首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Seasonal changes and yearly gross canopy photosynthetic production were estimated for an 18 year old Japanese larch (Larix leptolepis) forest between 1982 and 1984. A canopy photosynthesis model was applied for the estimation, which took into account the effect of light interception by the non-photosynthetic organs. Seasonal changes in photosynthetic ability, amount of canopy leaf area and light environment within the canopy were also taken into account. Amount of leaf area was estimated by the leaf area growth of a single leaf. The change of light environment within the canopy during the growing season was estimated with a light penetration model and the leaf increment within the canopy. Canopy respiration and surplus production were calculated as seasonal and yearly values for the three years studied. Mean yearly estimates of canopy photosynthesis, canopy respiration and surplus production were 37, 13 and 23 tCO2 ha−1 year−1, respectively. Vertical trend, seasonal changes and yearly values of the estimates were analyzed in relation to environmental and stand factors.  相似文献   

2.
A canopy photosynthesis model was derived on the assumption that the light diminution within a canopy is caused by both leaves and non-photosynthetic organs. The light diminution by leaves and that by non-photosynthetic organs were taken into account separately in the Lambert-Beer equation of light extinction. The light flux density on the leaf surface at each depth was evaluated from the leaf's share of light. The light flux density on the leaf surface thus obtained was incorporated into the Monsi-Saeki model of canopy photosynthesis. The proposed model was applied for estimating gross canopy photosynthesis in a 19-year-oldLarix leptolepis plantation where 38% of the light diminution was due to non-photosynthetic organs. The daily canopy photosynthesis on one summer day calculated using the present model was about 22% less than that calculated by the conventional Monsi-Saeki model, in which light interception by non-photosynthetic organs is neglected. The degree of such reduction in canopy photosynthesis through shading by non-photosynthetic organs was assessed in relation to parameters affecting light extinction, leaf photosynthetic characteristics, and light regime above the canopy.  相似文献   

3.
The seasonal changes of photosynthesis of cones of Japanese larch (Larix kaempferi Carr.) trees showed that gross photosynthetic rate of young cones (P G) was 2–3 μmol m−2 s−1 at surface area unit and P G/R D (dark respiration of cones) peaked about 0.7 in the same period, indicating that 70 % of respiratory CO2 was re-fixed. With maturation, P G and P G/R D sharply decreased. Chlorophyll content in cones was 3–20 % of that in leaves, which made it a limiting factor for photosynthesis and its content was closely correlated with photosynthetic capacity. Although sunken and linearly arranged stomatal organs were found on the scale of young cones, differently from the significant regulation of leaf photosynthesis, these stomata tended to be non-functional since CO2 is not limiting factor for cone photosynthesis. Thus photosynthesis of larch cones is an additional contribution to their development.  相似文献   

4.
Gratani  L. 《Photosynthetica》1997,33(1):139-149
The studied evergreen forest dominated by Quercus ilex showed a leaf area index (LAI) of 4.5, of which 61 % was accumulated within the tree layer, 30 % within the shrub layer, and 9 % within the herb layer. The leaves of all the species were ± horizontally oriented (41°), absorbing a relevant percentage of incident irradiance. The high LAI drastically modified the quality and quantity of solar radiation on the forest underground. The spectral distribution of the radiation under the forest was markedly deficient in blue and red wavelengths. The maximum absorption in these spectral bands was found in spring, when net photosynthetic rate (P N ) was at its maximum, and in summer, when new leaves reached 90 % of their definitive structure. The vertical radiation profile showed an evident reduction of the red-far red ratio (R/FR). Radiation quality and quantity influenced leaf physiology and morphology. Clear differences in leaf size, leaf water content per area (LWC) and specific leaf area (SLA) on the vertical profile of the forest were observed. All the shrub species showed similar SLA (12.02 m2 kg-1, mean value). The ability to increase SLA whilst simultaneously reducing leaf thickness maximized the carbon economy. The high chlorophyll (Chl) content of shrub layer leaves (1.41 g kg-1, mean value) was an expression of shade adaptation. Both leaf morphology and leaf physiology expressed the phenotypic plasticity. Q. ilex, Phillyrea latifolia and Pistacia lentiscus of the forest shrub layer showed wide differences in leaf structure and function with respect to the same species developing under strong irradiance (low maquis): a 57 % mean increase of SLA and a 86 % mean decrease of PN. They showed high leaf plasticity. Leaf plasticity implies that the considered sclerophyllous species has an optimum developmental pattern achieving adaptation to environments. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

5.
Abstract Field gas exchange measurements on intact peach (Prunus persica (L.) Batsch) leaves indicate that leaf nitrogen content (NL) and leaf weight per unit leaf area (Wa) are highly correlated with CO2 assimilation rate (A) and mesophyll conductance (gm). Therefore, NL and Wa were used to study seasonal relationships between leaf carboxylation capacity and natural light exposure in tree canopies. From mid-season onwards, NL and Wa were linearly correlated with light exposure expressed as the amount of time during a clear day that a leaf was exposed to a photosynthetic photon flux density (Q) of ≥ 100 μmol m?2 s?1. The data support the hypothesis that whole-tree photosynthesis is optimized by partitioning of photosynthetic capacity among leaves in deciduous tree canopies with respect to natural light exposure.  相似文献   

6.
棉花叶片氮含量的空间分布与光合特性   总被引:2,自引:0,他引:2  
张雪松  申双和  宋洁 《生态学报》2009,29(4):1893-1898
在棉花生长旺季,将冠层按高度分多层测定了田间叶片含氮量和叶片净光合速率对光合有效辐射通量密度的响应(光响应曲线,Pn-PPFD response curve)及相应的生物指标.结果表明,各层叶片氮含量与光合作用关系密切,各层平均值大小依次为上层>中层>下层,对应层叶片的最大净光合速率Pmax、表观暗呼吸速率Rd、光补偿点LCP及光饱和点LSP均从上到下依次递减,与氮含量分布一致,而表观光合量子效率AQY则略有不同;氮含量的指数衰减系数 kn =0.762(R2=0.593),根据观测结果,棉田叶片氮含量(N)空间分布可以用相对累积叶面积指数(Lc/Lt)为自变量的指数方程来模拟,从而为建立光合作用机理模型与进行生产力奠定基础.  相似文献   

7.

Background and Aims

Previous work has shown that the entire photosynthetic light response curve, based on both Mitscherlich and Michaelis–Menten functions, could be predicted in an interspecific context through allometric relations linking the parameters of these functions to two static leaf traits: leaf nitrogen (N) content and leaf mass per area (LMA). This paper describes to what extent these allometric relations are robust to changes in soil fertility and the growth irradiance of the plants.

Methods

Plants of 25 herbaceous species were grown under controlled conditions in factorial combinations of low/high soil fertility and low/high growth irradiance. Net photosynthetic rates per unit dry mass were measured at light intensities ranging from 0 to 700 µmol m−2 s−1 photosynthetically active radiation (PAR).

Key Results

The differing growth environments induced large changes in N, LMA and in each of the parameter estimates of the Mitscherlich and Michaelis–Menten functions. However, the differing growth environments induced only small (although significant) changes in the allometric relationships linking N and LMA to the parameters of the two functions. As a result, 88 % (Mitcherlich) and 89 % (Michaelis–Menten) of the observed net photosynthetic rates over the full range of light intensities (0–700 µmol m−2 s−1 PAR) and across all four growth environments could be predicted using only N and LMA using the same allometric relations.

Conclusions

These results suggest the possibility of predicting net photosynthetic rates in nature across species over the full range of light intensities using readily available data.  相似文献   

8.
To test the hypothesis that in temperate deciduous trees acclimation to potentially damaging high irradiances occurs via long-term adjustments in foliar photosynthetic capacity, and short-term changes in xanthophyll cycle pool size in response to weather fluctuations, nitrogen concentration and pigment composition were examined along a canopy light gradient in three species –Betula pendula, Populus tremula and Tilia cordata (from most shade intolerant to tolerant), and foliage photosynthetic potentials in P. tremula and T. cordata. Integrated quantum flux density (Qi) incident on leaves was estimated with a method combining hemispherical photography and light measurements with quantum sensors made over the growing season. Long- and short-term light indices – average total seasonal daily integrated quantum flux density (Ts, mol m–2 d–1) and that of the 3 d preceding foliage sampling (T3d) – were calculated for each sampled leaf. In addition to total integrated quantum flux density, the part of Qi attributable to direct flux was also computed. Strong linear relationships between the capacity for photosynthetic electron transport per area (Jamax), estimated from in situ measurements of effective quantum yield of photosystem II (PS II), and Qi averaged over the season and over the preceding 3 d were found for all studied species. However, the major determinant of Jamax, the product of electron transport capacity per leaf dry mass (Jmmax) and leaf dry mass per area (MA), was MA rather than Jmmax, which was relatively constant along the light gradient. There was evidence that Jamax is more tightly related to Ts, which characterizes the light climate during foliar development, than to short-term integrated light, possibly because there is little flexibility in adjustments in MA after the completion of foliar growth. Leaf chlorophyll concentrations and the investment of leaf nitrogen in chlorophyll (Chl/N) were negatively related to Qi– an investment pattern which improves light harvesting in low light. Xanthophyll cycle pool size (VAZ, violaxanthin + antheraxanthin + zeaxanthin) either expressed per unit chlorophyll (VAZ/Chl) or as a fraction of total carotenoids (VAZ/Car) increased with increasing Qi in all species. However, contrary to Jamax, it tended to correlate more strongly with short-term than with long-term average integrated light. There were few interspecific differences in Jamax, Chl/N, VAZ/Chl and VAZ/Car when the variability in light level incident to the leaves was accounted for, indicating that the foliage of both shade-intolerant and -tolerant temperate tree species possesses considerable phenotypic flexibility. Collectively these results support the view that rapid adjustment of the xanthophyll cycle pool size provides an important means for acclimation to light fluctuations in a time scale of days, during which the potential for photosynthetic quenching of excitation energy is not likely to change appreciably.  相似文献   

9.
Almeida  M.A.  Cunha  M.A.  Alcântara  F. 《Hydrobiologia》2002,(1):251-262
We intended to evaluate the relative contribution of primary production versus allochthonous carbon in the production of bacterial biomass in a mesotrophic estuary. Different spatial and temporal ranges were observed in the values of bacterioplankton biomass (31–273 g C l–1) and production (0.1–16.0 g C l–1 h–1, 1.5–36.8 mg C m–2 h–1) as well as in phytoplankton abundance (50–1700 g C l–1) and primary production (0.1–512.9 g C l–1 h–1, 1.5–512.9 mg C m–2 h–1). Bacterial specific growth rate (0.10–1.68 d–1) during the year did not fluctuate as much as phytoplankton specific growth rate (0.02–0.74 d–1). Along the salinity gradient and towards the inner estuary, bacterio- and phytoplankton biomass and production increased steadily both in the warm and cold seasons. The maximum geographical increase observed in these variables was 12 times more for the bacterial community and 8 times more for the phytoplankton community. The warm to cold season ratios of the biological variables varied geographically and according to these variables. The increase at the warm season achieved its maximum in the biomass production, particularly in the marine zone and at high tide (20 and 112 times higher in bacterial and phytoplankton production, respectively). The seasonal variation in specific growth rate was most noticeable in phytoplankton, with seasonal ratios of 3–26. The bacterial community of the marine zone responded positively – generating seasonal ratios of 1–13 in bacterial specific growth rate – to the strong warm season increment in phytoplankton growth rate in this zone. In the brackish water zone where even during the warm season allochthonous carbon accounted for 41% (on average) of the bacterial carbon demand, the seasonal ratio of bacterial specific growth rate varied from about 1 to 2. During the warm season, an average of 21% of the primary production was potentially sufficient to support the whole bacterial production. During the cold months, however, the total primary production would be either required or even insufficient to support bacterial production. The estuary turned then into a mostly heterotrophic system. However, the calculated annual production of biomass by bacterio- and phytoplankton in the whole ecosystem showed that auto- and heterotrophic production was balanced in this estuary.  相似文献   

10.
在田间试验条件下,以青花7号花生品种为材料,研究了不同栽培方式对麦后夏直播花生叶片光合特性及产量的影响.结果表明: 与传统栽培方式相比,采用夏直播高产保护性栽培方式可促进花生叶片生长,显著提高叶面积指数,且维持较高的叶面积指数和叶绿素含量的时间较长;植株功能叶片的净光合速率、气孔导度、蒸腾速率较高和胞间CO2浓度较低,光合效率显著提高.夏直播高产保护性栽培方式下花生单株生产力较高,荚果产量显著增加,经济系数明显提高.地膜覆盖和秸秆还田均可改善夏直播花生叶片光合特性,提高花生产量.夏直播高产保护性栽培方式能够有效缓解夏直播花生生育期较短、单株生产力低等不利因素,是一项实用的夏直播花生高产栽培方法.
  相似文献   

11.
For sustainable use and suitable management of larch plantations, we must clarify the ecophysiological responses of larch species to environmental changes. The physical environment has been changing dramatically, e.g., increase in atmospheric CO2 concentration ([CO2]), nitrogen (N) deposition, and atmospheric ozone concentration ([O3]), and these changes may negatively affect growth of larch species. This review summarizes the previous experimental studies on the ecophysiological responses of larch species to elevated [CO2], soil acidification, elevated [O3], and N load. Based on the advanced studies, although elevated [CO2] will stimulate the productivity of larch, increase of [O3] and severe soil acidification will reduce it. Increase of N deposition, at least, will not negatively affect larch productivity. Finally, we propose the future direction for investigation to understand the mechanism of the responses of larch species and to predict the associated risk.  相似文献   

12.
Models have been formulated for monospecific stands in which canopy photosynthesis is determined by the vertical distribution of leaf area, nitrogen and light. In such stands, resident plants can maximize canopy photosynthesis by distributing their nitrogen parallel to the light gradient, with high contents per unit leaf area at the top of the vegetation and low contents at the bottom. Using principles from game theory, we expanded these models by introducing a second species into the vegetation, with the same vertical distribution of biomass and nitrogen as the resident plants but with the ability to adjust its specific leaf area (SLA, leaf area:leaf mass). The rule of the game is that invaders replace the resident plants if they have a higher plant carbon gain than those of the resident plants. We showed that such invaders induce major changes in the vegetation. By increasing their SLA, invading plants could increase their light interception as well as their photosynthetic nitrogen-use efficiency (PNUE, the rate of photosynthesis per unit organic nitrogen). By comparison with stands in which canopy photosynthesis is maximized, those invaded by species of high SLA have the following characteristics: (1) the leaf area index is higher; (2) the vertical distribution of nitrogen is skewed less; (3) as a result of the supra-optimal leaf area index and the more uniform distribution of nitrogen, total canopy photosynthesis is lower. Thus, in dense canopies we face a classical tragedy of the commons: plants that have a strategy to maximize canopy carbon gain cannot compete with those that maximize their own carbon gain. However, because of this strategy, individual as well as total canopy carbon gain are eventually lower. We showed that it is an evolutionarily stable strategy to increase SLA up to the point where the PNUE of each leaf is maximized.  相似文献   

13.
Responses of foliar light-saturated net assimilation rate (Amax), capacity for photosynthetic electron transport (Jmax) and mitochondrial respiration rate (Rd) to long-term canopy light and temperature environment were investigated in a temperate deciduous canopy composed of Populus tremula L. in the upper (17–28 m) and of Tilia cordata Mill. in the lower canopy layer (4–17 m). Climatic measurements indicated that seasonal average daily maximum air temperature (Tmax) was 5·5 °C (range 0·7–10·5 °C) higher in the top than in the bottom of the canopy, and strong positive correlations were observed between Tmax and seasonal average integrated quantum flux density (Qint), as well as between seasonal average daily mean temperature and Qint. Because of changes in leaf dry mass and nitrogen per unit area, Amax, Jmax, and Rd scaled positively with Qint in both species at a common leaf temperature (T). According to Jmax versus T response curves and dark chlorophyll fluorescence transients, photosynthetic electron transport was less heat resistant in P. tremula with optimum temperature of Jmax, Topt, of 33·5 ± 0·6 °C than in T. cordata with Topt of 40·7 ± 0·6 °C. This difference was suggested to manifest evolutionary adaptation of photosynthetic electron transport to cooler environments in P. tremula, the range of which extends farther north than that in T. cordata. Possibly because of acclimation to long-term canopy temperature environment, Topt was positively related to Qint in P. tremula, foliage of which was also exposed to higher irradiances and temperatures, but not in T. cordata, in the canopy of which quantum flux densities and temperatures were lower, and gradients in the environmental factors less pronounced. Parallel to changes in Topt, the activation energy for photosynthetic electron transport decreased with increasing Qint in P. tremula, indicating that Jmax of leaves acclimated to colder environment was more responsive to T in lower temperatures than that of high T acclimated leaves. Similar alterations in the activation energy for mitochondrial respiration rate were also observed, indicating that acclimation to temperature of mitochondrial and chloroplastic electron transport proceeds in a co-ordinated manner, and possibly involves long-term changes in membrane fluidity properties. We conclude that, because of correlations between temperature and light, the shapes of Jmax versus T, and Rd versus T response curves vary within tree canopies, and this needs to be taken account in modelling whole canopy photosynthesis.  相似文献   

14.
Summary A hypothesis that a dense stand should develop a less uniform distribution of leaf nitrogen through the canopy than an open stand to increase total canopy photosynthesis was tested with experimentally established stands of Lysimachia vulgaris L. The effect of stand density on spatial variation of photon flux density, leaf nitrogen and specific leaf weight within the canopy was examined. Stand density had little effect on the value of the light extinction coefficient, but strongly affected the distribution of leaf nitrogen per unit area within a canopy. The open stand had more uniform distribution of leaf nitrogen than the dense stand. However, different light climates between stands explained only part of the variation of leaf nitrogen in the canopy. The specific leaf weight in the canopy increased with increasing relative photon flux density and with decreasing nitrogen concentration.  相似文献   

15.
由于地球环境的演变,亚热带常绿阔叶林中常有落叶阔叶成分的存在,但从生态角度,其存在的机理尚不清楚.通过比较研究常绿阔叶优势树种大头茶与落叶阔叶树种枫香幼苗的叶形态和光合生理特征对不同光环境(旷地、林窗、林下)的响应,尝试解释落叶成分遗留的基础.结果表明:①枫香具有较小的比叶重(LMA)和较高的光合氮利用效率(PNUE),在高光环境中,并未受到光抑制,具有较高的光合可塑性,尤其在林窗,表现出较大头茶高3倍的光合能力(Pnmax),保证了其在较短的生长季节积累更多的光合产物,增强与常绿树种的竞争力;②常绿阔叶树种大头茶具有较大的LMA,在旷地受到严重的光抑制,将更多的氮用于化学防御中.在林窗和林下具有相对高的Pnmax,生长幅度较广,但在林下将更多的氮投入到比生长更为重要的生存消耗中.而枫香在林下响应表现为Rubisco活性降低,光合受阻;③两树种在林窗均表现出较高的光合适应性,具有最大的光合能力(Pnmax)及合理的氮在光合机构中的分配系数,说明林窗是它们更新的最佳环境.但枫香的光合作用更依赖于光照,而大头茶则更依赖于CO2浓度;④总之,落叶阔叶树种以其较高的形态可塑性和对高光的光合生理可塑性能够在常绿阔叶林种生存、生长,并成为常绿阔叶林中固有成分的主要原因之一.  相似文献   

16.
Aims Ecological systems, especially soils, have been recently recognized as an important source of atmospheric nitric oxide (NO). However, the study on the contribution of plants to atmospheric NO budget is significantly lagged. The specific objectives of this study are to reveal the phylogenetic variation in NO emission potential existing in various plant species and find out the possible leaf traits affecting NO emission potential.Methods We measured NO emission potential, leaf N and C content, C:N ratio, specific leaf area, net photosynthetic rate (P n) and estimated photosynthetic N use efficiency (PNUE) of 88 plant species. Further investigation of the relationships between NO emission potential and leaf traits were performed by simple linear regression analysis and pair-wise correlation coefficients analysis.Important findings Major results are as follows: (1) NO emission from plant species exhibited large variations, ranging from 0 to 41.7 nmol m ?2 h-1, and the species frequency distributions of NO emission potential could be fitted to a log-normal curve. (2) Among 88 species, NO emission potential was the highest in Podocarpus macrophyllus, but lowest in Zanthoxylum nitidum and Vernicia montana. (3) NO emission potential has strong correlation to leaf N content, P n and PNUE. The variations in NO emission potential among diverse plant species may be closely related to leaf N level and net photosynthetic ability.  相似文献   

17.
Changes in the photosynthetic light-response curve during leaf development were determined for the fourth leaf of maize crops sown on 23 April and 10 June. Temperatures were unusually mild during late spring/early summer and neither crop experienced chilling damage. The concept of thermal time was used to take into account the effects of different temperature regimes on developmental stage, thereby enabling photosynthetic light-response data to be combined for both crops to describe the general response. Large variations in the upper asymptote (Asat) and convexity () of the light-response curve occurred during leaf development, but the maximum quantum yield of CO2 assimilation remained relatively constant throughout. Dark respiration rates showed a small but significant decrease with leaf age and generally ranged between 5 and 10% of Asat. A simple mathematical model was developed to assess the sensitivity of daily leaf photosynthesis (AL) to reductions in the Asat, and the initial slope () of the light-response curve at different stages of leaf development. On bright sunny days, and at all developmental stages, AL was ca. twice as sensitive to reductions in Asat than to reductions in and . In overcast conditions, however, all three parameters contributed significantly to reductions in leaf photosynthesis, although the contribution of was greatest during early leaf growth, while older leaves were most sensitive to depressions in Asat. The implications of these results for modelling the sensitivity of canopy photosynthesis to chill-induced photoinhibition of the light-response curve are discussed.  相似文献   

18.
The effect of crop disease on photosynthetic characteristics is important for disease control. Two varieties, Shenzhou 98 and Neiwuyou 8015 with resistance and susceptibility to bacterial leaf blight (BLB), respectively, were selected, and the responses of the net photosynthetic rate (PN) to active photon flux density (PPFD) and intercellular carbon dioxide concentration (Ci), as well as chlorophyll fluorescence, pigments and stomatal resistance (SR), were measured. The results showed that BLB infection greatly decreased the maximum photosynthetic rate (Pmax), light saturation point (LSP), carboxylation efficiency (CE), maximal fluorescence (Fm) and actual photochemical efficiency of PSII ( Φ PSII) but increased the light compensation point (LCP) and dark respiratory rate (RD), which suggested that the performance of rice photosynthesis was decreased by BLB infection. The BLB infection had a lower effect on resistant rice Shenzhou 98 than on susceptible rice Neiwuyou 8015. The reduction of pigment and increased SR caused by BLB infection may have resulted in the decline in the photosynthetic rate. Significant effects of the BLB infection were observed on chlorophyll fluorescence Fm and ΦPSII in resistant and susceptible rice. These parameters may be useful for noninvasive monitoring of plant disease considering the negative effect caused by other stresses.  相似文献   

19.
郑华斌  刘建霞  姚林  贺慧  黄璜   《生态学杂志》2014,25(9):2598-2604
2011—2012年在湖南长沙以超级杂交稻Y两优1号、杂交稻汕优63和常规稻黄华占为材料进行大田试验,比较了垄作梯式生态稻作(RT)和垄厢生态稻作(B)对水稻产量和光合生理特性的影响.结果表明: 与传统稻作(CK)相比,RT的Y两优1号产量显著提高了28.7%,单位面积有效穗数显著提高16.1%,每穗粒数高6.8%,汕优63和黄华占的RT、B处理产量分别高24.3%和19.7%、12.0%和16.2%.RT的Y两优1号叶面积、抽穗前及抽穗后干物质积累量、总干物质量都高于CK,颖花数/叶面积、实粒数/叶面积、粒重/叶面积分别比CK高8.1%、14.8%和15.8%,光合势比CK高32.2%,而净同化率则比CK低9.3%.
  相似文献   

20.
Tree leaves are important food sources for arboreal herbivores, such as primates, rodents, and marsupials. These animals do not eat leaves randomly in habitats with many tree species but rather choose based on the chemical components of leaves, such as sugars, fibers, proteins, and toxins. However, the effects of the microscale distribution of these chemicals within each leaf have not been examined for these animals. The giant flying squirrels Petaurista leucogenys are entirely arboreal, nocturnal herbivores, usually feeding on leaves and dropping leaf debris on the ground after partially consuming them. Therefore, we could easily assess which species of trees and which parts of the individual leaves they preferred to eat. We also examined microscale distributions of phenolics, sugar, and water within individual leaves. Of the two dominant food tree species, the deciduous Quercus acutissima was preferred over the evergreen Q. sessilifolia. The latter tree is only used during winter to early spring when the former had no leaves. Our chemical analyses revealed that Q. acutissima contained much more glucose than Q. sessilifolia in all seasons. Three types of leaf debris, eaten apically, basally, or centrally with a hole, were found. In Q. sessilifolia, which had low phenolic concentrations, apical eating was most common, whereas central eating was rare. In Q. acutissima, which had high phenolics, basal or central eating was common. Central feeding may be caused by avoiding the periphery because of a higher phenolic concentration in the leaf margin. Thus, microscale distributions of phenolics within individual leaves affect which parts P. leucogenys eats, whereas leaf sugar concentration is an important factor affecting which species of leaves they eat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号