首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The protein synthesis inhibitor emetine was used to establish the times of synthesis of mitotic proteins, whose presence in the cell are essential in the mitotic processes of chromosome condensation, nuclear membrane breakdown, and possibly, chromosome alignment at metaphase. In embryos of the purple sea urchin, Strongylocentrotus purpuratus, protein synthesis required for chromosome condensation and nuclear membrane breakdown occurs between 20 and 35 min after fertilization. In Lytechinus variegatus embryos the time of synthesis of the mitotic proteins is more variable, occurring between 4 and 15 min after fertilization. Furthermore, in both species the mitosis of each cell cycle requires new synthesis of these proteins with the synthesis occurring at the beginning of each cycle. This observation indicates that the mitotic proteins, which are active at prophase and metaphase, lose their activity at late ana- and telophase.  相似文献   

2.
The protein synthesis patterns at various stages of the cell cycle of Chinese hamster ovary cells were examined by labelling cells with [35S]methionine and then separating the proteins by isoelectric focussing and two-dimensional, nonequilibrium pH gradient gel electrophoresis. We have observed a number of proteins which display quantitative differences in synthesis at specific cell cycle stages and of these the alpha- and beta-tubulins have been identified. A few proteins appear to be uniquely synthesized at specific times during the cell cycle. These include the histones and a modified version of them, which are synthesized only in S phase, and a pair of 21 kilodalton (kDa), pI 5.5 proteins, which appear only in late G2 and mitosis. We have also identified a 58-kDa, pI 7.5 protein which is present at all cell cycle stages except during late G2. This protein appears to have the same temporal properties as a 57-kDa protein called "cyclin" originally described in sea urchin embryos.  相似文献   

3.
A protein of 62 kD is a substrate of a calcium/calmodulin-dependent protein kinase, and both proteins copurify with isolated mitotic apparatuses (Dinsmore, J. H., and R. D. Sloboda. 1988. Cell. 53:769-780). Phosphorylation of the 62-kD protein increases after fertilization; maximum incorporation of phosphate occurs during late metaphase and anaphase and correlates directly with microtubule disassembly as determined by in vitro experiments with isolated mitotic apparatuses. Because 62-kD protein phosphorylation occurs in a pattern similar to the accumulation of the mitotic cyclin proteins, experiments were performed to determine the relationship between cyclin and the 62-kD protein. Continuous labeling of marine embryos with [35S]methionine, as well as immunoblots of marine embryo proteins using specific antibodies, were used to identify both cyclin and the 62-kD protein. These results clearly demonstrate that the 62-kD protein is distinct from cyclin and, unlike cyclin, is a constant member of the cellular protein pool during the first two cell cycles in sea urchin and surf clam embryos. Similar results were obtained using immunofluorescence microscopy of intact eggs and embryos. In addition, immunogold electron microscopy reveals that the 62-kD protein associates with the microtubules of the mitotic apparatus in dividing cells. Interestingly, the protein changes its subcellular distribution with respect to microtubules during the cell cycle. Specifically, during mitosis the 62-kD protein associates with the mitotic apparatus; before nuclear envelope breakdown, however, the 62-kD protein is confined to the nucleus. After anaphase, the 62-kD protein returns to the nucleus, where it resides until nuclear envelope disassembly of the next cell cycle.  相似文献   

4.
We show that a phosphatase inhibitor, okadaic acid, induces premature and persistent mitosis during the first cell cycle in sea urchin embryos. Okadaic acid-induced mitosis requires protein synthesis, suggesting that it activates the protein synthesis-requiring mitotic H1 kinase. By microinjecting the calcium chelators BAPTA and EGTA and by measuring Cai using fura-2, an indicator dye, we show that okadaic acid-induced mitosis is independent of the calcium signal that usually triggers mitosis onset in sea urchin embryos. Disabling the calmodulin kinase II that is thought to respond to the mitotic Cai signal using a peptide inhibitor fails to prevent mitosis in response to okadaic acid. These data suggest that okadaic acid bypasses calcium regulation of mitosis by inducing constitutive phosphorylation of a site on the H1 kinase that is normally under the control of the calmodulin-regulated kinase.  相似文献   

5.
The activity of the cell cycle control protein p34cdc2 is post-translationally regulated in a variety of cell types. Using anti-phosphotyrosine antibodies, we find that p34cdc2-directed tyrosine kinase activity increases at fertilization in sea urchin eggs, leading to a gradual accumulation of phosphotyrosine on p34 during the early part of the cell cycle. Loss of phosphotyrosine from p34 accompanies entry into mitosis and phosphotyrosine reaccumulates as the embryo enters the next cell cycle. A similar pattern is seen when eggs are parthenogenetically activated with ammonium chloride. Tyrosine phosphorylation and phosphorylation/dephosphorylation cycles are suppressed when embryos are treated with the tyrosine kinase inhibitor genistein. On the other hand, a cycle persists when protein synthesis is inhibited with emetine, indicating that it is independent of the synthesis of another class of cell cycle control proteins, the cyclins. Additional experiments with the phorbol ester, phorbol myristate acetate, demonstrate that activating protein synthesis alone in unfertilized eggs does not result in stimulation of p34cdc2 tyrosine kinase activity. Our results indicate that p34 tyrosine phosphorylation cycles are triggered by the fertilization Cai transient. The first cycle is independent of the fertilization pHi signal, confirming that, in sea urchin embryos, the cycle is not tightly coupled to the cycle of cyclin abundance that is a prominent feature of the eukaryotic cell division cycle.  相似文献   

6.
Cleavage in embryos of the sea urchin Arbacia punctulata consists of eight very rapid divisions that require continual protein synthesis to sustain them. This synthesis is programmed by stored maternal mRNAs, which code for three or four particularly abundant proteins whose synthesis is barely if at all detectable in the unfertilized egg. One of these proteins is destroyed every time the cells divide. Eggs of the sea urchin Lytechinus pictus and oocytes of the surf clam Spisula solidissima also contain proteins that only start to be made after fertilization and are destroyed at certain points in the cell division cycle. We propose to call these proteins the cyclins.  相似文献   

7.
Aphidicolin at 2 μg/ml caused 90% inhibition of mitotic cell division of sea urchin embryos at the I-cell stage. However, at 40 μg/ml it did not affect meiotic maturational divisions of starfish oocytes, which do not involve DNA replication. At 2 μg/ml it caused 90% inhibition of incorporation of tritiated thymidine into DNA of sea urchin embryos but did not affect protein or RNA synthesis even at a higher concentration. At 2 μg/ml it also caused 90% inhibition of the activity of DNA polymerase α, obtained from the nuclear fraction of sea urchin embryos, but did not affect the activity of DNA polymerase β or γ. These findings suggest that DNA polymerase α is responsible for replication of DNA in sea urchin embryos.  相似文献   

8.
In a previous study, we demonstrated that caulerpenyne (Cyn), a natural sesquiterpene having an antiproliferative potency, blocked the mitotic cycle of sea urchin embryos at metaphase and inhibited the phosphorylation of several proteins, but did not affect histone H1 kinase activation (Pesando et al, 1998, Eur. J. Cell Biol. 77, 19-26). Here, we show that concentrations of Cyn that blocked the first division of the sea urchin Paracentrotus lividus embryos in a metaphase-like stage (45 microM) also inhibited the stimulation of mitogen-activated protein kinase (MAPK) activity in vivo as measured in treated egg extracts using myelin basic protein (MBP) as a substrate (MBPK). However, Cyn had no effect on MBP phosphorylation when added in vitro to an untreated egg extract taken at the time of metaphase, suggesting that Cyn acts on an upstream activation process. PD 98059 (40 microM), a previously characterized specific synthetic inhibitor of MAPK/extracellular signal-regulated kinase-1 (MEK1), also blocked sea urchin eggs at metaphase in a way very similar to Cyn. Both molecules induced similar inhibitory effects on MBP kinase activation in vivo, but had no direct effect on MBP kinase activity in vitro, whereas they did not affect H1 kinase activation neither in vivo nor in vitro. As a comparison, butyrolactone 1 (100 microM), a known inhibitor of H1 kinase activity, did inhibit H1 kinase of sea urchin eggs in vivo and in vitro, and blocked the sea urchin embryo mitotic cycle much before metaphase. Immunoblots of mitotic extracts, treated with anti-active MAP-kinase antibody, showed that both Cyn and PD 98059 reduced the phosphorylation of p42 MAP kinase (Erk2) in vivo. Our overall results suggest that Cyn blocks the sea urchin embryo mitotic cycle at metaphase by inhibiting an upstream phosphorylation event in the MBPK activation pathway. They also show that H1 kinase and MBPK activation can be dissociated from each other in this model system.  相似文献   

9.
Detergent treatment of sea urchin eggs at the mid 4-cell stage results in prevention of micromere segregation at the fourth cleavage. In these embryos not only the formation of the primary mesenchyme is suppressed, but synchrony of cell division, which is the rule during the first four cleavage cycles, continues for several cycles after the 16-cell stage while the typical mitotic phase wave that sets in after micromere segregation is abolished.
These results support the hypothesis that micromeres act as coordinators of the mitotic activity of the embryo.  相似文献   

10.
Using an antiserum produced against a purified calsequestrin-like (CSL) protein from a microsomal fraction of sea urchin eggs, we performed light and electron microscopic immunocytochemical localizations on sea urchin eggs and embryos in the first cell cycle. The sea urchin CSL protein has been found to bind Ca++ similarly to calsequestrin, the well-characterized Ca++ storage protein in the sarcoplasmic reticulum of muscle cells. In semi-thin frozen sections of unfertilized eggs, immunofluorescent staining revealed a tubuloreticular network throughout the cytoplasm. Staining of isolated egg cortices with the CSL protein antiserum showed the presence of a submembranous polygonal, tubular network similar to ER network patterns seen in other cells and in egg cortices treated with the membrane staining dye DiIC16[3]. In frozen sections of embryos during interphase of the first cell cycle, a cytoplasmic network similar to that of the unfertilized egg was present. During mitosis, we observed a dramatic concentration of the antibody staining within the asters of the mitotic apparatus where ER is known to aggregate. Electron microscopic localization on unfertilized eggs using peroxidase-labeled secondary antibody demonstrated the presence of the CSL protein within the luminal compartment of ER-like tubules. Finally, in frozen sections of centrifugally stratified eggs, the immunofluorescent staining concentrated in the clear zone: a layer highly enriched in ER and thought to be the site of calcium release upon fertilization. This localization of a CSL protein within the ER of the egg provides evidence for the ability of this organelle to serve a Ca++ storage role in the regulation of intracellular Ca++ in nonmuscle cells in general, and in the regulation of fertilization and cell division in sea urchin eggs in particular.  相似文献   

11.
It is well known that stimulation of egg metabolism after fertilization is due to a rise in intracellular free calcium concentration. In sea urchin eggs, this first calcium signal is followed by other calcium transients that allow progression through mitotic control points of the cell cycle of the early embryo. How sperm induces these calcium transients is still far from being understood. In sea urchin eggs, both InsP3 and ryanodine receptors contribute to generate the fertilization calcium transient, while the InsP3 receptor generates the subsequent mitotic calcium transients. The identity of the mechanisms that generate InsP3 after fertilization remains an enigma. In order to determine whether PLCgamma might be the origin of the peaks of InsP3 production that punctuate the first mitotic cell cycles of the fertilized sea urchin egg, we have amplified by RT-PCR several fragments of sea urchin PLCgamma containing the two SH2 domains. The sequence shares similarities with SH2 domains of PLCgamma from mammals. One fragment was subcloned into a bacterial expression plasmid and a GST-fusion protein was produced and purified. Antibodies raised to the GST fusion protein demonstrate the presence of PLCgamma protein in eggs. Microinjection of the fragment into embryos interferes with mitosis. A related construct made from bovine PLCgamma also delayed or prevented entry into mitosis and blocked or prolonged metaphase. The bovine construct also blocked the calcium transient at fertilization, in contrast to a tandem SH2 control construct which did not inhibit either fertilization or mitosis. Our data indicate that PLCgamma plays a key role during fertilization and early development.  相似文献   

12.
Recent findings suggested that the role of cysteine proteases would not be limited to protein degradation in lysosomes but would also play regulatory functions in more specific cell mechanisms. We analyzed here the role of these enzymes in the control of cell cycle during embryogenesis. The addition of the potent cysteine protease inhibitor E64d to newly fertilized sea urchin eggs disrupted cell cycle progression, affecting nuclear as well as cytoplasmic characteristic events. Monitoring BrdU incorporation in E64d treated eggs demonstrated that DNA replication is severely disturbed. Moreover, this drug treatment inhibited male histones degradation, a step that is necessary for sperm chromatin remodeling and precedes the initiation of DNA replication in control eggs. This inhibition likely explains the DNA replication disturbance and suggests that S phase initiation requires cysteine protease activity. In turn, activation of the DNA replication checkpoint could be responsible for the consecutive block of nuclear envelope breakdown (NEB). However, in sea urchin early embryos this checkpoint doesn't control the mitotic cytoplasmic events that are not tightly coupled with NEB. Thus the fact that microtubule spindle is not assembled and cyclin B-cdk1 not activated under E64d treatment more likely rely on a distinct mechanism. Immunofluorescence experiments indicated that centrosome organization was deficient in absence of cysteine protease activity. This potentially accounts for mitotic spindle disruption and for cyclin B mis-localization in E64d treated eggs. We conclude that cysteine proteases are essential to trigger S phase and to promote M phase entry in newly fertilized sea urchin eggs.  相似文献   

13.
We have recently found that aphidicolin, a tetracyclic diterpene-tetraol produced by several fungi, blocks DNA synthesis of sea urchin embryos by interfering with the activity of DNA polyermase alpha. These cells fail to proliferate in the presence of aphidicolin. In continuation of these studies, we determined the drug-sensitive stage in the first cell cycle of the sea urchin Clypeaster japonicus embryo. In continuous exposure to aphidicolin (2 micrograms/ml) from five minutes after fertilization, mitotic division of the embryo was completely suppressed. Embryos were exposed to the drug at progressively later intervals and their capability for cytokinesis was examined. Evidence was thereby obtained that aphidicolin acts at the S-period to inhibit DNA synthesis resulting in developmental arrest of the embryo.  相似文献   

14.
Cold environments represent a substantial volume of the biosphere. To study developmental physiology in subzero seawater temperatures typically found in the Southern Ocean, rates and costs of protein synthesis were measured in embryos and larvae of Sterechinus neumayeri, the Antarctic sea urchin. Our analysis of the "cost of living" in extreme cold for this species shows (1) that cost of protein synthesis is strikingly low during development, at 0.41 +/- 0.05 J (mg protein synthesized)(-1) (n = 16); (2) that synthesis cost is fixed and independent of synthesis rate; and (3) that a low synthesis cost permits high rates of protein turnover at -1 degrees C, at rates comparable to those of temperate species of sea urchin embryos developing at 15 degrees C. With a low synthesis cost, even at the highest synthesis rates measured (gastrulae), the proportion of total metabolism accounted for by protein synthesis in the Antarctic sea urchin was 54%-a value similar to that of temperate sea urchin embryos. In the Antarctic sea urchin, up to 87% of metabolic rate can be accounted for by the combined energy costs of protein synthesis and the sodium pump. We conclude that, in Antarctic sea urchin embryos, high rates of protein synthesis can be supported in extreme-cold environments while still maintaining low rates of respiration.  相似文献   

15.
The reproduction, or duplication, of the centrosome is an important event in a cell's preparation for mitosis. We sought to determine if centrosome reproduction is regulated by the synthesis and accumulation of cyclin proteins and/or the synthesis of centrosome-specific proteins at each cell cycle. We continuously treat sea urchin eggs, starting before fertilization, with a combination of emetine and anisomycin, drugs that have separate targets in the protein synthetic pathway. These drugs inhibit the postfertilization incorporation of [35S]methionine into precipitable material by 97.3-100%. Autoradiography of SDS-PAGE gels of drug-treated zygotes reveals that [35S]methionine incorporates exclusively into material that does not enter the gel and material that runs at the dye front; no other labeled bands are detected. Fertilization events and syngamy are normal in drug-treated zygotes, but the cell cycle arrests before first mitosis. The sperm aster doubles once in all zygotes to yield two asters. In a variable but significant percentage of zygotes, the asters continue to double. This continued doubling is slower than normal, asynchronous between zygotes, and sometimes asynchronous within individual zygotes. High voltage electron microscopy of serial semithick sections from drug-treated zygotes reveals that 90% of the daughter centrosomes contain two centrioles of normal appearance. From these results, we conclude that centrosome reproduction in sea urchin zygotes is not controlled by the accumulation of cyclin proteins or the synthesis of centrosome-specific proteins at each cell cycle. New centrosomes are assembled from preexisting pools of ready-to-use subunits. Furthermore, our results indicate that centrosomal and nuclear events are regulated by separate pathways.  相似文献   

16.
Activation and role of mitogen-activated protein (MAP) kinase (MAPK) during mitosis are still matters of controversy in early embryos. We report here that an ERK-like protein is present and highly phosphorylated in unfertilized sea urchin eggs. This MAPK becomes dephosphorylated after fertilization and a small pool of it is transiently reactivated during mitosis. The phosphorylated ERK-like protein is localized to the nuclear region and then to the mitotic poles and the mitotic spindle. Treatment of eggs after fertilization with two different MEK inhibitors, PD 98059 and U0126, at low concentrations capable to selectively induce dephosphorylation of this ERK-like protein, or expression of a dominant-negative MEK1/2, perturbed mitotic progression. Our results suggest that an ERK-like cascade is part of a control mechanism that regulates mitotic spindle formation and the attachment of chromosomes to the spindle during the first mitosis of the sea urchin embryo.  相似文献   

17.
Calcium is thought to be involved in regulating mitotic transitions. The basis for this view is set out. Recent data from experiments on sea urchin embryos is discussed. The relative simplicity of the embryonic cell cycle and the relative ease with which cell physiology can be done in sea urchin embryos has allowed the clear demonstration that the phosphoinositide-calcium-calmodulin signalling pathway is required for and regulates mitosis entry and anaphase onset. The relevance of the sea urchin work to mitosis in other cell types is briefly discussed.  相似文献   

18.
The synthesis of DNA in fertilized eggs of the American Gulf Coast sea urchin Lytechinus variegatus is 90% inhibited in the presence of 5.0 micrograms/ml aphidicolin. This inhibition may be imposed immediately upon addition of aphidicolin to the external medium when embryos are in "S" phase. Observations of living embryos with Nomarski optics and time-lapse video microscopy reveal that when eggs are fertilized and cultured in the continuous presence of aphidicolin, nuclear envelope breakdown, chromosome condensation, and cytokinesis are inhibited. All other post-fertilization events observable with this technique, including the assembly and disassembly of a bipolar spindle, proceed in the presence of aphidicolin. Antitubulin immunofluorescence microscopy of aphidicolin-arrested embryos demonstrates that microtubules attempt to assemble a mitotic apparatus at the first cell cycle; the arrested intact zygote nucleus is embedded within this bipolar structure. Subsequent cycles of microtubule assembly and disassembly proceed roughly on schedule with later division cycles, but the microtubule organizing centers (MTOC's) are unable to duplicate properly and irregular monasters are observed. If aphidicolin is added to embryos after the first DNA synthetic period, nuclear envelope breakdown, chromosome condensation, and cytokinesis proceed for that cycle and the embryos arrest at the two-cell stage. These results suggest that the direct inhibitory effects of aphidicolin may well be limited to the synthesis of DNA, which itself regulates nuclear cycles independently from the subsequent generation of mitotic poles, and that cytoplasmic clocks regulate microtubule assembly cycles but not the configuration of microtubule arrays.  相似文献   

19.
Components of centrosomes are those among cellular proteins that are phosphorylated at the transition from interphase to mitosis. Using an anti-phosphoprotein antibody (CHO3) directed against isolated mitotic CHO spindles, we identified a 225-kDa centrosomal phosphocomponent in mitotic CHO cells and in cleaving sea urchin eggs. The 225-kDa protein is tightly attached to the centrosome, which allowed us to separate it from other spindle-associated factors by high salt extraction. Phosphorylation of the 225-kDa protein occurred during mitosis. This was shown by isotope labeling on gels as well as by visualization of thiophosphorylated centrosomes with an anti-thiophosphoprotein antibody (M. Cyert, T. Scherson, and M. W. Kirschner, 1988, Dev. Biol. 129, 209) after preincubation with ATP-gamma-S in vivo and in vitro. Mitotic spindles isolated from CHO cells retained their ability to phosphorylate the centrosomal component, whereas sea urchin spindles did not, possibly due to loss or inactivation of protein kinase(s) during spindle isolation. The enzyme associated with isolated CHO spindles was extractable by high salt treatment and was capable of phosphorylating many spindle components, including the 225-kDa centrosomal protein of CHO cells and sea urchin embryos. Such high salt extracts contain protein kinases, including cell cycle control protein kinase p34cdc2, suggesting that the enzyme responsible for centrosomal phosphorylation could be p34cdc2 or other downstream mitotic kinases activated by the action of p34cdc2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号