首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A leaf spotting disease of an ornamental variety of Ophiopogon japonicus was discovered at several locations in northern Thailand. In all cases a species of Phyllosticta was associated with the lesions. Phyllosticta ophiopogonis sp. nov. is distinguished from Phyllosticta species from Liliaceae in conidia size, mucilaginous sheath and appendage thus the species is introduced as new in this paper. The new species which causes unsightly lesions on this ornamental plant is described, illustrated and compared with other similar Phyllosticta species.  相似文献   

2.
Isolation of endophytic species of Guignardia (anamorph: Phyllosticta) from healthy leaves of 94 plants (91 species and 3 varieties) in 69 genera, 42 families, was carried out in a test site (Kyoto Herbal Garden) to investigate the host range of Guignardia endophyllicola (anamorph: Phyllosticta capitalensis). Species of Guignardia and Phyllosticta were isolated from the leaves of 67 plants (66 species and 1 variety) belonging to 54 genera, 38 families. Among them, 53 isolates from different plants belonging to 43 genera in 36 families were similar in morphology, and sequence analysis of internal transcribed spacer (ITS) regions of ribosome DNA revealed these isolates to be conspecific with G. endophyllicola. In addition, this fungus was isolated from leaves of various plants collected in different places in Japan and Thailand. Thus, this endophytic fungus has been revealed to live within various vascular plants, angiosperms, gymnosperms, and pteridophytes.  相似文献   

3.
The fungal genus Fusarium (Ascomycota) includes well-known plant pathogens that are implicated in diseases worldwide, and many of which have been genome sequenced. The genus also encompasses other diverse lifestyles, including species found ubiquitously as asymptomatic-plant inhabitants (endophytes). Here, we produced structurally annotated genome assemblies for five endophytic Fusarium strains, including the first whole-genome data for Fusarium chuoi. Phylogenomic reconstruction of Fusarium and closely related genera revealed multiple and frequent lifestyle transitions, the major exception being a monophyletic clade of mutualist insect symbionts. Differential codon usage bias and increased codon optimisation separated Fusarium sensu stricto from allied genera. We performed computational prediction of candidate secreted effector proteins (CSEPs) and carbohydrate-active enzymes (CAZymes)—both likely to be involved in the host–fungal interaction—and sought evidence that their frequencies could predict lifestyle. However, phylogenetic distance described gene variance better than lifestyle did. There was no significant difference in CSEP, CAZyme, or gene repertoires between phytopathogenic and endophytic strains, although we did find some evidence that gene copy number variation may be contributing to pathogenicity. Large numbers of accessory CSEPs (i.e., present in more than one taxon but not all) and a comparatively low number of strain-specific CSEPs suggested there is a limited specialisation among plant associated Fusarium species. We also found half of the core genes to be under positive selection and identified specific CSEPs and CAZymes predicted to be positively selected on certain lineages. Our results depict fusarioid fungi as prolific generalists and highlight the difficulty in predicting pathogenic potential in the group.  相似文献   

4.
Fungal endophytes are the most ubiquitous and highly diverse microorganisms that inhabit the interior of healthy plants. They are important in plant ecology and offer untapped potential to improve plant health and productivity in agroecosystems. The endophytic assemblage of avocado is poorly understood; therefore, surveys of fungal endophytes of Persea americana Mill. (Avocado) in South Florida organic and conventional orchards were conducted. A total of 17 endophytic fungal species were recovered from healthy avocado terminal branches. Endophytic fungal species were identified by rDNA sequencing of the internal transcribed spacer (ITS) region, using UNITE Species Hypotheses to reliably assign a taxon name, and determined as belonging to the genera Alternaria, Cladosporium, Colletotrichum, Corynespora, Diaporthe, Lasiodiplodia, Neofusicoccum, Neopestalotiopsis, Phyllosticta, and Strelitziana. Endophyte community assemblage differed between organic and conventional agroecosystems. This is the first report of Alternaria eichhorniae, Cladosporium tenuissimum, Corynespora cassiicola, Colletotrichum alatae, Diaporthe fraxini-angustifoliae, Lasiodiplodia gonubiensis, Neofusicoccum algeriense, Neofusicoccum andinum, Neopestalotiopsis foedans, Phyllosticta capitalensis, and Strelitziana africana as endophytes of avocado. Evaluation using pathogenicity tests on avocado leaves and terminal branches showed that endophytic fungal isolates did not cause disease symptoms.  相似文献   

5.
Endophytic bacteria reside within plant hosts without causing disease symptoms. In this study, 853 endophytic strains were isolated from aerial tissues of four agronomic crop species and 27 prairie plant species. We determined several phenotypic properties and found approximately equal numbers of gram-negative and gram-positive isolates. In a greenhouse study, 28 of 86 prairie plant endophytes were found to colonize their original hosts at 42 days postinoculation at levels of 3.5 to 7.7 log10 CFU/g (fresh weight). More comprehensive colonization studies were conducted with 373 corn and sorghum endophytes. In growth room studies, none of the isolates displayed pathogenicity, and 69 of the strains were recovered from corn or sorghum seedlings at levels of 8.3 log10 CFU/plant or higher. Host range greenhouse studies demonstrated that 26 of 29 endophytes were recoverable from at least one host other than corn and sorghum at levels of up to 5.8 log10 CFU/g (fresh weight). Long-range dent corn greenhouse studies and field trials with 17 wild-type strains and 14 antibiotic-resistant mutants demonstrated bacterial persistence at significant average colonization levels ranging between 3.4 and 6.1 log10 CFU/g (fresh weight) up to 78 days postinoculation. Three prairie and three agronomic endophytes exhibiting the most promising levels of colonization and an ability to persist were identified as Cellulomonas, Clavibacter, Curtobacterium, and Microbacterium isolates by 16S rRNA gene sequence, fatty acid, and carbon source utilization analyses. This study defines for the first time the endophytic nature of Microbacterium testaceum. These microorganisms may be useful for biocontrol and other applications.  相似文献   

6.
红树林内生真菌研究进展   总被引:8,自引:0,他引:8  
红树林作为一种特殊的植物群落具有丰富的内生真菌资源,目前已分离鉴定的红树林真菌超过200种,成为海洋真菌的第二大类群,已报道的红树林内生真菌主要类群是链格孢霉(Alternaria)、曲霉(Aspergillus)、芽枝霉(Cladosporium)、炭疽菌(Colletotrichum)、镰孢霉(Fusarium)、拟青霉(Paecilomyces)、拟盘多毛孢(Pestalotiopsis)、青霉(Penicillium)、茎点霉(Phoma)、拟茎点霉(Phomopsis)、叶点霉(Phyllosticta)和木霉(Trichoderma)等.大部分红树林内生真菌具有较宽的宿主范围,极少数只有单一的宿主,不同红树林植物的内生真菌区系及优势种群有很大差异.红树林内生真菌的定殖因宿主植物不同部位、植株的年龄及季节和环境的变化明显不同.红树林内生真菌能产生多种代谢产物,具有抗菌、抗肿瘤等药用价值.红树林植物内生真菌的研究和开发具有重要意义.本文综述了红树林内生真菌的生物多样性及其分布、生物学功能和次生代谢产物等方面的研究进展.  相似文献   

7.
As the first report of monographic studies of the genus Phyllosticta in Japan, four new species, Phyllosticta disanthi on Disanthus cercidifolius, P. hoveniicola on Hovenia dulcis, P. ligustricola on Ligustrum obtusifolium, and Phyllosticta alliacea on Allium fistulosum, are described and illustrated. A new teleomorphic state of P. alliorum, Guignardia alliacea, is confirmed.  相似文献   

8.
Although the genus concept of Phyllosticta s. str. (teleomorph: Guignardia) as defined by van der Aa is widely accepted, the species concept is still controversial because it is often based on the morphology on host plants. In this study, the culture characteristics within Phyllosticta s.str. were examined, and the phylogenetic relationships among Japanese species of Phyllosticta s.str. and its teleomorph Guignardia were analyzed using 18S rDNA sequences. Phyllosticta s. str. formed a monophyletic clade. ITS-28S rDNA sequences extracted from fungal cultures derived from various host plants were divided into two subgroups. The first group included cultures from a wide range of host plants and were mainly derived as endophytes from a symptom-less plant. In the second group, cultures from each host plant genus formed distinct clades; these were often isolated as leaf pathogens from diverse plants. Isolates belonging to the first lineage generally grew faster on oatmeal agar. To classify species of Phyllosticta it is necessary to consider an integrated approach such as molecular phylogeny, host plant, colony growth, symptoms, and morphological characteristics of the conidiomata.  相似文献   

9.
In this paper, four fungi collected in Nansei Islands are reported. One is Strasseria garciniae, which must be transferred to the genus Phyllosticta. This fungus was collected in Okinawa Main Island and Iriomote Island. The other three fungi are newly added to the Japanese fungal flora. Phyllosticta ghaesembillae on Codiaeum variegatum and Cercospora asplenii on Asplenium antiquum were collected in Yoron Island. The last one, Coniella australiensis on Eucalyptus robusta was collected in Okinawa Main Island. Their morphology and symptoms on the host plant are described, with some mycological notes.  相似文献   

10.
One new dioxolanone derivative, guignardianone G ( 1 ) and twelve known compounds ( 2 – 13 ) were isolated from the 95 % ethanol extract of the plant endophytic fungus Phyllosticta capitalensis cultured in rice medium. Among these known compounds, isoaltenuene ( 3 ), brassicasterol ( 7 ), 5,6-epoxyergosterol ( 8 ), citreoanthrasteroid A ( 9 ), demethylincisterol A ( 10 ), and chaxine C ( 11 ) were reported from Phyllosticta sp. for the first time. The structure of 1 was elucidated by 1D- and 2D-NMR experiments and HR-ESI-MS data analysis, and its absolute configuration was established through the comprehensive use of the methods of modified Mosher methods, calculations of ECD spectra and optical rotation values. The neuroprotective activity of compounds ( 1 – 9 , 11 – 13 ) were evaluated on PC12 cells damage induced by glutamate, and compounds 9 and 12 showed potential neuroprotective activities with half effective concentration (EC50) of 24.2 and 33.9 μM, respectively.  相似文献   

11.
The association of endophytic bacteria with their plant hosts has a beneficial effect for many different plant species. Our goal is to identify endophytic bacteria that improve the biomass production and the carbon sequestration potential of poplar trees (Populus spp.) when grown in marginal soil and to gain an insight in the mechanisms underlying plant growth promotion. Members of the Gammaproteobacteria dominated a collection of 78 bacterial endophytes isolated from poplar and willow trees. As representatives for the dominant genera of endophytic gammaproteobacteria, we selected Enterobacter sp. strain 638, Stenotrophomonas maltophilia R551-3, Pseudomonas putida W619, and Serratia proteamaculans 568 for genome sequencing and analysis of their plant growth-promoting effects, including root development. Derivatives of these endophytes, labeled with gfp, were also used to study the colonization of their poplar hosts. In greenhouse studies, poplar cuttings (Populus deltoides × Populus nigra DN-34) inoculated with Enterobacter sp. strain 638 repeatedly showed the highest increase in biomass production compared to cuttings of noninoculated control plants. Sequence data combined with the analysis of their metabolic properties resulted in the identification of many putative mechanisms, including carbon source utilization, that help these endophytes to thrive within a plant environment and to potentially affect the growth and development of their plant hosts. Understanding the interactions between endophytic bacteria and their host plants should ultimately result in the design of strategies for improved poplar biomass production on marginal soils as a feedstock for biofuels.Endophytic bacteria are bacteria that reside within the living tissue of their host plants without substantively harming it (19, 26). They are ubiquitous in most plant species, latently residing or actively colonizing the tissues. The diversity of cultivable bacterial endophytes is exhibited not only in the variety of plant species colonized but also in the many taxa involved, with most being members of common soil bacterial genera such as Enterobacter, Pseudomonas, Burkholderia, Bacillus, and Azospirillum (21, 23). Endophytic bacteria have several mechanisms by which they can promote plant growth and health. These mechanisms are of prime importance for the use of plants as feedstocks for biofuels and for carbon sequestration through biomass production. This is vital when considering the aim of improving biomass production of marginal soils, thus avoiding competition for agricultural resources, which is one of the critical socioeconomic issues of the increased use of biofuels.Like rhizosphere bacteria, endophytic bacteria have been shown to have plant growth-promoting activity that can be due to the production of phytohormones, enzymes involved in growth regulator metabolism, such as ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, auxins, indole-3-acetic acid (IAA), acetoin, 2,3-butanediol, cytokinins (3, 13-15, 20, 30), or combinations thereof. They can also improve plant growth via the fixation of nitrogen (diazotrophy) (9, 38).Typical examples of marginal soils include soils that have deteriorated due to the presence of heavy metals or organic contaminants. These are often soils with a history of industrial, military, or mining activities. Endophytic bacteria can assist their host plants in overcoming phytotoxic effects caused by environmental contamination (5, 11, 12, 36), which is of direct relevance for waste management and pollution control via phytoremediation technologies. When nonsterile poplar cuttings (Populus trichocarpa × deltoides cv. Hoogvorst) were inoculated with the endophyte Burkholderia cepacia VM1468, a derivative of B. cepacia Bu72 which possesses the pTOM-Bu61 plasmid coding for a constitutively expressed toluene degradation pathway, it was observed that in addition to decreasing the phytotoxicity and releasing toluene, strain VM1468 also considerably improved the growth of poplar trees in the absence of toluene (36). This observation, which was the first of its kind for poplar trees, prompted us to further study the poplar tree-associated beneficial endophytic bacteria in order to improve the overall performance of poplar trees, as it can enhance multiple applications, including biomass production, carbon sequestration, and phytoremediation. This was done by screening endophytic bacteria for their plant growth-promoting capabilities toward poplar trees by performing colonization studies with gfp-labeled strains, by examining their metabolic properties, and by initiating the genome sequencing of several strains.  相似文献   

12.
Tea white scab disease commonly occurs in high-altitude tea-growing areas worldwide. Both Elsinoe leucospila and Phyllosticta theaefolia have been reported as the pathogen responsible for this disease. To conclusively identify the causative agent, samples were collected from plants infected with tea white scab disease in high-altitude tea gardens in southern China. Fungal isolates obtained from the infected material were identified based on morphological characteristics, comparisons of ITS, 18S rDNA, RPB2 and LSU sequences, and pathogenicity tests. Both Elsinoe sp. and Phyllosticta sp. were isolated from the collected samples with rates of 6% and 35%, respectively. On potato dextrose agar medium, Phyllosticta sp. grew faster and sporulated more than E. leucospila. However, only E. leucospila caused symptoms similar to those of tea white scab disease. In contrast, Phyllosticta sp. infections resulted in large necrotic spots. Therefore, E. leucospila appears to be the pathogen responsible for tea white scab disease, whereas Phyllosticta sp. is a hyperparasitic fungus that infects the diseased plant tissue. The high isolation rate of Phyllosticta sp. due to its rapid growth and considerable sporulation may have led to the erroneous identification of this fungus as the cause of tea white scab disease. Our findings may be useful for future investigations of this disease, particularly regarding the development of improved prevention and/or control measures.  相似文献   

13.
从蔓草虫豆(Atylosia scarabaeoides)、余甘子(Phyllanthus emblica)和黄花稔(Sida acuta)等5种云南元江干热河谷植物的525个组织块中,共分离得到内生真菌371株,内生真菌的分离频率在0.61~0.92之间,且所有植物叶内生真菌的分离频率都明显高于茎(P<0.05)。经形态学鉴定,内生真菌分属于拟茎点霉属(Phomopsis sp.)、离蠕孢属(Bipolaris sp.)和交链孢属(Alternaria sp.)等32个分类单元。拟茎点霉属为干热河谷植物优势内生真菌属,从所有被调查植物的茎叶中都分离得到该属真菌,且相对分离频率高达12.90%~50.54%。内生真菌群落组成的多样性和相似性分析结果表明,云南元江干热河谷植物内生真菌多样性偏低、宿主专一性较小。  相似文献   

14.
Among the most important rhizosphere bacteria are the pseudomonads, which are aggressive colonizers and utilize a wide range of substrates as carbon sources. The objective of this study was to determine if the taxonomic or metabolic diversity of pseudomonads differed among field-grown canola cultivars. Bacteria (n=2257) were isolated from the rhizosphere and root interior of six cultivars of field-grown canola, including three transgenic varieties. The bacteria were identified by fatty acid methyl ester (FAME) analysis, and about 35% were identified as Pseudomonas species. The most abundant species were Pseudomonas putida and Pseudomonas chlororaphis. Dendrograms based on FAME analysis revealed that many pseudomonad strains were found in all of the canola cultivars. Pseudomonads of the same strain were found in both the rhizosphere and the root interior of canola plants, suggesting that endophytic bacteria were a subset of the rhizosphere community. Because metabolic profiling provides more useful information than taxonomy, P. putida and P. chlororaphis isolates were characterized for their ability to utilize carbon substrates and produce several enzymes. Bacteria isolated from different plant cultivars had different carbon utilization profiles, but when only carbon substrates found in root exudates were analyzed, the cultivar effect was less pronounced. These characterizations also demonstrated that bacteria that were determined by FAME to be the same strain were metabolically different, suggesting functional redundancy among Pseudomonas isolates. The results of this study suggest that pseudomonads were functionally diverse. They differed in their metabolic potential among the canola cultivars from which they were isolated. Because bacteria capable of using many substrates can effectively adapt to new environments, these results have implications for the use of pseudomonads as biofertilizers, biological control agents and plant growth-promoting bacteria in canola.  相似文献   

15.
Pine wilt disease (PWD) caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus, is one of the most devastating diseases of Pinus spp. The PWN was therefore listed as one of the most dangerous forest pests in China meriting quarantine. Virulence of the PWN is closely linked with the spread of PWD. However, main factors responsible for the virulence of PWNs are still unclear. Recently epiphytic bacteria carried by PWNs have drawn much attention. But little is known about the relationship between endophytic bacteria and virulence of B. xylophilus. In this research, virulence of ten strains of B. xylophilus from different geographical areas in six provinces of China and four pine species were tested with 2-year-old seedlings of Pinus thunbergii. Endophytic bacteria were isolated from PWNs with different virulence to investigate the relationship between the bacteria and PWN virulence. Meanwhile, the carbon metabolism of endophytic bacteria from highly and low virulent B. xylophilus was analyzed using Biolog plates (ECO). The results indicated that ten strains of PWNs showed a wide range of virulence. Simultaneously, endophytic bacteria were isolated from 90% of the B. xylophilus strains. The dominant endophytic bacteria in the nematodes were identified as species of Stenotrophomonas, Achromobacter, Ewingella, Leifsonia, Rhizobium, and Pseudomonas using molecular and biochemical methods. Moreover, S. maltophilia, and A. xylosoxidans subsp. xylosoxidans were the predominant strains. Most of the strains (80%) from P. massoniana contained either S. maltophilia, A. xylosoxidans, or both species. There was a difference between the abilities of the endophytic bacteria to utilize carbon sources. Endophytic bacteria from highly virulent B. xylophilus had a relatively high utilization rate of carbohydrate and carboxylic acids, while bacteria from low virulent B. xylophilus made better use of amino acids. In conclusion, endophytic bacteria widely exist in B. xylophilus from different pines and areas; and B. xylophilus strains with different virulence possessed various endophytic bacteria and diverse carbon metabolism which suggested that the endophytic bacteria species and carbon metabolism might be related with the B. xylophilus virulence.  相似文献   

16.
Aspergilli are filamentous, cosmopolitan and ubiquitous fungi which have significant impact on human, animal and plant welfare worldwide. Due to their extraordinary metabolic diversity, Aspergillus species are used in biotechnology for the production of a vast array of biomolecules. However, little is known about Aspergillus species that are able to adapt an endophytic lifestyle in Cupressaceae plant family and are capable of producing cytotoxic, antifungal and antibacterial metabolites. In this work, we report a possible ecological niche for pathogenic fungi such as Aspergillus fumigatus and Aspergillus flavus. Indeed, our findings indicate that A. fumigatus, A. flavus, Aspergillus niger var. niger and A. niger var. awamori adapt an endophytic lifestyle inside the Cupressaceous plants including Cupressus arizonica, Cupressus sempervirens var. fastigiata, Cupressus semipervirens var. cereiformis, and Thuja orientalis. In addition, we found that extracts of endophytic Aspergilli showed significant growth inhibition and cytotoxicity against the model fungus Pyricularia oryzae and bacteria such as Bacillus sp., Erwinia amylovora and Pseudomonas syringae. These endophytic Aspergilli also showed in vitro antifungal effects on the cypress fungal phytopathogens including Diplodia seriata, Phaeobotryon cupressi and Spencermartinsia viticola. In conclusion, our findings clearly support the endophytic association of Aspergilli with Cupressaceae plants and their possible role in protection of host plants against biotic stresses. Observed bioactivities of such endophytic Aspergilli may represent a significant potential for bioindustry and biocontrol applications.  相似文献   

17.
云南会泽铅锌矿废弃矿渣堆常见植物内生真菌多样性   总被引:2,自引:0,他引:2  
李东伟  徐红梅  梅涛  李海燕 《生态学报》2012,32(7):2288-2293
从云南会泽铅锌矿废弃矿渣堆上的常见植物硬毛南芥(Arabis hirsuta)、毛萼香茶菜(Rabbosia eriocalyx)和倒挂刺(Rosa longicuspis)等6种植物的690个组织块中共分离得到内生真菌495株,内生真菌的分离频率在0.42—0.93之间,平均为0.72,所有植物茎内生真菌的分离频率都明显高于叶(P<0.05)。经形态学鉴定,内生真菌分属于茎点霉属(Phoma)、交链孢属(Alternaria)和派伦霉属(Peyronellaea)等20个分类单元,其中茎点霉属和派伦霉属为该废弃矿渣堆上常见植物的优势内生真菌属。6种植物内生真菌的多样性指数在1.05—2.29之间,与其它非重金属污染环境植物内生真菌的多样性指数相似,说明在重金属污染地区仍然存在多种重金属耐受的内生真菌种类。6种植物内生真菌的相似性系数(0.455—0.833)表明,会泽铅锌矿区植物内生真菌的宿主专一性较小。  相似文献   

18.
Plant-associated actinobacteria are rich sources of bioactive compounds including indole-derived molecules such as phytohormone indole-3-acetic acid (IAA). In view of few investigations concerning the biosynthesis of IAA by endophytic actinobacteria, this study evaluated the potential of IAA production in endophytic streptomycete isolates sourced from medicinal plant species Taxus chinensis and Artemisia annua. By HPLC analysis of IAA combined with molecular screening approach of iaaM, a genetic determinant of streptomycete IAA synthesis via indole-3-acetamide (IAM), our data showed the putative operation of IAM-mediated IAA biosynthesis in Streptomyces sp. En-1 endophytic to Taxus chinensis. Furthermore, using the co-cultivation system of model plant Arabidopsis thaliana and streptomycete, En-1 was found to be colonized intercellularly in the tissues of Arabidopsis, an alternative host, and the effects of endophytic En-1 inoculation on the model plant were also assayed. The phytostimulatory effects of En-1 inoculation suggest that IAA-producing Streptomyces sp. En-1 of endophytic origin could be a promising candidate for utilization in growth improvement of plants of economic and agricultural value.  相似文献   

19.
The endophytic lifestyle of Klebsiella pneumoniae is described, including the production of dinitrogenase reductase by bacteria residing in maize root tissue. The green fluorescent protein (GFP) was used to detect the colonization of maize by K. pneumoniae strains 2028 and 342. These strains were found to reside in intercortical layers of the stem and within the region of maturation in the root. The production of dinitrogenase reductase by GFP-tagged bacteria was visualized using immunolocalization. This activity was only apparent when bacteria were supplied with an exogenous carbon source. The results suggest that maize provides a suitable habitat for K. pneumoniae and that this species is capable of producing nitrogenase under the appropriate plant cultivation conditions.  相似文献   

20.

Background  

Many fungi are obligate biotrophs of plants, growing in live plant tissues, gaining direct access to recently photosynthesized carbon. Photosynthate within plants is transported from source to sink tissues as sucrose, which is hydrolyzed by plant glycosyl hydrolase family 32 enzymes (GH32) into its constituent monosaccharides to meet plant cellular demands. A number of plant pathogenic fungi also use GH32 enzymes to access plant-derived sucrose, but less is known about the sucrose utilization ability of mutualistic and commensal plant biotrophic fungi, such as mycorrhizal and endophytic fungi. The aim of this study was to explore the distribution and abundance of GH32 genes in fungi to understand how sucrose utilization is structured within and among major ecological guilds and evolutionary lineages. Using bioinformatic and PCR-based analyses, we tested for GH32 gene presence in all available fungal genomes and an additional 149 species representing a broad phylogenetic and ecological range of biotrophic fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号