首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleotide sequence of the transfer (tra) region of the multiresistance broad-host-range Inc18 plasmid pIP501 was completed. The 8629-bp DNA sequence encodes 10 open reading frames (orf), 9 of them are possibly involved in pIP501 conjugative transfer. The putative pIP501 tra gene products show highest similarity to the respective ORFs of the conjugative Enterococcus faecalis plasmids pRE25 and pAMbeta1, and the Streptococcus pyogenes plasmid pSM19035, respectively. ORF7 and ORF10 encode putative homologues of type IV secretion systems involved in transport of effector molecules from pathogens to host cells and in conjugative plasmid transfer in Gram-negative (G-) bacteria. pIP501 mobilized non-selftransmissible plasmids such as pMV158 between different E. faecalis strains and from E. faecalis to Bacillus subtilis. Evidence for the very broad-host-range of pIP501 was obtained by intergeneric conjugative transfer of pIP501 to a multicellular Gram-positive (G+) bacterium, Streptomyces lividans, and to G- Escherichia coli. We proved for the first time pIP501 replication, expression of its antibiotic resistance genes as well as functionality of the pIP501 tra genes in S. lividans and E. coli.  相似文献   

2.
Transfer genes of the IncP plasmid RP4 are grouped in two separate regions, designated Tra1 and Tra2. Tra2 gene products are proposed to be mainly responsible for the formation of mating pairs in conjugating cells. To provide information relevant to understanding the function of Tra2 gene products, the nucleotide sequence of the entire RP4 Tra2 region is presented here. Twelve open reading frames were identified in the Tra2 core region, being essential for intraspecific Escherichia coli matings. Predicted sizes of 11 of the 12 Tra2 polypeptides could be verified by expression in E. coli. Based on hydropathy plot analysis, most of the Tra2 open reading frames encode proteins that may interact with membranes. Interestingly, six of the predicted Tra2 gene products exhibited significant sequence similarities to gene products encoded by the VirB operon of the Agrobacterium Ti plasmid. VirB proteins are thought to function in the formation of a transmembrane structure that mediates the passage of T-DNA molecules from bacteria into plant cells. Because of this analogy and the hydropathy of Tra2 gene products, we assume that the DNA transfer machineries acting in bacterial conjugation and T-DNA transfer are structurally and functionally similar. Therefore, the data presented here, support the hypothesis that Ti vir and IncP tra genes evolved from a common ancestor. This suggestion is favored by previous findings of sequence similarities between the IncP and Ti DNA transfer system.  相似文献   

3.
pIP501 is a streptococcal conjugative plasmid which can be transmitted among numerous gram-positive strains. To identify a minimal mobilization (mob) locus of pIP501, DNA fragments of pIP501 were cloned into nonconjugative target plasmids and tested for mobilization by pIP501. We show that nonmobilizable plasmids containing a specific fragment of pIP501 are transmitted at high frequencies between Lactococcus lactis subsp. lactis strains if transfer (tra) functions are provided in trans by a pIP501 derivative. Independent transfer of the mobilized plasmid was observed in up to 44% of transconjugants. A 2.2-kb segment containing mob was sequenced. This DNA segment is characterized by three palindromes (palI, palII, and palIII) and a 202-amino-acid open reading frame (ORFX) of unknown function. The smallest DNA fragment conferring high frequency mobilization was localized to a 1.0-kb region (extending from pIP501 coordinates 3.60 to 4.60 on the 30.2-kb map) which contains palI (delta G = -27 kcal/mol [ca. -110,000 J/mol]). A 26-bp sequence identical to palI is present on pIP501, upstream of the plasmid copy control region. Further homologies with the palI sequence are also found with the related Enterococcus faecalis conjugative plasmid pAM beta 1. The region containing mob maps outside the previously described segment mediating pIP501 conjugation. Our results with recA strains indicate that the mob site is a hot spot for cointegrate formation.  相似文献   

4.
E R Krah  F L Macrina 《Plasmid》1991,25(1):64-69
pIP501 is a member of a group of conjugative plasmids that are self-transmissible to a wide variety of streptococci as well as to other gram-positive bacteria. Several pIP501 restriction fragment deletion derivatives have been isolated and characterized. In this paper we describe one such derivative (pVA1702) which was conjugally proficient but had a limited host range. The loss of host range ability was seen as decreased conjugal transfer from Enterococcus faecalis to Streptococcus sanguis and was coincident with the deletion of a 4.5-kb DNA fragment. Transformation of pVA1702 into S. sanguis also was dramatically reduced as compared to its progenitor, suggesting the 4.5-kb fragment encoded a factor(s) necessary for stable maintenance in this host but not in E. faecalis. These observations suggest that pIP501 employs specific mechanisms enabling its maintenance in certain gram-positive bacteria.  相似文献   

5.
Conjugative plasmid transfer is the most important means of spreading antibiotic resistance and virulence genes among bacteria and therefore presents a serious threat to human health. The process requires direct cell-cell contact made possible by a multiprotein complex that spans cellular membranes and serves as a channel for macromolecular secretion. Thus far, well studied conjugative type IV secretion systems (T4SS) are of Gram-negative (G−) origin. Although many medically relevant pathogens (e.g., enterococci, staphylococci, and streptococci) are Gram-positive (G+), their conjugation systems have received little attention. This study provides structural information for the transfer protein TraM of the G+ broad host range Enterococcus conjugative plasmid pIP501. Immunolocalization demonstrated that the protein localizes to the cell wall. We then used opsonophagocytosis as a novel tool to verify that TraM was exposed on the cell surface. In these assays, antibodies generated to TraM recruited macrophages and enabled killing of pIP501 harboring Enteroccocus faecalis cells. The crystal structure of the C-terminal, surface-exposed domain of TraM was determined to 2.5 Å resolution. The structure, molecular dynamics, and cross-linking studies indicated that a TraM trimer acts as the biological unit. Despite the absence of sequence-based similarity, TraM unexpectedly displayed a fold similar to the T4SS VirB8 proteins from Agrobacterium tumefaciens and Brucella suis (G−) and to the transfer protein TcpC from Clostridium perfringens plasmid pCW3 (G+). Based on the alignments of secondary structure elements of VirB8-like proteins from mobile genetic elements and chromosomally encoded T4SS from G+ and G− bacteria, we propose a new classification scheme of VirB8-like proteins.  相似文献   

6.
Abstract The virB operon of the Agrobacterium tumefaciens Ti plasmid encodes 11 proteins. Specific antisera to VirB2, VirB3 and VirB9 were used to locate these virulence proteins in the A. tumefaciens cell. Immunoblot analysis located VirB2 protein to the inner and outer membranes; VirB3 and VirB9 were likewise associated with both membranes, but mainly in the outer membrane. VirB2 is processed from a 12.3-kDa protein into a 7.2-kDa polypeptide. Such sized protein results from cleavage at residue Ala47, upstream of which two additional alanine residues Ala45-Ala46 are contained and bearing resemblance to a signal peptide peptidase-I cleavage sequence. VirB2 and VirB3 sequences are strikingly similar to the pilin biosynthetic proteins TraA and TraL encoded by the tra operon of F and R1-19 plasmids. Since traA encodes a propilin that is cleaved into a 7.2-kDa conjugative pilin product and since this cleavage site is present in both TraA and VirB2, we propose that virB2 encodes a pilin-like protein which together with VirB3 and VirB9 as well as other VirB proteins may be used for interkingdom T-DNA transfer between bacteria and plants.  相似文献   

7.
Conjugative transfer of DNA that occurs between bacteria also operates between bacteria and higher organisms. The transfer of DNA between Gram-negative bacteria requires initial contact by a sex pilus followed by DNA traversing four membranes (donor plus recipient) using a transmembrane pore. Accumulating evidence suggests that transfer of the T-DNA from Agrobacterium tumefaciens to plants may also occur via a conjugative mechanism. The virB operon of the Ti plasmid exhibits close homologies to genes that are known to encode the pilin subunits and pilin assembly proteins. The proteins encoded by the PilW operon of IncW plasmid R388 share strong similarities (average similarity=50.8%) with VirB proteins. Similarly, the TraA, TraL and TraC proteins of IncF plasmid F have similarities to VirB2, VirB3 and VirB4 respectively (average similarity = 45.3%). VirB2 protein (12.3 kDa) contains a signal peptidase-I cleavage sequence that generates a polypeptide of 7.2 kDa. Likewise, the 12.8 kDa propilin protein TraA of plasmid F also possesses a peptidase-I cleavage site that generates the 7.2 kDa pilin structural protein. Similar amino acid sequences of the conjugative transfer genes of F, R388 as well as plasmid RP4 and the genes of the ptl operon of Bortedella pertussis suggest the existence of a superfamily of transmembrane proteins adapted to the promiscuous transfer of DNA-protein complexes.  相似文献   

8.
We determined the sequence and genetic organization of plasmid pIP823, which contains the dfrD gene; dfrD confers high-level trimethoprim resistance to Listeria monocytogenes BM4293 by synthesis of dihydrofolate reductase type S2. pIP823 possessed all the features of the pUB110/pC194 plasmid family, whose members replicate by the rolling-circle mechanism. The rep gene encoded a protein identical to RepU, the protein required for initiation of the replication of plasmids pTB913 from a thermophilic Bacillus sp. and pUB110 from Staphylococcus aureus. The mob gene encoded a protein with a high degree of amino acid identity with the Mob proteins involved in conjugative mobilization and interplasmidic recombination of pTB913 and pUB110. The host range of pIP823 was broad and included L. monocytogenes, Enterococcus faecalis, S. aureus, Bacillus subtilis, and Escherichia coli. In all these species, pIP823 replicated by generating single-stranded DNA and was stable. Conjugative mobilization of pIP823 was obtained by self-transferable plasmids between L. monocytogenes and E. faecalis, between L. monocytogenes and E. coli, and between strains of E. coli, and by the streptococcal conjugative transposon Tn1545 from L. monocytogenes to E. faecalis, and from L. monocytogenes and E. faecalis to E. coli. These data indicate that the gene flux observed in nature from gram-positive to gram-negative bacteria can occur by conjugative mobilization. Our results suggest that dissemination of trimethoprim resistance in Listeria spp. and acquisition of other antibiotic resistance determinants in this species can be anticipated.  相似文献   

9.
The mechanism of DNA transmission between distinct organisms has remained a subject of long-standing interest. Agrobacterium tumefaciens mediates the transfer of plant oncogenes in the form of a 25-kb T-DNA sector of a resident Ti plasmid. A growing body of evidence leading to the elucidation of the mechanism involved in T-DNA transfer comes from studies on the vir genes contained in six major operons that are required for the T-DNA transfer process. Recent comparative amino acid sequence studies of the products of these vir genes have revealed interesting similarities between Tra proteins of Escherichia coli F factor, which are involved in the biosynthesis and assembly of a conjugative pilus, and VirB proteins encoded by genes of the virB operon of A. tumefaciens pTiC58. We have previously identified VirB2 as a pilin-like protein with processing features similar to those of TraA of the F plasmid and have shown that VirB2 is required for the biosynthesis of pilin on a flagella-free Agrobacterium strain. In the present work, VirB2 is found to be processed and localized primarily to the cytoplasmic membrane in E. coli. Cleavage of VirB2 was predicted previously to occur between alanine and glutamine in the sequence -Pro-Ala-Ala-Ala-Glu-Ser-. This peptidase cleavage sequence was mutated by an amino acid substitution for one of the alanine residues (D for A at position 45 [A45D]), by deletion of the three adjacent alanines, and by a frameshift mutation 22 bp upstream of the predicted Ala-Glu cleavage site. With the exception of the frameshift mutation, the alanine mutations do not prevent VirB2 processing in E. coli, while in A. tumefaciens they result in VirB2 instability, since no holo- or processed protein is detectable. All of the above mutations abolish virulence. The frameshift mutation abolishes processing in both organisms. These results indicate that VirB2 is processed into a 7.2-kDa structural protein. The cleavage site in E. coli appears to differ from that predicted in A. tumefaciens. Yet, the cleavage sites are relatively close to each other since the final cleavage products are similar in size and are produced irrespective of the length of the amino-terminal portion of the holoprotein. As we observed previously, the similarity between the processing of VirB2 in A. tumefaciens and the processing of the propilin TraA of the F plasmid now extends to E. coli.  相似文献   

10.
pMV158, a non-self-transmissible plasmid encoding tetracycline resistance, was conjugally transferred from Enterococcus faecalis JH203 to Lactococcus lactis subsp. lactis IL1403. This transfer appeared to be dependent on the cotransfer of the conjugative plasmids pAM beta 1 or pIP501. Intraspecies conjugal transfer of pMV158 also occurred in strain IL1403. In contrast to the transfer from E. faecalis, transfer in IL1403 did not require the presence of a conjugative plasmid in the donor strain but, rather, appeared to be dependent on putative chromosomal functions in strain IL1403. The transfer of pMV158 from strain IL1403 required the presence of an active pMV158-encoded protein, which showed homology to the Pre (plasmid recombination enzyme) proteins encoded by several small plasmids extracted from Staphylococcus aureus, such as pT181.  相似文献   

11.
Streptococcal plasmid pIP501 has a functional oriT site.   总被引:7,自引:3,他引:4       下载免费PDF全文
DNA sequence analysis suggested the presence of a plasmid transfer origin-like site (oriT) in the gram-positive conjugative plasmid pIP501. To test the hypothesis that the putative oriT site in pIP501 played a role in conjugal transfer, we conducted plasmid mobilization studies in Enterococcus faecalis. Two fragments, 49 and 309 bp, which encompassed the oriT region of pIP501, were cloned into pDL277, a nonconjugative plasmid of gram-positive origin. These recombinant plasmids were mobilized by pVA1702, a derivative of pIP501, at a frequency of 10(-4) to 10(-5) transconjugants per donor cell, while pDL277 was mobilized at a frequency of 10(-8) transconjugants per donor cell. These results indicated that the oriT-like site was needed for conjugal mobilization. To demonstrate precise nicking at the oriT site, alkaline gel and DNA-sequencing analyses were performed. Alkaline gel electrophoresis results indicated a single-stranded DNA break in the predicted oriT site. The oriT site was found upstream of six open reading frames (orf1 to orf6), each of which plays a role in conjugal transfer. Taken together, our conjugal mobilization data and the in vivo oriT nicking seen in Escherichia coli argue compellingly for the role of specific, single-stranded cleavage in plasmid mobilization. Thus, plasmid mobilization promoted by pVA1702 (pIP501) works in a fashion similar to that known to occur widely in gram-negative bacteria.  相似文献   

12.
13.
14.
The kilB locus (which is unclonable in the absence of korB) of broad-host-range plasmid RK2 (60 kb) lies between the trfA operon (co-ordinates 16.4 to 18.2 kb), which encodes a protein essential for vegetative replication, and the Tra2 block of conjugative transfer genes (co-ordinates 20.0 to 27.0 kb). Promoter probe studies indicated that kilB is transcribed clockwise from a region containing closely spaced divergent promoters, one of which is the trfA promoter. The repression of both promoters by korB suggested that kilB may also play a role in stable maintenance of RK2. We have sequenced the region containing kilB and analysed it by deletion and insertion mutagenesis. Loss of the KilB+ phenotype does not result in decreased stability of mini RK2 plasmids. However insertion in ORFI (kilBI) of the region analysed results in a Tra- phenotype in plasmids which are otherwise competent for transfer, demonstrating that this locus is essential for transfer and is probably the first gene of the Tra2 region. From the kilBI DNA sequence KilBI is predicted to be 34995 Da, in line with M(r) = 36,000 observed by sodium dodecyl sulphate/polyacrylamide gel electrophoresis, and contains a type I ATP-binding motif. The purified product was used to raise antibody which allowed the level of KilBI produced from RK2 to be estimated at approximately 2000 molecules per bacterium. Protein sequence comparisons showed the highest homology score with VirB11, which is essential for the transfer of the Agrobacterium tumefaciens Ti plasmid DNA from bacteria to plant cells. The sequence similarity of both KilBI and VirB11 to a family of protein export functions suggested that KilBI may be involved in assembly of the surface-associated Tra functions. The data presented in this paper provide the first demonstration of coregulation of genes required for vegetative replication and conjugative transfer on a bacterial plasmid.  相似文献   

15.
Conjugative transfer of IncN plasmid pKM101 is mediated by the TraI-TraII region-encoded transfer machinery components. Similar to the case for the related Agrobacterium tumefaciens T-complex transfer apparatus, this machinery is needed for assembly of pili to initiate cell-to-cell contact preceding DNA transfer. Biochemical and cell biological experiments presented here show extracellular localization of TraC, as suggested by extracellular complementation of TraC-deficient bacteria by helper cells expressing a functional plasmid transfer machinery (S. C. Winans, and G. C. Walker, J. Bacteriol. 161:402-410, 1985). Overexpression of TraC and its export in large amounts into the periplasm of Escherichia coli allowed purification by periplasmic extraction, ammonium sulfate precipitation, and column chromatography. Whereas TraC was soluble in overexpressing strains, it partly associated with the membranes in pKM101-carrying cells, possibly due to protein-protein interactions with other components of the TraI-TraII region-encoded transfer machinery. Membrane association of TraC was reduced in strains carrying pKM101 derivatives with transposon insertions in genes coding for other essential components of the transfer machinery, traM, traB, traD, and traE but not eex, coding for an entry exclusion protein not required for DNA transfer. Cross-linking identified protein-protein interactions of TraC in E. coli carrying pKM101 but not derivatives with transposon insertions in essential tra genes. Interactions with membrane-bound Tra proteins may incorporate TraC into a surface structure, suggested by its removal from the cell by shearing as part of a high-molecular-weight complex. Heterologous expression of TraC in A. tumefaciens partly compensated for the pilus assembly defect in strains deficient for its homolog VirB5, which further supported its role in assembly of conjugative pili. In addition to its association with high-molecular-weight structures, TraC was secreted into the extracellular milieu. Conjugation experiments showed that secreted TraC does not compensate transfer deficiency of TraC-deficient cells, suggesting that extracellular complementation may rely on cell-to-cell transfer of TraC only as part of a bona fide transfer apparatus.  相似文献   

16.
17.
D Balzer  W Pansegrau    E Lanka 《Journal of bacteriology》1994,176(14):4285-4295
Two essential transfer genes of the conjugative plasmid RP4 were altered by site-directed mutagenesis: traG of the primase operon and traI of the relaxase operon. To evaluate effects on the transfer phenotype of the point mutations, we have reconstituted the RP4 transfer system by fusion of the transfer regions Tra1 and Tra2 to the small multicopy replicon ColD. Deletions in traG or traI served to determine the Tra phenotype of mutant plasmids by trans complementation. Two motifs of TraG which are highly conserved among TraG-like proteins in several other conjugative DNA transfer systems were found to be essential for TraG function. One of the motifs resembles that of a nucleotide binding fold of type B. The relaxase (TraI) catalyzes the specific cleaving-joining reaction at the transfer origin needed to initiate and terminate conjugative DNA transfer (W. Pansegrau, W. Schröder, and E. Lanka, Proc. Natl. Acad. Sci. USA 90:2925-2929, 1993). Phenotypes of mutations in three motifs that belong to the active center of the relaxase confirmed previously obtained biochemical evidence for the contributions of the motifs to the catalytic activity of TraI. Expression of the relaxase operon is greatly increased in the absence of an intact TraI protein. This finding suggests that the relaxosome which assembles only in the presence of the TraI in addition to its enzymatic activity plays a role in gene regulation.  相似文献   

18.
The transfer 2 region (Tra2) of the conjugative plasmid drR27 (derepressed R27) was analyzed by PSI-BLAST, insertional mutagenesis, genetic complementation, and an H-pilus assay. Tra2 contains 11 mating-pair formation (Mpf) genes that are essential for conjugative transfer, 9 of which are essential for H-pilus production (trhA, -L, -E, -K, -B, -V, -C, -P, and -W). TrhK has similarity to secretin proteins, suggesting a mechanism by which DNA could traverse the outer membrane of donors. The remaining two Mpf genes, trhU and trhN, play an auxiliary role in H-pilus synthesis and are proposed to be involved in DNA transfer and mating-pair stabilization, respectively. Conjugative transfer abilities were restored for each mutant when complemented with the corresponding transfer gene. In addition to the essential Mpf genes, three genes, trhO, trhZ, and htdA, modulate R27 transfer frequency. Disruption of trhO and trhZ severely reduced the transfer frequencies of drR27, whereas disruption of htdA greatly increased the transfer frequency of wild-type R27 to drR27 levels. A comparison of the essential transfer genes encoded by the Tra2 and Tra1 (T. D. Lawley, M. W. Gilmour, J. E. Gunton, L. J. Standeven, and D. E. Taylor, J. Bacteriol. 184:2173-2183, 2002) of R27 to other transfer systems illustrates that the R27 conjugative transfer system is a chimera composed of IncF-like and IncP-like transfer systems. Furthermore, the Mpf/type IV secretion systems encoded by IncH and IncF transfer systems are distinct from that of the IncP transfer system. The phenotypic and ecological significance of these observations is discussed.  相似文献   

19.
The ability of Enterococcus faecalis to transfer various genetic elements under natural conditions was tested in two municipal sewage water treatment plants. Experiments in activated sludge basins of the plants were performed in a microcosm which allowed us to work under sterile conditions; experiments in anoxic sludge digestors were performed in dialysis bags. We used the following naturally occurring genetic elements: pAD1 and pIP1017 (two so-called sex pheromone plasmids with restricted host ranges, which are transferred at high rates under laboratory conditions); pIP501 (a resistance plasmid possessing a broad host range for gram-positive bacteria, which is transferred at low rates under laboratory conditions); and Tn916 (a conjugative transposon which is transferred under laboratory conditions at low rates to gram-positive bacteria and at very low rates to gram-negative bacteria). The transfer rate between different strains of E. faecalis under natural conditions was, compared to that under laboratory conditions, at least 105-fold lower for the sex pheromone plasmids, at least 100-fold lower for pIP501, and at least 10-fold lower for Tn916. In no case was transfer from E. faecalis to another bacterial species detected. By determining the dependence of transfer rates for pIP1017 on bacterial concentration and extrapolating to actual concentrations in the sewage water treatment plant, we calculated that the maximum number of transfer events for the sex pheromone plasmids between different strains of E. faecalis in the municipal sewage water treatment plant of the city of Regensburg ranged from 105 to 108 events per 4 h, indicating that gene transfer should take place under natural conditions.  相似文献   

20.
pIP501 is a conjugative broad-host-range plasmid frequently present in nosocomial Enterococcus faecalis and Enterococcus faecium isolates. We focus here on the functional analysis of the type IV secretion gene traG, which was found to be essential for pIP501 conjugative transfer between Gram-positive bacteria. The TraG protein, which localizes to the cell envelope of E. faecalis harboring pIP501, was expressed and purified without its N-terminal transmembrane helix (TraGΔTMH) and shown to possess peptidoglycan-degrading activity. TraGΔTMH was inhibited by specific lytic transglycosylase inhibitors hexa-N-acetylchitohexaose and bulgecin A. Analysis of the TraG sequence suggested the presence of two domains which both could contribute to the observed cell wall-degrading activity: an N-terminal soluble lytic transglycosylase domain (SLT) and a C-terminal cysteine-, histidine-dependent amidohydrolases/peptidases (CHAP) domain. The protein domains were expressed separately, and both degraded peptidoglycan. A change of the conserved glutamate residue in the putative catalytic center of the SLT domain (E87) to glycine resulted in almost complete inactivity, which is consistent with this part of TraG being a predicted lytic transglycosylase. Based on our findings, we propose that TraG locally opens the peptidoglycan to facilitate insertion of the Gram-positive bacterial type IV secretion machinery into the cell envelope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号