首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The oxidation of ethanol by the liver produces acetaldehyde, which is a highly reactive compound. Low concentrations of acetaldehyde inhibited mitochondrial respiration with glutamate, β-hydroxybutyrate, or α-ketoglutarate as substrates, but not with succinate or ascorbate. High concentrations led to respiratory inhibition with all substrates. Inhibition of succinate- and ascorbate-linked oxidation by acetaldehyde correlates with the inhibition of the activities of succinic dehydrogenase and cytochrome oxidase. A site more sensitive to acetaldehyde appears to be localized prior to the NADH-ubiquinone oxidoreductase segment of the respiratory chain. Acetaldehyde inhibits energy production by the mitochondria, as evidenced by its inhibition of respiratory control, oxidative phosphorylation, the rate of phosphorylation, and the ATP-32P exchange reaction. Energy utilization is also inhibited, in view of the decrease in both substrate- and ATP-supported Ca2+ uptake, and the reduction in Ca2+-stimulated oxygen uptake and ATPase activity. The malate-aspartate, α-glycerophosphate, and fatty acid shuttles for the transfer of reducing equivalents, and oxidation by mitochondria, were highly sensitive to acetaldehyde. Acetaldehyde also inhibited the uptake of anions which participate in the shuttles. The inhibition of the shuttles is apparently caused by interference with NAD+-dependent state 3 respiration and anion entry and efflux. Ethanol (6–80 mm) had no significant effect on oxygen consumption, anion uptake, or mitochondrial energy production and utilization. The data suggest that acetaldehyde may be implicated in some of the toxic effects caused by chronic ethanol consumption.  相似文献   

2.
Mechanisms of the inhibitory effect of ethanol on acetaminophen hepatotoxicity are controversial. We studied the effects of ethanol and acetaldehyde, an oxidative metabolite of ethanol, on NADPH-dependent acetaminophen-glutathione conjugate production in liver microsomes. Ethanol at concentrations as low as 2mM prevented the conjugate production noncompetitively. Acetaldehyde also inhibited acetaminophen-glutathione conjugate production at concentrations as low as 0.1mM that is comparable with those observed in vivo after social drinking. Acetaldehyde may be involved in ethanol-induced inhibition of acetaminophen hepatotoxicity.  相似文献   

3.
Role of malondialdehyde-acetaldehyde adducts in liver injury   总被引:11,自引:0,他引:11  
Malondialdehyde and acetaldehyde react together with proteins in a synergistic manner and form hybrid protein adducts, designated as MAA adducts. MAA-protein adducts are composed of two major products whose structures and mechanism of formation have been elucidated. MAA adduct formation, especially in the liver, has been demonstrated in vivo during ethanol consumption. These protein adducts are capable of inducing a potent immune response, resulting in the generation of antibodies against both MAA epitopes, as well as against epitopes on the carrier protein. Chronic ethanol administration to rats results in significant circulating antibody titers against MAA-adducted proteins, and high anti-MAA titers have been associated with the severity of liver damage in humans with alcoholic liver disease. In vitro exposure of liver endothelial or hepatic stellate cells to MAA adducts induces a proinflammatory and profibrogenic response in these cells. Thus, during excessive ethanol consumption, ethanol oxidation and ethanol-induced oxidative stress result in the formation of acetaldehyde and malondialdehyde, respectively. These aldehydes can react together synergistically with proteins and generate MAA adducts, which are very immunogenic and possess proinflammatory and profibrogenic properties. By virtue of these potentially toxic effects, MAA adducts may play an important role in the pathogenesis of alcoholic liver injury.  相似文献   

4.
Inhibition and stimulation of yeast growth by acetaldehyde   总被引:5,自引:0,他引:5  
Summary Acetaldehyde at above about 0.3 g/l inhibited yeast growth, suggesting that it may contribute to product inhibition in alcohol fermentations when present at high concentrations intracellularly. The toxic effects of acetaldehyde and ethanol were not mutually reinforcing, acetaldehyde appearing to alleviate slightly the effects of ethanol. In support of this, low concentrations of acetaldehyde greatly reduced the lag phase in ethanol-containing medium and increased the specific growth rate.  相似文献   

5.
6.
Ethanol and acetaldehyde are present in carnation flowers during the senescence process. If applied to cut carnations, flower longevity is increased. These same compounds are found in increasing concentrations during fruit ripening, and the application of acetaldehyde can promote the ripening process. If the natural concentrations are increased by means of external application of either acetaldehyde or ethanol, ripening of some fruits may be inhibited. Acetaldehyde apparently inhibits the formation of ethylene, by preventing the action of ACC synthase and ACC oxidase. Low concentrations of ethanol may prevent normal climacteric respiration from occurring. If ethanol is present in high concentrations, it leads to increased membrane permeability and damages the lipid bilayers, where the site of ethylene action is suspected to be. The effect of both acetaldehyde and ethanol on binding sites, respiration and ethylene production are reviewed. An attempt is also made to provide some understanding of the interrelationship between ethanol and acetaldehyde. The role played by alcohol dehydrogenase in this relationship remains largely unexplored.  相似文献   

7.
The velocity of acetaldehyde metabolism in rat liver may be governed either by the rate of regeneration of NAD from NADH through the electron transport system or by the activity of aldehyde dehydrogenase (ALDH). Measurements of oxygen consumption revealed that the electron transport system was capable of reoxidizing ALDH-generated NADH much faster than it was produced and hence was not rate-limiting for aldehyde metabolism. To confirm that ALDH activity was the rate-limiting factor, low-Km ALDH in slices or intact mitochondria was partially inhibited by treatment with cyanamide and the rate of acetaldehyde metabolism measured. Any inhibition of low-Km ALDH resulted in a decreased rate of acetaldehyde metabolism, indicating that no excess of low-Km ALDH existed. Approximately 40% of the metabolism of 200 microM acetaldehyde in slices was not catalyzed by low-Km ALDH. Fifteen of this 40% was catalyzed by high-Km ALDH. A possible contribution by aldehyde oxidase was ruled out through the use of a competitive inhibitor, quinacrine. Acetaldehyde binding to cytosolic proteins may account for the remainder. By measuring acetaldehyde accumulation during ethanol metabolism, it was also established that low-Km ALDH activity was rate-limiting for acetaldehyde oxidation during concomitant ethanol oxidation.  相似文献   

8.
Ethanol or acetaldehyde orally administered (15% and 2% respectively in drinking water) to male Wistar rats for three months induced alterations in the main liver enzymes responsible for ethanol metabolism, aspartate and alanine aminotransferases and NAD glutamate dehydrogenase. Ethanol produced a significant decrease in the activity of soluble alcohol dehydrogenase, while acetaldehyde induced alterations both in soluble and mitochondrial aldehyde dehydrogenases: soluble activity was significantly higher than in the control and ethanol-treated groups, and mitochondrial activity was significantly diminished. Both soluble aspartate and alanine aminotransferases showed pronounced increases by the chronic effect of acetaldehyde, while mitochondrial activities were practically unchanged by the effect of ethanol or acetaldehyde. Mitochondrial NAD glutamate dehydrogenase showed a rise in its activity both by the effect of chronic ethanol and acetaldehyde consumption. The level of metabolites assayed in liver extracts showed marked differences between ethanol and acetaldehyde treatment which indicates that ethanol produced a remarkable increase in glutamate, aspartate and free ammonia together with marked decrease in pyruvate and 2-oxoglutarate concentrations. Acetaldehyde consumption induced a significant decrease in 2-oxoglutarate and pyruvate concentrations. These observations suggest that ethanol has an important effect on the urea cycle enzymes, while the effect of acetaldehyde contributes to the impairment of the citric acid cycle.  相似文献   

9.
Chronic exposure of primary neuronal cultures to ethanol has been shown to potentiate N-methyl-D-aspartate (NMDA) receptor-mediated processes, such as nitric oxide (NO) formation and excitotoxicity. In the present study, we compared the effects of acute ethanol and acetaldehyde on NMDA receptor-mediated excitotoxicity and NO production in primary cultures of rat cortical neurons. The delayed cell death induced by NMDA (300 mM, 25 min) was evaluated by morphological examination and by measuring the release of the cytotoxic indicator, lactate dehydrogenase, in the culture media 24 hours after the NMDA exposure. The accumulation of nitrite, as an index of NO production, was also measured 24 hours after NMDA treatment. NMDA caused a dose-dependent cell death and nitrite accumulation, both effects were blocked by pretreatment of MK-801 (100 microM). Acute exposure to ethanol (1-1000 mM) or acetaldehyde (0.1-1 mM) for 35 minutes did not affect neuronal viability in the following 24-hr period. However, acute exposure to acetaldehyde (> or =10 mM) was neurotoxic. Neither ethanol nor acetaldehyde changed basal nitrite levels in the culture media. Acute ethanol (50-400 mM, 10 min) given before the NMDA treatment (25 min) resulted in a concentration-dependent suppression of the delayed cell death. The NMDA-induced NO production was, however, not affected by ethanol. Neither the NMDA excitotoxicity nor NO production was affected by acute ethanol given after NMDA treatment. Acute acetaldehyde (0.01-0.5 mM, 10 min) given before or after NMDA treatment had no effect on delayed NMDA neurotoxicity and NO production. Our data suggest that acute exposure to ethanol is not neurotoxic and is even protective against delayed NMDA-excitotoxicity when given before but not after NMDA treatment. Neither NO nor metabolism of ethanol to acetaldehyde is required for ethanol-mediated suppression of NMDA excititoxicity. Acetaldehyde, on the other hand, is toxic by itself at low concentrations (> or =10 mM). Furthermore, acute exposure to non-toxic concentrations of acetaldehyde could not protect cortical neurons against NMDA-induced excitotoxicity.  相似文献   

10.
Acetaldehyde, a toxic metabolite of ethanol oxidation, is suggested to play a role in the increased risk for gastrointestinal cancers in alcoholics. In the present study, the effect of acetaldehyde on tyrosine phosphorylation, immunofluorescence localization, and detergent-insoluble fractions of the tight junction and the adherens junction proteins was determined in the human colonic mucosa. The role of EGF and L-glutamine in prevention of acetaldehyde-induced effects was also evaluated. Acetaldehyde reduced the protein tyrosine phosphatase activity, thereby increasing the tyrosine phosphorylation of occludin, E-cadherin, and beta-catenin. The levels of occludin, zonula occludens-1, E-cadherin, and beta-catenin in detergent-insoluble fractions were reduced by acetaldehyde, while it increased their levels in detergent-soluble fractions. Pretreatment with EGF or L-glutamine prevented acetaldehyde-induced protein tyrosine phosphorylation, redistribution from intercellular junctions, and reduction in the levels of detergent-insoluble fractions of occludin, zonula occludens-1, E-cadherin, and beta-catenin. These results demonstrate that acetaldehyde induces tyrosine phosphorylation and disrupts tight junction and adherens junction in human colonic mucosa, which can be prevented by EGF and glutamine.  相似文献   

11.
We previously reported that dilinoleoylphosphatidylcholine (DLPC) decreases lipopolysaccharide-induced TNF-alpha generation by Kupffer cells of ethanol-fed rats by blocking p38, ERK1/2, and NF-kappaB activation. Here we show that DLPC also decreases TNF-alpha induction by acetaldehyde, a toxic metabolite released by ethanol oxidation. Acetaldehyde induces TNF-alpha generation with a maximal effect at 200 microM and activates p38 and ERK1/2; the latter in turn activates NF-kappaB. This effect is augmented in Kupffer cells of ethanol-fed rats, with upregulation of cytochrome P4502E1 by ethanol. DLPC decreases TNF-alpha generation by blocking p38, ERK1/2, and NF-kappaB activation. Likewise, SB203580, which abolishes p38 activation, and PD098059, which abrogates ERK1/2 and NF-kappaB activation, diminish TNF-alpha generation. Since increased TNF-alpha generation plays a pathogenic role in alcoholic liver disease, the DLPC action on Kupffer cells may explain, in part, its beneficial effects on liver cell injury after ethanol consumption.  相似文献   

12.
Acetaldehyde inhibited the oxidation of fatty acids by rat liver mitochondria as assayed by oxygen consumption and CO2 production. ADP-stimulated oxygen uptake was more sensitive to inhibition by acetaldehyde than was uncoupler-stimulated oxygen uptake, suggesting an effect of acetaldehyde on the electron transport-phosphorylation system. This conclusion is supported by the decrease in the respiratory control ratio, associated with fatty acid oxidation. Acetaldehyde depressed ketone body production as well as the content of acetyl CoA during palmitoyl-1-carnitine oxidation. Acetaldehyde was considerably more inhibitory toward fatty acid oxidation than was acetate. Therefore, the inhibition by acetaldehyde is not mediated by acetate, the direct product of acetaldehyde oxidation by the mitochondria. Oxygen uptake was depressed by acetaldehyde to a slightly, but consistently, greater extent in the absence of fluorocitrate, than in its presence. This suggests inhibition of oxygen consumption from β-oxidation to acetyl CoA and that which arises from citric acid cycle activity. The inhibition of fatty acid oxidation is not due to any effect on the activation or translocation of fatty acids into the mitochondria.The depression of the end products of fatty acid oxidation (CO2, ketones, acetyl CoA) as well as the greater sensitivity of palmitate oxidation compared to acetate oxidation, suggests inhibition by acetaldehyde of β-oxidation, citric acid cycle activity, and the respiratory-phosphorylation chain. Neither the activities of palmitoyl CoA synthetase nor carnitine palmitoyltransferase appear to be rate limiting for fatty acid oxidation.  相似文献   

13.
AimsThe hypothalamic arcuate nucleus (ARH) is one of the brain regions with the highest levels of catalase expression. Acetaldehyde, metabolized from ethanol in the CNS through the actions of catalase, has a role in the behavioral effects observed after ethanol administration. In previous studies acetaldehyde injected in the lateral ventricles or in the substantia nigra reticulata (SNR) mimicked the behavioral stimulant effects of centrally administered ethanol.Main methodsIn the present study we assessed the effects of acetaldehyde administered either into the ARH into a dorsal control or into the third ventricle on locomotion and rearing observed in 30 min sessions in an open field.Key findingsAcetaldehyde injected into the ARH induced horizontal locomotion and rearing for 20 min. In contrast, administration of acetaldehyde into a control site dorsal to the ARH did not have any effect on locomotion. Although acetaldehyde administration into the third ventricle also induced locomotion, the time course for the effect in this area was different from the time course following ARH injections. Acetaldehyde in the ARH produced a long lasting induction of locomotion, while with intraventricular injections the effects disappeared after 5 min.SignificanceThe present results are consistent with previous studies demonstrating that acetaldehyde is an active metabolite of ethanol, which can have locomotor stimulant properties when administered in the ventricular system of the brain or into specific brain nuclei. Some brain nuclei rich in catalase (i.e.; SNR and ARH) could be mediating some of the locomotor stimulant effects of ethanol through its conversion to acetaldehyde.  相似文献   

14.
In isolated rat liver cells, ethanol inhibited gluconeogenesis from xylitol and sorbitol but not from fructose. Acetaldehyde, at initial concentrations of 0.2, 0.5, and 1.0 mm, stimulated gluconeogenesis from xylitol and sorbitol in the absence of pyrazole but inhibited in the presence of pyrazole. There was no effect with fructose. Acetate had no effect. Methylene blue and pyruvate (but not lactate) prevented the stimulatory as well as the inhibitory effects of acetaldehyde. Acetoacetate (but not β3-hydroxybutyrate) prevented, to a large extent, the inhibitory effects of low (but not high) concentrations of acetaldehyde. The inhibition by low concentrations of acetaldehyde appears to be mediated via acetaldehyde oxidation in the mitochondria, whereas the inhibition by high concentrations of acetaldehyde appears to reflect acetaldehyde oxidation in the cytosol. These data indicate that the inhibitory action of ethanol on glucose production from xylitol and sorbitol can be reproduced by physiological concentrations of acetaldehyde. Changes in the NAD+NADH ratio produced during acetaldehyde metabolism appear to be responsible for these effects of acetaldehyde. These changes may contribute to the actions of ethanol on gluconeogenesis from these substrates.  相似文献   

15.
We have identified a novel reaction in which acetaldehyde promotes rat hepatic cytosolic catalysis of O2 consumption coupled with glutathione oxidation without apparent release of activated forms of O2. Acetaldehyde is not consumed in the reaction. The reaction (O2 consumption or oxidized glutathione production) is saturable with respect to varying glutathione (K'm congruent to 20-45 microM) but not at high acetaldehyde concentrations. However, activity in the range of acetaldehyde found in liver from alcohol metabolism (10-100 microM) appeared to be saturable (K'm congruent to 25-50 microM). Since neither acetaldehyde-dependent glutathione loss nor O2 consumption is detectable in guinea pig hepatic cytosol or hepatic cytosol from selenium-deficient rats, we propose that acetaldehyde interacts with glutathione peroxidase, converting the enzyme into a glutathione oxidase.  相似文献   

16.
Concentration and composition of rat serum proteins have been studied both under the isolated acetaldehyde effect and against a background of the action of acute and chronic intoxication by ethanol. Acetaldehyde evoked an increase in the concentration of the total serum proteins, the value of this parameter remaining unchanged under the ethanol effect. A comparison of ethanol and acetaldehyde effects gives ground to suppose that the quantitative redistribution of blood serum proteins which observed under ethanol intoxication is to a considerable extent a result of the acetaldehyde effect and is determined by aggregation of proteins.  相似文献   

17.
A mutagenicity assessment of acetaldehyde   总被引:6,自引:0,他引:6  
Acetaldehyde has been shown in studies by several different laboratories to be a clastogen (chromosome-breaking) and inducer of sister-chromatid exchanges in cultured mammalian cells (Chinese hamster cells and human lymphocytes). Although there have been very few studies in intact mammals, the available evidence suggests that acetaldehyde produces similar cytogenetic effects in vivo. The production of cytogenetic abnormalities may be related to the ability of acetaldehyde to form DNA-DNA and/or DNA-protein cross-links. Acetaldehyde apparently has not been evaluated for its ability to cause gene mutations in cultured mammalian cells, but it has been shown to produce sex-linked recessive lethals in Drosophila. In general, bacteria tests have been negative. Although acetaldehyde is a genotoxic cross-linking agent, it does not appear to cause DNA strand breaks. There were no studies available regarding the potential of acetaldehyde to produce genetic damage in mammalian germ cells in vivo. Most mutagenicity testing on acetaldehyde has been motivated by attempts to define the proximate mutagen in ethanol metabolism.  相似文献   

18.
The existence of three different proteins exhibiting NAD-dependent acetaldehyde dehydrogenase activity was confirmed in Alicaligenes eutrophus. The fermentative alcohol dehydrogenase, which also exhibits acetaldehyde dehydrogenase activity, is one of these proteins. The other two proteins were purified from A. eutrophus N9A mutant AS4 grown on ethanol applying chromatography on DEAE-Sephacel and triazine-dye affinity media. Acetaldehyde dehydrogenase II, which amounts to about 14% of the total soluble protein in cells grown on ethanol, was purified to homogeneity. The relative molecular masses of the native enzyme and of the subunits were 195,000 or 56,000, respectively. This enzyme exhibits a high affinity for acetaldehyde (Km = 4 microM). Acetaldehyde dehydrogenase I amounts only to less than 1% of the total soluble protein. The relative molecular masses of the native enzyme and of the subunits were 185,000 and 52,000, respectively. This enzyme exhibits a low affinity for acetaldehyde (Km = 2.6 mM). Antibodies raised against acetaldehyde dehydrogenase II did not react with acetaldehyde dehydrogenase I. Two different strains, A. eutrophus N9A mutant AS1, which represents a different mutant type and can utilize both ethanol or 2,3-butanediol, and the type strain of A. eutrophus (TF93), which can utilize ethanol, form two acetaldehyde dehydrogenases during growth on ethanol, too. As in AS4, one of these enzymes from each strain amounted to a substantial portion of the total soluble protein in the cells. These major acetaldehyde dehydrogenases were purified from both strains; they resemble acetaldehyde dehydrogenase II isolated from AS4 in all relevant properties. Antibodies against the enzyme isolated from AS4 gave identical cross-reactions with the enzymes isolated from AS1 and TF93.  相似文献   

19.
The lag phase of Saccharomyces cerevisiae subjected to a step increase in temperature or ethanol concentration was reduced by as much as 60% when acetaldehyde was added to the medium at concentrations less than 0.1 g/L. Maximum specific growth rates were also substantially increased. Even greater proportional reductions in lag time due to acetaldehyde addition were observed for ethanol-shocked cultures of Zymomonas mobilis. Acetaldehyde had no effect on S. cerevisiae cultures started from stationary phase inocula in the absence of environmental shock and its lag-reducing effects were greater in complex medium than in a defined synthetic medium. Acetaldehyde reacted strongly with the ingredients of complex culture media. It is proposed that the effect of added acetaldehyde may be to compensate for the inability of cells to maintain transmembrane acetaldehyde gradients following an environmental shock. (c) 1997 John Wiley & Sons, Inc.  相似文献   

20.
The effects of ethanol and acetaldehyde upon adenine nucleotide concentrations in rat heart and liver were determined. Ethanol administered either acutely (8 g kg 0.73) or chronically (20% solution in drinking water for 21 d) significantly decreased ATP concentrations, adenylate energy charge (EC) and adenylate kinase mass action ratio (gamma AK) in liver but affected gamma AK only in heart. Acetaldehyde treatment elicited similar effects but of lesser magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号