present conditions, the PSI contribution to F 0 fluorescence was 0.24 in A. thaliana and it was independent on the light acclimation status; the corresponding value was 0.50 in Z. mays. Correction for PSI fluorescence affected Z. mays most: the linear relationship between PSI and PSII photochemical yields was clearly shifted toward the one-to-one proportionality line and maximum electron transport was increased by 50 %. Further, correction for PSI fluorescence increased the PSII reaction center-specific parameter, 1/F 0 ? 1/F M, up to 50 % in A. thaliana and up to 400 % in Z. mays.  相似文献   

18.
The post-prandial rates of ammonia excretion (TAN) and oxygen consumption in the southern catfish (Silurus meridionalis) were assessed at 2 h intervals post-feeding until the rates returned to those of the fasting rates, at 17.5, 22.5, 27.5, and 32.5°C, respectively. Both fasting TAN and increased with temperature, and were lower than those previously reported for many fish species. The relationship between fasting TAN (mmol NH3–N kg−1 h−1) and temperature (T, °C) was described as: fasting TAN = 0.144e 0.0266T (= 0.526, = 27, < 0.05). The magnitude of ammonia excretion and its ratio to total N intake during the specific dynamic action (SDA) tended to increase initially, and then decrease with increasing temperature. The ammonia quotient (AQ), calculated as mol NH3–N/mol O2, following feeding decreased as temperature increased. The relationship between AQ during SDA and temperature was described as: AQduring SDA = 0.303e −0.0143T (= 0.739, = 21, < 0.05). Our results suggest that ammonia excretion and oxygen consumption post-feeding are operating independently of each other. Furthermore, it appears that the importance of protein as a metabolic substrate in postprandial fish decreases with temperature.  相似文献   

19.
The ability of oxygen vector to extract produced carbon dioxide has been tested in an anaerobic fermentation. During the continuous culture of Clostridium acetobutylicum at pH 4.6 and at a dilution rate of 0.124 h–1, a feed composed of an emulsion of 18.5% by volume of Forane F66E was able to extract about 9% of the total CO2 produced under CO2 partial pressure equal to 0.42 atm. A theoretical evaluation of the extracted amount, based on the hypothesis of total saturation of the vector by carbon dioxide, has lead to very good agreement.List of Symbols [AA] g/l acetic acid concentration - [BA] g/l butyric acid concentration - D 1/h Q w /V dilution rate - [ETH] g/l ethanol concentration - H w Henry constant of CO2 for water at 37°C (=23.91 mmol/(l atm)) - H F Henry constant of CO2 for Forane at 37°C (=83.4 mmol/(l atm)) - H i g/mol molar mass of componenti - P i atm partial pressure of gasi - W w l/h aqueous flow - Qf 1/h Forane flow - mmol/(lh) dissolved CO2 flow in aqueous effluent - mmol/(lh) CO2 gas flow - mmol/(lh) CO2 gas flow without Forane - mmol/(lh) CO2 gas flow with Forane - mmol/(lh) total CO2 production - r X g/(lh) biomass production rate - r G mmol/(lh) total gas flow - mmol/(lh) hydrogen production - mmol/(lh) nitrogen flow - r S mmol/(lh) glucose input - V 1 fermentor volume  相似文献   

20.
A group of 15 untrained male subjects pedalled on a friction-loaded cycle ergometer as fast as possible for 5–7 s to reach the maximal velocity (V{immax}) against different braking forces (F B). Power was averaged during a complete crank rotation by adding the power dissipated againstF B to the power necessary to accelerate the flywheel. For each sprint, determinations were made of peak power output ( ) power output attained atV max ( ) calculated as the product ofV max andF B and the work performed to reachV max expressed in mean power output ( ). The relationships between these parameters andF B were examined. A biopsy taken from the vastus lateralis muscle and tomodensitometric radiographs of both thighs were taken at rest to identify muscle metabolic and morphometric properties. The value was similar for allF B. Therefore, the average of values was defined as corrected maximal power ( ). This value was 11 higher than the maximal power output uncorrected for the acceleration. Whereas the determination did not require high loads, the highest value ( ) was produced when loading was heavy, as evidenced by the -F B parabolic relationship. For each subject, the braking force ( ) giving was defined as optimal. The , equal to 0.844 (SD 0.108) N · kg−1 bodymass, was related to thigh muscle area (r = 0.78,P < 0.05). The maximal velocity ( ) reached against this force seemed to be related more to intrinsic fibre properties (% fast twitch b fibre area and adenylate kinase activity). Thus, from the determination, it is suggested that it should be possible to predict the conditions for optimal exercise on a cycle ergometer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号