首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
The heme iron of horse heart cytochrome c was selectively removed using anhydrous HF. The product, porphyrin c, exhibits the viscosity, far ultraviolet circular dichroic, and fluorescence properties characteristic for native cytochrome c. However, porphyrin c is more susceptible to denaturation by guanidine hydrochloride and by heat than is the parent cytochrome. All of the conformational parameters of porphyrin c exhibit a common reversible transition centered at 0.95 m guanidine hydrochloride at 23 degrees C and pH 7.0. Guanidine denatured porphyrin c refolds in two kinetic phases having time constants of 20 and 200 ms as detected by stopped flow absorbance or fluorescence measurement, with about 80% of the observed change in the faster phase. The kinetics of porphyrin c refolding are not significantly altered by increasing the viscosity of the refolding solvent 15-fold by addition of sucrose. We suggest that the folding of guanidine denatured cytochrome c is not a diffusion-limited process and that the requirement for protein axial ligation elicits the slow (s) kinetic phase observed in the refolding of cytochrome c.  相似文献   

2.
A cytochrome c derivative from which iron is removed has been prepared and characterized. Several lines of evidence indicate that native and porphyrin cytochrome c have similar conformations: they have similar elution characteristics on Sephadex gel chromatography; in both proteins the tryptophan fluorescence is quenched and the pK values of protonation of the porphyrin are identical. Porphyrin cytochrome c does not substitute for native cytochrome c in either the oxidase reaction or in restoring electron transport in cytochrome-c-depleted mitochondria. It does however competitively inhibit native cytochrome c in these reactions, the Ki for inhibition being larger than the Km for reaction. The absorption and emission spectra, and the polarized excitation spectrum of the porphyrin cytochrome c are characteristic of free base porphyrin. The absence of fluorescence quenching of porphyrin cytochrome c when the protein is bound to cytochrome oxidase suggests that heme to heme distance between these proteins is larger than 0.5 to 0.9 nm depending upon orientation. Binding of the porphyrin cytochrome c to phospholipids or to mitochondria increases the fluorescence polarization of a positively polarized absorption band, which indicates that the bound form of the protein does not rotate freely within the time scale of relaxation from the excited state.  相似文献   

3.
The behavior of the photosynthetic cytochrome c552 upon titration with alkali depends on the ionic composition of the medium. In water the disappearance of the 695-nm band, indicating the displacement of the methionine ligand, as well as a remarkable tryptophan fluorescense enhancement, follow a single proton titration curve with pK of 10.0 and n=1.0. The product is a low spin type protein. In salt-containing media two successive steps are observed: in the first one, completed at about pH 10.3, a high-spin form of cytochrome c 552 is obtained and relatively small fluorescence enhancement is detected. In the second step, more profound fluorometric changes occur, while the material reverts to its low-spin form. Addition of salts to an alkaline solution of cytochrome c 552 in water results in the formation of a 600-nm high-spin band with a concomitant quenching of tryptophan fluorescence. The results imply that at high pH unfolding of the molecule is evident only when the low-spin product is obtained. In the high-spin alkaline form, the methionine ligand is probably displaced from iron coordination by hydroxyl ions, while in the low-spin alkaline form methionine may be replaced by a lysyl residue of the cytochrome c 552 protein. The results imply that the lysyl residue is available for coordination in salt solutions at a higher pH than in water.  相似文献   

4.
1. Porphyrin cytochrome c, the iron-free derivative of cytochrome c, has been used extensively as a fluorescent analog of cytochrome c. It appears as though its fluorescence intensity but not its relative quantum yield is affected by pH in the physiological range; an apparent pK of about 6.2 is found suggesting a histidine close to the porphyrin. 2. The fluorescence intensity of the porphyrin cytochrome c in the presence of cytochrome c oxidase is independent of pH; this suggests that the oxidase has the capacity to control the pK of whichever group is responsible for the pH sensitivity of the free porphyrin cytochrome c. The most likely candidate for this pH-sensitive group is histidine-18. The N-3 nitrogen of this residue forms one of the axial ligands to the iron in the intact cytochrome c but it is uncoordinated in the iron-free derivative.  相似文献   

5.
15N and 1H NMR studies of Rhodospirillum rubrum cytochrome c2   总被引:1,自引:0,他引:1  
L P Yu  G M Smith 《Biochemistry》1988,27(6):1949-1956
15N-Enriched cytochrome c2 was purified from Rhodospirillum rubrum that had been grown on 15NH4Cl, and the diamagnetic iron(II) form of the cytochrome was studied by 15N and 1H NMR spectroscopy. 15N resonances of the four pyrrole nitrogens, the ligand histidine nitrogens, the highly conserved tryptophan indole nitrogen, and some proline nitrogens are assigned. The resonances of the single nonligand histidine are observed only at low pH because of severe broadening produced by proton tautomerization. The resonances of exchangeable protons bonded to the nitrogens of the ligand histidine, the tryptophan, and some amide groups are also assigned. The exchange rates of the nitrogen-bound protons vary greatly: most have half-lives of less than minutes, the indolic NH of Trp-62 exchanges with a half-time of weeks, and the ligand histidine NH proton exchanges with a half-time of months. The latter observation is indicative of extreme exclusion of solvent from the area surrounding the ligand histidine and lends credence to theories implicating the degree of hydrophobicity in this region as an important factor in adjusting the midpoint potential. The dependence of the 15N and 1H NMR spectra of ferrocytochrome c2 on pH indicates neither the Trp-62 nor the ligand His side chains become deprotonated to any appreciable extent below pH 9.5. The His-18 NH remains hydrogen bonded, presumably to the Pro-19 carboxyl group, throughout the pH titrations. Because neither deprotonated nor non-hydrogen-bonded forms of His-18 are observed in spectra of the ferrocytochrome, the participation of such forms in producing a heterogeneous population having different g tensor values seems unlikely.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A procedure is described for using nanosecond time resolved fluorescence decay data to obtain decay-associated fluorescence spectra. It is demonstrated that the individual fluorescence spectra of two or more components in a mixture can be extracted without prior knowledge of their spectral shapes or degree of overlap. The procedure is also of value for eliminating scattered light artifacts in the fluorescence spectra of turbid samples. The method was used to separate the overlapping emission spectra of the two tryptophan residues in horse liver alcohol dehydrogenase. Formation of a ternary complex between the enzyme, NAD+, and pyrazole leads to a decrease in the total tryptophan fluorescence. It is shown that the emission of both tryptophan residues decreases. The buried tryptophan (residue 314) undergoes dynamic quenching with no change in the spectral distribution. Under the same conditions, the fluorescence intensity of tryptophan (residue 15) decreases without a change in decay time but with a red shift of the emission spectrum. There is also a decrease in tryptophan fluorescence intensity when the free enzyme is acid denatured (succinate buffer, pH 4.1). The denatured enzyme retains sufficient structure to provide different microenvironments for different tryptophan residues as reflected by biexponential decay and spectrally shifted emission spectra (revealed by decay association). The value of this technique for studies of microheterogeneity in biological macromolecules is discussed.  相似文献   

7.
Structural intermediates in folding of yeast iso-2 cytochrome c   总被引:6,自引:0,他引:6  
B T Nall 《Biochemistry》1983,22(6):1423-1429
The kinetic properties of the folding reactions of iso-2 cytochrome c from Saccharomyces cerevisiae have been investigated by stopped-flow and temperature-jump methods. Three different structural probes are compared: (1) absorbance changes in the visible reflecting changes in heme environment, (2) ultraviolet absorbance changes due to the exposure of aromatic groups to solvent, and (3) tryptophan fluorescence attributable principally to the average distance between the tryptophan residue (donor) and the heme (quencher). In addition, two probes either indicative of or correlated with function, ascorbic acid reducibility and the 695-nm absorbance band, have been used to monitor specifically the rate of formation of the native protein on refolding. The fastest phase observed (tau 3) has a measurable relative amplitude only when monitored by visible absorbance changes, suggesting that this reaction involves changes in heme environment in the absence of significant changes in the heme to tryptophan distance or in the extent to which aromatic groups are exposed to solvent. Different slow phases are observed when complete refolding is monitored by visible or ultraviolet absorbance (tau 1a) as opposed to tryptophan fluorescence (tau 1b), the fluorescence changes being complete on a time scale 4-8-fold faster than for absorbance. A mid-range kinetic phase (tau 2) is detected by all three structural probes. When ascorbic acid reducibility or 695-nm absorbance changes are used to monitor the rate of formation of the native protein, two phases are detected: tau 2 and tau 1a. Taken together these results demonstrate that kinetic phase tau 1b results in the formation of a structural intermediate in folding with fluorescence close to that of the native protein but with distinct absorbance properties.  相似文献   

8.
Hydrophobic interaction of 8-anilino-1-naphthalene sulfonic acid (ANS) with proteins is one of the widely used methods for characterizing/detecting partially folded states of proteins. We have carried out a systematic investigation on the effect of ANS, a charged hydrophobic fluorescent dye, on structural properties of acid-unfolded horse heart cytochrome c at pH 2.0 by a combination of optical methods and electrospray ionization mass spectroscopy (ESI MS). ANS was found to induce, a secondary structure similar to native protein and quenching of fluorescence of tryptophan residue, in the acid-unfolded protein. However, the tertiary structure was found to be disrupted thus indicating that ANS stabilizes a molten globule state in acid-unfolded protein. To understand the mechanism of ANS-induced folding of acid-unfolded cytochrome c, comparative ESI MS, soret absorption, and tryptophan fluorescence studies using nile red, a neutral hydrophobic dye, and ANS were carried out. These studies suggested that, at low pH, electrostatic interactions between negatively charged ANS molecules and positively charged amino acid residues present in acid-unfolded cytochrome c are probably responsible for ANS-induced folding of acid-unfolded protein to partially folded compact state or molten globule state. This is the first experimental demonstration of ANS induced folding of unfolded protein and puts to question the usefulness of ANS for characterization/determination of partially folded intermediates of proteins observed under low pH conditions.  相似文献   

9.
Refolding a disulfide dimer of cytochrome c   总被引:1,自引:0,他引:1  
A covalent dimer of Saccharomyces cerevisiae iso-1 cytochrome c is stabilized by an interchain disulfide bond involving the cysteine residue penultimate to the C-terminus. The individual chains in the dimer appear to retain the tertiary structural features characteristic for monomeric cytochrome c albeit with some perturbation. The dimer is reversibly denatured by heat, urea, or guanidine hydrochloride in a single cooperative transition whose midpoint is less than that of the monomeric protein. The kinetic profile observed for the refolding of the denatured dimer is characteristic for monomeric cytochromes except for a markedly enhanced slow-phase amplitude.  相似文献   

10.
Porphyrin c, the iron-free derivative of cytochrome c, is a reasonably good model for cytochrome c binding to cytochrome c peroxidase (CcP). It binds with the same stoichiometry but only one-quarter as tightly as cytochrome c. CcP (resting, FeIII) and CcP X CN can both bind up to two molecules of porphyrin c. The binding of the first porphyrin c is tight (kd = 1 X 10(-9) M, pH 6, ionic strength mu = 0, 4 degrees C) and results in quenching of the porphyrin c fluorescence. The binding is sensitive to ionic strength. The binding of the second porphyrin c is looser (Kd unknown) and does not result in quenching of the porphyrin fluorescence. The binding of porphyrin c to the cyano form and the resting forms of CcP cannot be distinguished by our methods. ES is the first acceptor of electrons from c(II) and can bind at least two molecules of porphyrin c. The binding of the first porphyrin c is extremely tight, results in substantial quenching and is insensitive to ionic strength. The binding of porphyrin c to the loose site (Kd = 2 X 10(-9) M, pH 6, 4 degrees C, mu = 0) results, unlike the resting and cyano forms, in quenching of fluorescence of the second porphyrin c. The binding of the second porphyrin c to ES is sensitive to ionic strength. The calculated distances between porphyrin c and the hemes of CcP(FeIII) and ES are approximately 2.5 nm.  相似文献   

11.
Time-resolved fluorescence anisotropy measurements of tryptophan residues were carried out for 44 proteins. Internal rotational motion with a sub-nanosecond correlation time (0.9 +/- 0.6 ns at 10 degrees C) was seen in a large number of proteins, though its amplitude varied from protein to protein. It was found that tryptophan residues which were almost fixed within a protein had either a long (greater than 4 ns) or short (less than 2 ns) fluorescence lifetime, whereas a residue undergoing a large internal motion had an intermediate lifetime (1.5-3 ns). It is suggested that the emission kinetics of a tryptophan residue is coupled with its internal motion. In particular, an immobile tryptophan residue emitting at long wavelength was characterized by a long lifetime (greater than 4 ns). It appears that a tryptophan residue fixed in a polar region has little chance of being quenched by neighboring groups.  相似文献   

12.
The fluorescence decay kinetics at different ranges of the emission spectrum is reported for 17 proteins. Out of eight proteins containing a single tryptophan residue per molecule, seven proteins display multiexponential decay kinetics, suggesting that variability in protein structure may exist for most proteins. Tryptophan residues whose fluorescence spectrum is red shifted may have lifetimes longer than 7 ns. Such long lifetimes have not been detected in any of the denatured proteins studied, indicating that in native proteins the tryptophans having a red-shifted spectrum are affected by the tertiary structure of the protein. The fluorescence decay kinetics of ten denatured proteins studied obey multiexponential decay functions. It is therefore concluded that the tryptophan residues in denatured proteins can be grouped in two classes. The first characterized by a relatively long lifetime of about 4 ns and the second has a short lifetime of about 1.5 ns. The emission spectrum of the group which is characterized by the longer lifetime is red shifted relative to the emission spectrum of the group characterized by the shorter lifetime. A comparison of the decay data with the quantum yield of the proteins raises the possibility that a subgroup of the tryptophan residues is fully quenched. It is noteworthy that despite this heterogeneity in the environment of tryptophan residues in each denatured protein, almost the same decay kinetics has been obtained for all the denatured proteins studied in spite of the vastly different primary structures. It is therefore concluded that each tryptophan residue interacts in a more-or-less random manner with other groups on the polypeptide chain, and that on the average the different tryptophan residues in denatured proteins have a similar type of environment.  相似文献   

13.
Understanding the role of partially folded intermediate states in the folding mechanism of a protein is a crucial yet very difficult problem. We exploited a kinetic approach to demonstrate that a transient intermediate of a thermostable member of the widely studied cytochrome c family (cytochrome c552 from Thermus thermophilus) is indeed on-pathway. This is the first clear indication of an obligatory intermediate in the folding mechanism of a cytochrome c. The fluorescence properties of this intermediate demonstrate that the relative position of the heme and of the only tryptophan residue cannot correspond to their native orientation. Based on an analysis of the three-dimensional structure of cytochrome c552, we propose an interpretation of the data which explains the residual fluorescence of the intermediate and is consistent with the established role played by some conserved interhelical interactions in the folding of other members of this family. A limited set of topologically conserved contacts may guide the folding of evolutionary distant cytochromes c through the same partially structured state, which, however, can play different kinetic roles, acting either as an intermediate or a transition state.  相似文献   

14.
All the lysines of horse heart cytochrome c were maleylated yielding a low spin product. At room temperature and low salt concentration, this product lacked the 695 nm absorption band and showed tryptophan fluorescence and circular dichroic spectra typical of denatured cytochrome c. The 695 nm band and the native tryptophan fluorescence and circular dichroic spectra were restored by addition of salts, their effectiveness being dependent on the charge of the cation. On low salt concentration, the 695 nm band was also restored by lowering the temperature. Studies of the temperature dependence of the 695 nm band indicate that the thermal denaturation of maleylated cytochrome c occurs at temperatures 60-70 degrees C lower than in the native protein. This implies a destabilization of the native conformation by 5.6 kcal/mol; a similar value is evidenced by comparative urea denaturation studies on the native and modified proteins. The results confirm the assumption that the native conformation of cytochrome c is mostly determined by interactions involving internal residues.  相似文献   

15.
Nickel cytochrome c has been synthesized by the reaction of metal-free porphyrin cytochrome c with Ni(II) ions in 0.6 Mglycylglycine and 4 M KSCN. Electronic spectra and susceptibility measurement showed the nickel to be in a high-spin octahedral configuration exemplifying the strong influence of the protein moiety as a macrocyclic ligand on the coordination chemistry of the metal ion. Nickel cytochrome c has the same electrophoretic mobility, helicity and pK values of conformational transitions as the native enzyme. At high pH, the partially denatured nickel cytochrome c becomes dimeric. Nitric oxide reacts with nickel cytochrome c to form the nitrosyl derivative with (formula: see text). Reaction of NO with nickel protoporphyrin IX dimethyl ester in toluene, pyridine, or methylthioethanol produced no stable nitrosyl products, clearly demonstrating the effect of protein on metal ion ligation.  相似文献   

16.
The fluorescence properties of the isolated extrinsic 33 kDa subunit acting as 'manganese stabilizing protein' (MSP) of the water oxidizing complex in photosynthesis was analyzed in buffer solution. Measurements of the emission spectra as a function of excitation wavelength, pH and temperature led to the following results: (a) under all experimental conditions the spectra monitored were found to be the composite of two contributions referred to as '306 nm band' and 'long-wavelength band', (b) the excitation spectra of these two bands closely resemble those of tyrosine and tryptophan in solution, respectively, (c) the spectral shape of the '306 nm band' is virtually independent on pH but its amplitude drastically decreases in the alkaline with a pK of 11.7, (d) the amplitude of the 'long-wavelength' emission band at alkaline pH slightly increases when the pH rises from 7.2 to about 11.3 followed by a sharp decline at higher pH, and (e) the shape of the overall spectrum at pH 7.2 is only slightly changed upon heating to 90 degrees C whereas the amplitude significantly declines. Based on these findings the two distinct fluorescence bands are ascribed to tyrosine(s) ('306 nm band') and the only tryptophan residue W241 of MSP from higher plants ('long-wavelength band') as emitters which are both embedded into a rather hydrophobic environment.  相似文献   

17.
Kang X  Carey J 《Biochemistry》1999,38(48):15944-15951
The heme prosthetic group of cytochrome c is covalently attached to the protein through thioether bonds to two cysteine side chains. The role of covalent heme attachment to cytochrome c is not understood, and most heme proteins bind the prosthetic group by iron ion ligation and tertiary interactions only. A two-armed attachment seems redundant if the role of covalent connection is to limit heme group orientation or to decouple heme affinity from redox potential. These considerations suggested that one role for covalent attachment of the rigid planar heme might be in organizing the cytochrome c protein structure. Indeed, porphyrin cytochrome c (in which the heme iron ion has been removed) is substantially more ordered than apocytochrome c, having characteristics consistent with a molten globule state. To assess the importance of planar rigidity in ordering this protein, semisynthesis was used to substitute porphyrin by two hydrophobic surrogates, one based on biphenyl and the other on phenanthrene, which have different degrees of planarity and rigidity. The expected two-armed covalent attachment of each surrogate was confirmed in the protein products by a variety of methods including mass spectrometry and NMR. Despite being only about half the size of the porphyrin macrocycle, and lacking any possibility for ligation or polar group interactions with the surrounding protein, the two surrogates confer helix contents that are comparable to that of the molten globule formed by porphyrin cytochrome c under similar solution conditions. The pH titrations of the derivatives monitored by circular dichroism exhibit reversible, bell-shaped folding and unfolding transitions, implying that charge group interactions in the protein are involved in stabilizing the helical structures formed. The thermal transitions of the two derivatives at neutral pH are cooperative, with similar midpoints. The similarity of helical content and structural stability in the two derivatives indicates that the increase in conformational freedom by the biphenyl surrogate does not substantially reduce protein structural stability. The similarity of the two derivatives to porphyrin cytochrome c suggests that the common feature among the three covalently attached groups-their hydrophobicity-is by far the dominant factor in organizing stable structures in the protein.  相似文献   

18.
The thermal transition of RNase T1 was studied by two different methods; tryptophan residue fluorescence and circular dichroism. The fluorescence measurements provide information about the environment of the indole group and CD measurements on the gross conformation of the polypeptide chain. Both measurements at pH 5 gave the same transition temperature of 56 degrees C and the same thermodynamic quantities, delta Htr (= 120 kcal/mol) and delta Str (= 360 eu/mol), for the transition from the native state to the thermally denatured state, indicating simultaneous melting of the whole molecule including the hydrophobic region where the tryptophan residue is buried. Stabilization by salts was observed in the pH range from 2 to 10, since the presence of 0.5 m NaCL caused an increase of about 5 degrees C to 10 degrees C in the transition temperature, depending on the pH. The fluorescence measurements on the RNase T1 complexed with 2'-GMP showed a transition with delta Htr =167 kcal/mol and delta Str =497 eu/mol at a transition temperature about 6 degrees C higher than that for the free enzyme. The large value of delta Htr for RNase T1 indicates the highly cooperative nature of the thermal transition; this value is much higher than those of other globular proteins. Analysis of the CD spectrum of thermally denatured RNase T1 suggests that the denatured state is not completely random but retains some ordered structures.  相似文献   

19.
The tryptophyl fluorescence emission of yeast 3-phosphoglycerate kinase decreases from pH 3.9 to pH 7.2 following a normal titration curve with an apparent pK of 4.7. The fluorescence decays have been determined at both extreme pH by photocounting pulse fluorimetry and have been found to vary with the emission wavelength. A quantitative analysis of these results according to a previously described method allows to determine the emission characteristics of the two tryptophan residues present in the protein molecule. At pH 3.9, one of the tryptophan residues is responsible for only 13% of the total fluorescence emission. This first residue has a lifetime τ1= 0.6 ns and a maximum fluorescence wavelength λ2max = 332 nm. The second tryptophan residue exhibits two lifetimes τ21= 3.1 ns and τ22= 7.0 ns (λ2max= 338 nm). In agreement with the attribution of τ21and τ32 to the same tryptophan residue, the ratio β = C21/C22 of the normalized amplitudes is constant along the fluorescence emission spectrum. At pH 7.2, the two tryptophan residues contribute almost equally tc the protein fluorescence. The decay time of tryptophan 1 is 0.4 ns. The other emission parameters are the same as those determined at pH 3.9. We conclude that the fluorescence quenching in the range pH 3.9 to pH 8.0 comes essentially from the formation of a non emitting internal ground state complex between the tryptophan having the longest decay times and a neighbouring protein chemical group. The intrinsic pK of this group and the equilibrium constant of the irternal complex can be estimated. The quenching group is thought to be a carboxylate anion. Excitation transfers between the two tryptophyl residues of the protein molecule appear to have a small efficiency.  相似文献   

20.
A frequency-domain fluorescence study of calcium-binding metalloproteinase from Staphylococcus aureus has shown that this two-tryptophan-containing protein exhibits a double-exponential fluorescence decay. At 10 degrees C in 0.05 M Tris-HCl buffer (pH 9.0) containing 10 mM CaCl2, fluorescence lifetimes of 1.2 and 5.1 ns are observed. Steady-state and frequency-domain solute-quenching studies are consistent with the assignment of the two lifetimes to the two tryptophan residues. The tryptophan residue characterized by a shorter lifetime has a maximum of fluorescence emission at about 317 nm and the second one exhibits a maximum of its emission at 350 nm. These two residues contribute almost equally to the protein's fluorescence. These results, as well as fluorescence-quenching studies using KI and acrylamide as a quencher, indicate that in calcium-loaded metalloproteinase, the tryptophan residue characterized by the shorter lifetime is extensively buried within the protein. The second residue is exposed on the surface of the protein. The tryptophan residues of metalloproteinase have acrylamide dynamic-quenching rate constants, kq values, of 2.3 and 0.26 X 10(9) M-1 X s-1 for the exposed and buried residue, respectively. A study of the temperature dependence of the fluorescence lifetime for the two tryptophan components gives activation energies, Ea values, for thermal quenching of 1.8 and 2.2 kcal/mol for the buried and the exposed residue, respectively. Dissociation of Ca2+ from the protein causes a change in the protein's structure, as can be judged from dramatic changes which occur in the fluorescence properties of the buried tryptophan residue. These changes include an approx. 13 nm red-shift in the maximum of the fluorescence emission and an increase in the acrylamide-quenching rate constant, and they indicate that the removal of Ca2+ results in an increase in the exposure and the polarity of the microenvironment of this 'blue' residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号