首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 751 毫秒
1.
Rubber seed oil (RO) that is rich in polyunsaturated fatty acids (FA) can improve milk production and milk FA profiles of dairy cows; however, the responses of digestion and ruminal fermentation to RO supplementation in vivo are still unknown. This experiment was conducted to investigate the effect of RO and flaxseed oil (FO) supplementation on nutrients digestibility, rumen fermentation parameters and rumen FA profile of dairy cows. Forty-eight mid-lactation Holstein dairy cows were randomly assigned to one of four treatments for 8 weeks, including basal diet (CON) or the basal dietary supplemented with 4% RO, 4% FO or 2% RO plus 2% FO on a DM basis. Compared with CON, dietary oil supplementation improved the total tract apparent digestibility of DM, neutral detergent fibre and ether extracts ( P < 0.05). Oil treatment groups had no effects on ruminal digesta pH value, ammonia N and microbial crude protein ( P > 0.05), whereas oil groups significantly changed the volatile fatty acid (VFA) profile by increasing the proportion of propionate whilst decreasing total VFA concentration, the proportion of acetate and the ratio of acetate to propionate ( P < 0.05). However, there were no differences in VFA proportions between the three oil groups (P > 0.05). In addition, dietary oil supplementation increased the total unsaturated FA proportion in the rumen by enhancing the proportion of trans-11 C18:1 vaccenic acid (VA), cis-9, trans-11 conjugated linoleic acid (CLA) and α-linolenic acid (ALA) ( P < 0.05). These results indicate that dietary supplementation with RO and FO could improve nutrients digestibility, ruminal fermentation and ruminal FA profile by enhancing the VA, cis-9, trans-11 CLA and ALA composition of lactating dairy cows. These findings provide a theoretical basis for the application of RO in livestock production.  相似文献   

2.
Although rumen fluid transplantation (RT) has been developed to confer benefits for adult ruminants by altering gastrointestinal tract microbiota, the question remains whether RT can also benefit weaned lambs. Hence, in this study, thirty-eight pre-weaning lambs were randomly assigned to one of three treatment groups: control lambs (CON) received 25 ml of normal saline solution, and lambs in two RT groups received 25 ml of rumen fluid either from 3-month-old lambs (LT) or from one-year-old adult ewes (AT). The effects on their growth performance, nutrient digestibility, some blood parameters and gastrointestinal tract microbiota were monitored. There were differences (P < 0.05) in rumen bacterial composition between the groups at weaning, at 3 months and at 1 year. Rumen fluid transplantation decreased (P < 0.05) average daily feed intake, average daily gain in live weight and apparent digestibility of ether extract in the LT group, and it decreased (P < 0.05) apparent digestibility of NDF and ADF in the AT group. Rumen fluid transplantation also increased (P < 0.05) concentrations of serum immunoglobulin A in the AT group and increased (P < 0.05) serum concentrations of interleukin-6, interferon alpha and D-lactate in both LT and AT groups. Bacterial α-diversity in the rumen and rectum was not affected by RT (P > 0.05), but a bacterial community change was observed after RT, and the abundance of some dominant bacteria in both rumen and rectum changed after RT (P < 0.05). Analysis of correlations between the parameters indicated that the altered gastrointestinal microbiota and accelerated maturity of rumen microorganisms induced by RT caused some impairment of gastrointestinal integrity and immunity, which led to decreased feed intake, reduced feed digestibility and lower growth performance of the weaned lambs. In conclusion, rumen fluid transplantation altered the gastrointestinal microbiota causing adverse effects on feed intake, feed digestibility and growth performance of the weaned lambs.  相似文献   

3.
We hypothesised that adding a combination of fibrolytic and amylolytic enzymes to the diet of early-lactation dairy cows would improve rumen enzyme activity and bacterial diversity, promote energy metabolism, and benefit milk production in cows. Twenty multiparous early-lactation (90 ± 5 d) Holstein cows with similar body conditions were randomly allocated to control (CON, n = 10) and experimental (EXP, n = 10) groups in a completely randomised single-factor design. The CON was fed only a basal total mixed ration diet, and the diet of the EXP was supplemented with a combination of fibrolytic and amylolytic enzymes at 70 g/cow/d (cellulase 3 500 CU/g, xylanase 2 000 XU/g, β-glucanase 17 500 GU/g, and amylase 37 000 AU/g). The experiment lasted 28 days, with 21 days for adaptation and 7 days for sampling. Enzyme addition increased the activity levels of α-amylase and xylanase, and the ammonia-N concentration (P < 0.05) tended to increase the activity of β-glucanase (P = 0.08) in rumen fluid. However, there was no significant difference in the rumen bacterial richness and diversity, phylum (richness > 0.1%) or genus (richness > 1%) composition between the CON and EXP groups (P > 0.05). A tendency of difference was found between CON and EXP (R = 0.22, P = 0.098) in principal component analysis. Ten genera showed different abundances across the CON and EXP groups (linear discriminant analysis effect size, linear discriminant analysis > 2). EXP increased the ratio of albumin to globulin and the concentrations of total cholesterol and low-density lipoprotein cholesterol (P < 0.05) and tended to increase triglycerides (P = 0.09) in blood. Milk yield, 3.5% fat-corrected milk yield and energy-corrected milk yield increased with enzyme supplementation (P < 0.05). The production levels of milk fat and lactose increased, but the percentage of solids, not fat and protein, decreased in EXP (P < 0.05). Although the DM intake was not affected, the feed efficiency tended to increase (P = 0.07) in EXP. In conclusion, dietary supplementation with a mixture of fibrolytic and amylolytic enzymes on multiparous early-lactation dairy cows increased α-amylase and xylanase activity levels in rumen fluid, enhanced milk performance and tended to improve the feed efficiency in cows.  相似文献   

4.
Chitosan (CHI) is a natural biopolymer with antimicrobial, anti-inflammatory, antioxidant and digestive modulatory effects, which can be used in the ruminant diet to replace antibiotics. The aim of this study was to evaluate the effects of CHI on lamb growth traits, nutrients digestibility, muscle and fatty deposition, meat fatty acid (FA) profile, meat quality traits and serum metabolome. Thirty 30-month-old male lambs, half Suffolk and half Dorper, with an average BW of 21.65 ± 0.86 kg, were fed in a feedlot system for a total of 70 days. The lambs were separated into two groups according to the diet: the control (CON) group which received the basal diet and the CHI group which received the basal diet with the addition of CHI as 2 g/kg of DM in the diet. Lambs supplemented with CHI had a greater (P< 0.05) final BW, DM intake, final body metabolic weight (P< 0.05) and lower residual feed intake than the CON group. Animals fed CHI had a greater (P< 0.05) starch digestibility at 14 and 28 days, average daily gain at 14, 42 and 56 days, greater feed efficiency at 28 days and feed conversation at 14 and 42 days in feedlot. Most of the carcass traits were not affected (P> 0.05) by the treatment; however, the CHI supplementation improved (P< 0.05) dressing and longissimus muscle area. The treatments had no effect (P> 0.05) on the meat colour and other quality measurements. Meat from the CHI-fed lambs had a greater concentration (P< 0.05) of oleic-cis-9 acid, linoleic acid, linolenic-trans-6 acid, arachidonic acid and eicosapentaenoic acid. According to the variable importance in projection score, the most important metabolites to differentiate between the CON and the CHI group were hippurate, acetate, hypoxanthine, arginine, malonate, creatine, choline, myo-inositol, 2-oxoglutarate, alanine, glycerol, carnosine, histidine, glutamate and 3-hydroxyisobutyrate. Similarly, fold change (FC) analysis highlighted succinate (FC = 1.53), arginine (FC = 1.51), hippurate (FC = 0.68), myo-inositol (FC = 1.48), hypoxanthine (FC = 1.45), acetate (FC = 0.73) and malonate (FC = 1.35) as metabolites significantly different between groups. In conclusion, the present data showed that CHI changes the muscle metabolism improving muscle mass deposition, the lamb’s performance and carcass dressing. In addition, CHI led to an alteration in the FA metabolism, changes in the meat FA profile and improvements in meat quality.  相似文献   

5.
Ruminants can tolerate moderate concentrations of dietary tannin, making it feasible to replace corn with sorghum in ruminant diets; however, conditioning temperature of pelleted total mixed ration (PTMR) greatly affects nutrient digestibility. The objective was to determine effects of grain type and conditioning temperature during pelleting on growth performance, ruminal fermentation, meat quality and blood metabolites of fattening lambs. This was a 2 × 3 factorial study, with corn and sorghum and three conditioning temperatures (65, 75 and 85 °C) in a randomized complete design, with 36 lambs (120 ± 10.2 d and 24.9 ± 3.3 kg) grouped by weight and randomly allocated. The resulting six PTMRs were referred to as 65-S, 75-S and 85-S for sorghum-based diets, and 65-C, 75-C and 85-C for corn-based diets, for low, medium and high pelleting temperatures, respectively. There was no grain type × conditioning temperature (Grain × Temp) interaction on growth performance and apparent nutrient digestibility. Furthermore, grain type did not affect DM intake (DMI), average daily gain (ADG) or feed conversion ratio (FCR) of fattening lambs. Pelleting at 75 °C improved ADG (P < 0.03) and FCR (P < 0.02) of fattening lambs compared to other temperatures. There was a Grain × Temp interaction (P < 0.01) on ruminal pH (lowest in lambs fed 75-S). There tended (P = 0.07) to be a Grain × Temp interaction for total volatile fatty acid (VFA), and there were Grain × Temp interactions for molar proportions of acetate (P < 0.04), butyrate (P < 0.03) and branch-chained VFA (P < 0.01). Lambs fed sorghum-based PTMR had greater molar proportion of propionate (P < 0.03) and lower acetate to propionate ratio (A:P, P < 0.04). Lambs fed sorghum-based PTMR had higher plasma concentrations of urea nitrogen (N) (P < 0.03), glucose (P < 0.01) and alkaline phosphatase (P < 0.05), whereas other blood metabolites were not affected by treatments. There were Grain × Temp (P < 0.03) interactions for color coordinates of longissimus and mid-gluteal muscle. Lambs fed sorghum-based PTMR had lower (P < 0.01) dressing percentage and meat quality than those fed corn-based PTMR. We concluded that sorghum can replace corn in lamb diets without compromising growth performance and feed efficiency; furthermore, feeding sorghum vs corn improved rumen fermentation, with reduced A:P ratio and enhanced N and glucose utilization. Finally, pelleting at 75 °C increased feeding value of either sorghum- or corn-based PTMR for fattening lambs.  相似文献   

6.
Isobutyrate supplements could improve rumen development by increasing ruminal fermentation products, especially butyrate, and then promote the growth performance of calves. The objective of this study was to evaluate the effects of isobutyrate supplementation on growth performance, rumen development, blood metabolites and hormone secretion in pre- and post-weaned dairy calves. In total, 56 Chinese Holstein male calves with 30 days of age and 72.9±1.43 kg of BW, blocked by days of age and BW, were assigned to four groups in a randomized block design. The treatments were as follows: control, low-isobutyrate, moderate-isobutyrate and high-isobutyrate with 0, 0.03, 0.06 and 0.09 g isobutyrate/kg BW per calf per day, respectively. Supplemental isobutyrate was hand-mixed into milk of pre-weaned calves and the concentrate portion of post-weaned calves. The study consisted of 10 days of an adaptation period and a 50-day sampling period. Calves were weaned at 60 days of age. Seven calves were chosen from each treatment at random and slaughtered at 45 and 90 days of age. BW, dry matter (DM) intake and stomach weight were measured, samples of ruminal tissues and blood were determined. For pre- and post-weaned calves, DM intake and average daily gain increased linearly (P<0.05), but feed conversion ratio decreased linearly (P<0.05) with increasing isobutyrate supplementation. Total stomach weight and the ratio of rumen weight to total stomach weight tended to increase (P=0.073) for pre-weaned calves and increased linearly (P=0.021) for post-weaned calves, whereas the ratio of abomasum weight to total stomach weight was not affected for pre-weaned calves and decreased linearly (P<0.05) for post-weaned calves with increasing isobutyrate supplementation. Both length and width of rumen papillae tended to increase linearly for pre-weaned calves, but increased linearly (P<0.05) for post-weaned calves with increasing isobutyrate supplementation. The relative expression of messenger RNA for growth hormone (GH) receptor and 3-hydroxy-3-methylglutaryl-CoA synthase 1 in rumen mucosa increased linearly (P<0.05) for pre- and post-weaned calves with increasing isobutyrate supplementation. Blood concentrations of glucose, acetoacetate, β-hydroxybutyrate, GH and IGF-1 increased linearly (P<0.05) for pre- and post-weaned calves, whereas blood concentration of insulin decreased linearly with increasing isobutyrate supplementation. The present results indicated that isobutyrate promoted growth of calves by improving rumen development and its ketogenesis in a dose-dependent manner.  相似文献   

7.
Rumen-protected betaine (RPB) can enhance betaine absorption in the small intestine of ruminants, while betaine can alter fat distribution and has the potential to affect the meat quality of livestock. Hence, we hypothesized that RPB might also affect the meat quality of lambs. Sixty male Hu sheep of similar weight (30.47 ± 2.04 kg) were selected and randomly subjected to five different treatments. The sheep were fed a control diet (control treatment, CTL); 1.1 g/day unprotected-betaine supplemented diet (UPB); or doses of 1.1 g/day (low RPB treatment; L-PB), 2.2 g/day (middle RPB treatment; M-PB) or 3.3 g/day (high RPB treatment; H-PB) RPB-supplemented diet for 70 days. Slaughter performance, meat quality, fatty acid and amino acid content in the longissimus dorsi (LD) muscle, shoulder muscle (SM) and gluteus muscle (GM) were measured. Compared with CTL, betaine (including UPB and RPB) supplementation increased the average daily weight gain (ADG) (P < 0.05) and average daily feed intake (P < 0.01) of lambs. Rumen-protected betaine increased ADG (P < 0.05) compared with UPB. With increasing RPB doses, the eye muscle area of the lambs linearly increased (P < 0.05). Compared with CTL, betaine supplementation decreased water loss (P < 0.05) in SM and increased pH24 in the SM (P < 0.05) and GM (P < 0.05). Compared with UPB, RPB decreased water loss in the GM (P < 0.01), decreased shear force (P < 0.05) in the LD and SM and increased the pH of the meat 24 h after slaughter (pH24). With increasing RPB doses, the shear force and b* value in the LD linearly decreased (P < 0.05), and the pH24 of the meat quadratically increased (P < 0.05). Compared with CTL, betaine supplementation increased the polyunsaturated fatty acid in the GM (P < 0.05). Compared with UPB, RPB supplementation decreased the saturated fatty acid (SFA) content in the LD (P < 0.05) and increased the unsaturated fatty acids (UFA), mono-unsaturated fatty acids and UFA/SFA ratio in the LD (P < 0.05). Compared with CTL, the content of histidine in the LD increased with betaine supplementation. Compared with UPB, RPB supplementation increased the content of total free amino acids and flavor amino acids in the LD of lambs (P < 0.05). With increasing RPB, the isoleucine and phenylalanine contents in the LD linearly increased (P < 0.05). Overall, the data collected indicated that the meat quality of lambs (especially in the LD) improved as a result of betaine supplementation, and RPB showed better effects than those of UPB.  相似文献   

8.
This study was carried out to evaluate intake, digestibility, ruminal fermentation, nitrogen (N) retention and ruminal microbial protein synthesis in lambs fed dwarf elephant grass (Pennisetum purpureum Schum. cv. Mott) hay or hay supplemented with urea and 0, 5, 10 or 15 g/kg of live weight (LW) of cracked corn grain. Ten lambs (mean LW of 28 ± 0.9 kg), housed in metabolic cages, were used in a double 5 × 5 Latin Square experiment. Except fibre intake and digestibility, which was higher, the intake and digestibility of the others feed components, as well as ruminal microbial protein synthesis and N retention were lower in non-supplemented lambs. Corn supplementation increased total dry matter (DM) (P<0.05), organic matter (OM), non-structural carbohydrate (NSC) and energy intake (P<0.01) but decreased total neutral detergent fibre (aNDFom) (P<0.01) intake, as well as OM and aNDFom intake from the hay (P<0.01). Apparent DM, OM and energy digestibility, as well as OM true digestibility (OMTD) increased (P<0.01), and aNDFom digestibility decreased linearly (P<0.01) as corn supplementation increased. Total N intake was not influenced but, apparent and true N digestibility, as well as urinary N excretion decreased (P<0.01), and ruminal microbial N entering the small intestine increased linearly (P<0.01) as corn supplementation increased. However, the efficiency of ruminal microbial protein synthesis was similar for all treatments. Mean ruminal pH values and ammonia N concentrations decreased linearly (P<0.01) with level of corn supplementation. Ammonia N and amino acid, as well as peptide concentrations in ruminal fluid were quadratically related (P<0.01) with the time after feeding. Corn supplementation had a linear additive effect on total dry matter and digestible energy intake, as well as on N retention, but a linear negative effect on hay intake and on fibre digestibility. However, decreased forage digestibility by animals was probably neither related to lower ruminal pH, which values were always higher than 7.0, nor related to ruminal sugar concentrations, which were similar for all treatments.  相似文献   

9.
Controlling rumen fermentation using buffering agents could contribute to enhancing ruminant productivity and performance. This study was realized to investigate the effect of dietary supplementation of AcidBuf, sodium bicarbonate, calseapowder and WMC seaweed (Utva Lactuca extra) on the animal performance, volatile fatty acids, rumen pH, rumen histology and carcass characteristics of growing male Awassi lambs. A total of 60 lambs was divided into five groups. One group served as a control and fed only on a concentrate diet without any buffering, whereas the other four groups were fed the concentrate diet supplemented with 0.4% AcidBuf (Buf1), 0.4% AcidBuf plus sodium bicarbonate, 50 : 50 (Buf2), 0.4% calseapowder (Buf3) or 0.4% WMC Seaweed (Buf4) for 98 days. The feed conversion ratio was (P<0.05) improved in Buf2 compared to the control and other treatment groups. The propionic acid decreased, whereas butyric acid was increased in the treatment groups (P<0.05) compared to the control. The pH of the rumen fluid and the length of submucosa were (P<0.05) higher in Buf4 and Buf1, respectively, compared to the control. Hot and cold carcass weights were (P<0.05) higher in Buf4 compared to Buf1. Lean meat percentage and rib eye area were (P<0.05) higher in Buf4; while the fat percentage was (P<0.05) lower in Buf2 and Buf4 groups compared to the control. The lightness and yellowness of meat were (P<0.05) higher in Buf1 and Buf4 compared to the control. The meat pH was (P<0.05) higher in Buf3 and Buf4 compared to Buf2 (at 1 h) and control (at 24 h). The visceral depot fat (%) was reduced with Buf3 and Buf4 compared to the control. The results indicated that dietary supplementation of different buffering agents improved feed efficiency, rumen pH, carcass characteristics and decreased the body fat in growing Awassi lambs.  相似文献   

10.
In tropical regions, protein supplementation is a common practice in dairy and beef farming. However, the effect of highly degradable protein in ruminal fermentation and microbial community composition has not yet been investigated in a systematic manner. In this work, we aimed to investigate the impact of casein supplementation on volatile fatty acids (VFA) production, specific activity of deamination (SAD), ammonia concentration and bacterial and archaeal community composition. The experimental design was a 4×4 Latin square balanced for residual effects, with four animals (average initial weight of 280±10 kg) and four experimental periods, each with duration of 29 days. The diet comprised Tifton 85 (Cynodon sp.) hay with an average CP content of 9.8%, on a dry matter basis. Animals received basal forage (control) or infusions of pure casein (230 g) administered direct into the rumen, abomasum or divided (50 : 50 ratio) in the rumen/abomasum. There was no differences (P>0.05) in ruminal pH and microbial protein concentration between supplemented v. non-supplemented animals. However, in steers receiving ruminal infusion of casein the SAD and ruminal ammonia concentration increased 33% and 76%, respectively, compared with the control. The total concentration of VFA increased (P<0.05) in steers receiving rumen infusion of casein. SAD and the microbial protein concentration did not vary significantly among treatments during the feeding cycle, but mean SAD values were greater in steers supplemented in the rumen and rumen/abomasum. Ruminal ammonia concentration was positively correlated with SAD in animals receiving ruminal infusion of casein. Polymerase chain reaction–denaturing gradient gel electrophoresis (PCR-DGGE) analysis revealed low similarity between treatments, animals and time of sample collection. Richness analysis and determination of the Shannon–Wiener index indicated no differences (P>0.05) in species richness and diversity of γ-proteobacteria, firmicutes and archaea between non-supplemented Nellore steers and steers receiving casein supplementation in the rumen. However, species richness and the Shannon–Wiener index were lower (P<0.05) for the phylum bacteroidetes in steers supplemented with casein in the rumen compared with non-supplemented animals. Venn diagrams indicated that the number of unique bands varied considerably among individual animals and was usually higher in number for non-supplemented steers compared with supplemented animals. These results add new knowledge about the effects of ruminal and postruminal protein supplementation on metabolic activities of rumen microbes and the composition of bacterial and archaeal communities in the rumen of steers.  相似文献   

11.
The growth retardation of yaks commonly exists on the Tibetan Plateau, and the gastrointestinal barrier function of growth-retarded yaks is disrupted. Glutamine (Gln) is an effective feed additive to improve the gastrointestinal barrier function of animals. This research evaluated the effects of Gln on growth performance, serum permeability parameters, gastrointestinal morphology and barrier function of growth-retarded yaks. Thirty-two male growth-retarded yaks (74.0 ± 6.16 kg of BW and 480 ± 5.50 days of age) were randomly allocated to 4 groups: the negative control (GRY, fed basal ration), Gln1 (fed basal ration and 60 g/d Gln per yak), Gln2 (120 g/d) and Gln3 (180 g/d). Another 8 male growth normal yaks (112 ± 6.11 kg of BW and 480 ± 5.00 days of age) with same breed were used as a positive control (GNY, fed basal ration). The results showed that GRY had lower growth performance and higher (P < 0.05) diamine oxidase, D-lactic acid and lipopolysaccharide concentrations in serum as compared to GNY. Glutamine improved the average daily gain (ADG) of growth-retarded yaks, and the Gln2 group displayed highest ADG. Glutamine supplementation reduced markers of gut permeability in growth-retarded yaks. The GRY and Gln2 groups were selected to study the gastrointestinal barrier function. Growth-retarded yaks fed Gln2 showed higher (P < 0.05) height and surface area of ruminal papillae as compared to GRY. A similar trend of height and surface area in jejunal villus was found between GRY and Gln2 groups. The Gln2 increased (P < 0.05) the concentrations of secretory immunoglobulin A in jejunum and ileum of growth-retarded yaks. The rumen and jejunum of Gln2 yaks exhibited lower (P < 0.05) interleukin-1β and higher (P < 0.05) interleukin-10 mRNA expressions. Growth-retarded yaks fed Gln2 increased (P < 0.05) the expressions of claudin-1, occludin and zonula occludens-1 in the rumen and jejunum. In conclusion, dietary supplementation with Gln could improve the gastrointestinal barrier function and promote the compensatory growth of growth-retarded yaks.  相似文献   

12.
Currently, consumers are increasingly interested in obtaining high-quality and healthy lamb meat. Compared to grain-based diets, dietary forage legumes such as alfalfa and condensed tannin (CT)-rich sainfoin increase the levels of polyunsaturated fatty acids (PUFAs) that are beneficial for health in lamb meat thanks to their high content in PUFA and/or their impact on ruminal biohydrogenation. However, they can therefore adversely affect its oxidative stability. Thus, the impact of dietary forage legumes on lamb longissimus thoracis (LT) muscle FA composition and their stability to peroxidation was studied in 36 Romane lambs grazing alfalfa (AF; n = 12) or alfalfa plus daily supplementation with CT-rich sainfoin pellets (AS; n = 12; 15 g DM/kg BW, 42 g CT/kg DM) or stall-fed concentrate and grass hay indoors (SI; n = 12). Lambs were slaughtered at a mean age of 162 ± 8.0 days after an average experimental period of 101 ± 8.1 days. Forage legumes-grazing lambs outperformed SI lambs in LT nutritional quality, with more conjugated linoleic acids and n-3 PUFAs, especially 18:3n-3, eicosapentaenoic and docosahexaenoic acids (P < 0.001), and thus lower n-6 PUFA/n-3 PUFA and 18:2 n-6/18:3 n-3 ratios (P < 0.001). Peroxidizability index was higher (P < 0.001) in LT muscle of forage legumes-grazing lambs. Concurrently, two endogenous antioxidant enzyme activities, superoxide dismutase and glutathione peroxidase, were, respectively, similar and lower (P < 0.001) for forage legumes-grazing compared with SI lambs. A lower vitamin E level in SI lambs compared with forage legumes-grazing lambs (1.0 v. 3.8 mg/g, P < 0.001) could explain that malondialdehyde content, a marker of lipid oxidation intensity, was 0.63 µg/g in SI after 8 days in aerobic packaging conditions, whereas it remaining steady at 0.16 µg/g in forage legumes-grazing lambs. Dietary forage alfalfa thus improved FA composition of lamb LT muscle and their stability to oxidation when compared to SI lambs. However, supplementation of alfalfa-grazing lambs with CT-rich sainfoin pellets did not affect the nutritional quality of LT muscle FAs.  相似文献   

13.
Slow-release urea (SRU) can substitute dietary protein sources in the diet of feedlotting ruminant species. However, different SRU structures show varying results of productive performance. This study was conducted to investigate the effect of different sources of nitrogen on performance, blood parameter, ruminal fermentation and relative population of rumen microorganisms in male Mehraban lambs. Thirty-five male lambs with an average initial BW of 34.7 ± 1.8 kg were assigned randomly to five treatments. Diets consisted of concentrate mixture and mineral and vitamin supplements plus (1) alfalfa and soybean meal, (2) wheat straw and soybean meal, (3) wheat straw and urea, (4) wheat straw and Optigen® (a commercial SRU supplement) and (5) wheat straw and SRU produced in the laboratory. No statistical difference was observed in animal performance and DM intake among treatments. The mean value of ruminal pH and ammonia was higher (P < 0.05) for the SRU diet compared with WU diet. The difference in pH is likely to be due to the higher ammonia level as VFAs concentrations were unchanged. The level of blood urea nitrogen (BUN) was different among treatments (P = 0.065). The highest concentration of BUN was recorded in Optigen diet (183.1 mg/l), whereas the lowest value was recorded in wheat straw-soybean meal diet (147 mg/l). The amount of albumin and total protein was not affected by the treatments. The relative population of total protozoa, Fibrobacter succinogenes, Ruminococcus flavefaciens and Ruminococcus albus in the SRU treatment was higher (P < 0.01) than that in urea treatment at 3 h post-feeding. During the period of lack of high-quality forage and in order to reduce dietary costs, low-quality forage with urea sources can be used in the diet. Results of microbial populations revealed that SRU can be used as a nitrogen source which can sustainably provide nitrogen for rumen microorganism without negative effects on the performance of feedlotting lambs.  相似文献   

14.
Shifting ruminal fermentation via feeding a blend of oregano (Organum vulgare L.) essential oils and Co-lactate (EOC; Rum-A-Fresh, Ralco, Inc. Marshall, MN) could improve lamb growth and carcass performance. Eighteen Suffolk × Little Han Tail F1 male lambs (20.3 ± 0.23 kg BW and approximately 3 months old) were randomly assigned using a completely random design to one of three treatments. Treatments were (1) EOC0: basal ration without EOC, (2) EOC4: basal ration plus 4 g/d EOC, and (3) EOC7: basal ration plus 7 g/d EOC. Initial and 24 d BW was similar (P > 0.10), but at 48 and 72 d, lambs fed EOC7 demonstrated greater (P = 0.01) BW compared with EOC0 fed lambs, while lambs fed EOC4 were intermediate and similar (P > 0.05). Average daily gains (ADGs) for 0–24 and 0–72 d were greater (P < 0.05) for lambs fed EOC4 and EOC7 compared with lambs fed EOC0, while DM intake was similar (P > 0.10). Feed conversions for 0–24 d were improved (P < 0.02) for lambs fed EOC4 and EOC7 compared with lambs fed EOC0. However, 0–72-d feed conversions were greater (P < 0.01) for lambs fed EOC7 compared to lambs fed EOC0, with lambs fed EOC4 being intermediate and similar (P > 0.05). DM, NDF, and ADF digestibilities were similar (P > 0.10) among treatments, while CP digestibility was greater (P < 0.01) for lambs fed EOC4 and EOC7 compared with lambs fed EOC0. Carcass weight and dressing percentages were improved (P < 0.01) for lambs fed EOC7 compared with lambs fed EOC0 and EOC4. Head width was greater (P > 0.01) for lambs fed EOC7 compared with lambs fed EOC0 and EOC4, while rump width was greater (P > 0.01) for lambs fed EOC4 and EOC7 compared with lambs fed EOC0. Plasma triglyceride and cholesterol concentrations were lower (P < 0.05) for lambs fed EOC4 and EOC7 compared with lambs fed EOC0, while albumin, total serum protein, and glucose concentrations were greater (P < 0.05) for lambs fed EOC4 and EOC7 compared with lambs fed EOC0. Feeding an EOC blend as an alternative antibiotic growth promoter at 4 and 7 g/d linearly improved lamb growth performance, feed conversions, frame growth, carcass weights, dressing percentages, and immunity.  相似文献   

15.
Several nutritional strategies have been used in beef cattle production in order to increase animal performance and profitability. However, in the past two decades, the increase of consumer preference for functional foods has driven the investigation for improving food via adding functional substances to animal diets. We evaluated the effect of canola oil supplementation associated with vitamin E and selenium on performance, rumen metabolism, carcass traits, meat tenderness, and serum, liver, and meat status of antioxidants in finishing Nellore males. Animals were fed for 106 days in a feedlot and were randomly distributed in a 2 × 2 factorial arrangement: two levels of oil in the diet (no inclusion and 3% canola oil, defined as diet without oil inclusion (NO) and effect of oil (OIL), respectively) and two levels of antioxidants in the diet (no inclusion and 2.5 mg of Se/kg of DM + 500 UI of vitamin E/kg of DM, defined as diet without antioxidant inclusion (NA) and effect of the antioxidants (ANT), respectively). DM intake (kg/day) was evaluated daily; performance and serum were analysed at the beginning of the feedlot and every 28 days. Animals were slaughtered and hot carcass weight (kg) was recorded; ruminal fluid and liver samples were collected. At 24 h postmortem, carcass pH was recorded and the Longissimus thoracis was sampled. There was no significant effect of the OIL*ANT interaction (P > 0.05) for any trait evaluated. Bulls fed OIL presented greater final BW (P < 0.01), average daily gain (kg/day; P < 0.01), feed efficiency (P < 0.01), rump fat thickness (P8RF; P < 0.05), and greater tenderness; the ANT diet increased P8RF (P < 0.05). The levels of selenium and vitamin E in serum, liver, and meat were increased (P < 0.01) with the inclusion of ANT. ANT did not change triiodothyronine (T3, ng/mL) and thyroxine (T4, µg/gL) serum concentrations but decreased serum glucose levels. The treatments did not affect (P > 0.05) ruminal parameters or the protozoa population. Our results showed that the inclusion of 3% canola oil in the diet DM increased performance, feed efficiency, carcass fat deposition, and tenderness, with no effect on rumen fermentation and protozoa population of Nellore cattle in a feedlot system. The inclusion of ANT in the cattle diet did not affect performance or rumen parameters. However, the levels of ANT were increased in the serum, liver, and meat, enriching the final product with these compounds.  相似文献   

16.
Feed withdrawal (FW) is a frequent issue in open outdoor feedlot systems, where unexpected circumstances can limit the animals’ access to food. The relationship among fasting period, animal behaviour during feed reintroduction (FR) and acidosis occurrence has not been completely elucidated. Twenty steers fitted with rumen catheters were fed a high-concentrate diet (concentrate : forage ratio 85 : 15) and were challenged by a protocol of FW followed by FR. The animals were randomly assigned to one of the four treatments: FW for 12 h (T12), 24 h (T24), 36 h (T36) or no FW (control group) followed by FR. The steers’ behaviour, ruminal chemistry, structure of the ruminal microbial community, blood enzymes and metabolites and ruminal acidosis status were assessed. Animal behaviour was affected by the FW–FR challenge ( P < 0.05). Steers from the T12, T24 and T36 treatments showed a higher ingestion rate and a lower frequency of rumination. Although all animals were suspected to have sub-acute ruminal acidosis (SARA) prior to treatment, a severe case of transient SARA arose after FR in the T12, T24 and T36 groups. The ruminal pH remained below the threshold adopted for SARA diagnosis ( pH value = 5.6) for more than three consecutive hours (24, 7 and 19 h in the T12, T24 and T36 treatments, respectively). The FW–FR challenge did not induce clinical acute ruminal acidosis even though steers from the T36 treatment presented ruminal pH values that were consistent with this metabolic disorder (pH threshold for acute acidosis = 5.2). Total mixed ration reintroduction after the withdrawal period reactivated ruminal fermentation as reflected by changes in the fermentation end-products. Ruminal lactic acid accumulation in steers from the T24 and T36 treatments probably led to the reduction of pH in these groups. Both the FW and the FR phases may have altered the structure of the ruminal microbiota community. Whereas fibrolytic bacterial groups decreased relative abundance in the restricted animals, both lactic acid producer and utiliser bacterial groups increased ( P < 0.05). The results demonstrated a synchronisation between Streptococcus (lactate producer) and Megasphaera (lactate utiliser), as the relative abundance of both groups increased, suggesting that bacterial resilience may be central for preventing the onset of metabolic disturbances such as ruminal acidosis. A long-FW period (36 h) produced rumen pH reductions well below and lactic acid concentration increased well above the accepted thresholds for acute acidosis without any perceptible clinical signs.  相似文献   

17.
The physical form of starter feed may affect the gastrointestinal development and the performance of ruminant. However, little information is available on how changes in the physical forms of starter feed influence the performance of lambs, especially during the pre- and post-weaning periods. The aim of this study was to investigate the effects of different physical forms of starter feeds on growth performance, nutrient digestibility, gastrointestinal enzyme activity, and morphology of pre- and post-weaning lambs. Twenty-four 8-day-old male Hu lamb (5.04 ± 0.75 kg BW) were randomly assigned to one of two dietary treatments: 1) a pelleted starter (PS) feed and 2) a textured starter (TS) feed, which included coarse mashed steam-flaked corn. From eight to thirty-five days of age (pre-weaning), the lambs were bottle-fed milk replacer (MR) at 2% of BW measured on day 8. All lambs were weaned at day 35 when feeding of MR was stopped. Six lambs for each treatment were euthanized at 21 or 42 days of age for sampling. The following results are obtained by variance analysis: TS lambs had a greater (P < 0.05) final BW, higher apparent digestibility of starch and ether extract, activities of α-amylase pre- or post-weaning, and higher (P < 0.05) average dry matter intake and lipase post-weaning in small intestine contents and had a trend of significantly higher average daily gain post-weaning (P = 0.07). Rumen development analysis of TS lambs showed a significantly higher (P < 0.05) relative weight of rumen post-weaning, greater papillae length, increased circular and layered muscle, increased sectional area pre- and post-weaning, and increased rumen papillae width post-weaning. Textured starter treatment increased the villus height and villus width (except jejunum pre-weaning) of the whole small intestine and villus height to crypt depth ratio of jejunum and ileum during the whole period and tended to increase the relative weight of the rumen pre-weaning (P = 0.07). The results indicated that TS feeding is more beneficial to lambs over the weaning transition than PS in promoting gastrointestinal development, intestinal enzyme activities, nutrient digestibility, and growth performance. The findings provide new insights into the selection of physical forms of starter feeds in lamb production. Further research with more animals and female lambs is needed to obtain a more complete conclusion.  相似文献   

18.
The fatty acid composition of chicken’s meat is largely influenced by dietary lipids, which are often used as supplements to increase dietary caloric density. The underlying key metabolites and pathways influenced by dietary oils remain poorly known in chickens. The objective of this study was to explore the underlying metabolic mechanisms of how diets supplemented with mixed or a single oil with distinct fatty acid composition influence the fatty acid profile in breast muscle of Qingyuan chickens. Birds were fed a corn-soybean meal diet supplemented with either soybean oil (control, CON) or equal amounts of mixed edible oils (MEO; soybean oil : lard : fish oil : coconut oil = 1 : 1 : 0.5 : 0.5) from 1 to 120 days of age. Growth performance and fatty acid composition of muscle lipids were analysed. LC-MS was applied to investigate the effects of CON v. MEO diets on lipid-related metabolites in the muscle of chickens at day 120. Compared with the CON diet, chickens fed the MEO diet had a lower feed conversion ratio (P < 0.05), higher proportions of lauric acid (C12:0), myristic acid (C14:0), palmitoleic acid (C16:1n-7), oleic acid (C18:1n-9), EPA (C20:5n-3) and DHA (C22:6n-3), and a lower linoleic acid (C18:2n-6) content in breast muscle (P < 0.05). Muscle metabolome profiling showed that the most differentially abundant metabolites are phospholipids, including phosphatidylcholines (PC) and phosphatidylethanolamines (PE), which enriched the glycerophospholipid metabolism (P < 0.05). These key differentially abundant metabolites – PC (14:0/20:4), PC (18:1/14:1), PC (18:0/14:1), PC (18:0/18:4), PC (20:0/18:4), PE (22:0/P-16:0), PE (24:0/20:5), PE (22:2/P-18:1), PE (24:0/18:4) – were closely associated with the contents of C12:0, C14:0, DHA and C18:2n-6 in muscle lipids (P < 0.05). The content of glutathione metabolite was higher with MEO than CON diet (P < 0.05). Based on these results, it can be concluded that the diet supplemented with MEO reduced the feed conversion ratio, enriched the content of n-3 fatty acids and modified the related metabolites (including PC, PE and glutathione) in breast muscle of chickens.  相似文献   

19.
Grape seed (GS) is a by-product of the fruit juice and wine industry with the potential to be an alternative to synthetic antioxidants due to its antioxidant activity. Agro-industrial residues can be converted to more effective products by solid-state fermentation. The objective of the study was to investigate the effects of GS and fermented grape seed (FGS) on the growth performance, antioxidant capacity, and cecal microflora in broiler chickens. A total of 128 female broilers were randomly allocated into four treatment groups, each consisting of four replicates of eight birds. Throughout the 42-day feeding period, the birds were fed with soybean-corn based diet (CON), 0.15 g/kg synthetic antioxidant (butylated hydroxyanisole) supplemented diet (AO), 5 g/kg GS supplemented diet (GS), and 5 g/kg FGS supplemented diet (FGS). Dietary GS, FGS, and AO supplementation increased the BW (P < 0.05) and average daily weight gain (ADG, P < 0.05) compared with the CON group in the overall period of 42 days. Dietary FGS also increased the ADG (P < 0.05) in the period of 22–42 days compared with the control group. The pH of the breast meat of the chickens fed GS was higher (P < 0.01) than CON and FGS groups. Dietary FGS and AO decreased the b* value (P < 0.01) of breast meat compared with the CON group. Grape seed had the highest serum glutathione peroxidase (P < 0.05) and catalase (CAT, P < 0.01) levels among the treatment groups. The FGS also increased serum CAT level (P < 0.01) compared with the AO group. Moreover, dietary FGS supplementation increased Lactobacillus spp. (P < 0.05) in the cecum compared with the other treatment groups and decreased Staphylococcus aureus (P < 0.05) compared with the CON and AO groups. The present findings indicate that GS and FGS can be used in broiler diets as alternatives to synthetic antioxidants.  相似文献   

20.
Utilization of low-input feed resources rich in plant bioactive compounds is a promising strategy for modulating the fatty acid profile in ruminant products. They manipulate microbes involved in rumen biohydrogenation and increase the accumulation of desirable fatty acids at the tissue level. Therefore, the present study was undertaken to assess the effect of dietary supplementation of aniseed straw and eucalyptus leaves on growth performance, carcass traits and fatty acid profile of finisher lambs. Thirty-six Malpura hogget were divided into three treatment groups of 12 each, reared individually in pen (1.6 m × 1.1 m) and fed ad libitum complete feed blocks made up of 55 parts concentrate, 5 parts molasses and 40 parts roughage. Roughage in control (Con) was 20 parts each of ardu (Ailanthus excelsa) leaves and oat (Avena sativa) straw. In test diets, that is, Con-as and Con-el, 10% aniseed (Pimpinella anisum) straw and Eucalyptus rudis leaves, respectively, were added by replacing 5% each of oat straw and eucalyptus leaves. The lambs were weighed weekly; and at the end of 3 months of feeding trial, the lambs were slaughtered to study the carcass traits, composition and product evaluation. Average daily gain (ADG) and DM intake (DMI) was higher (P < 0.05) in Con-as compared to Con and Con-el, while ADG and feed conversion ratio decreased (P < 0.05) by 29.4% and 36.4%, respectively, in Con-el compared to Con. Carcass traits showed lower (P < 0.05) loin eye area and chilling loss in the Con-el group compared to the Con-as and Con, and the total carcass fat compared to Con-as. However, the keeping quality of meat improved in both Con-as and Con-el which was reflected by lower (P < 0.05) thiobarbituric acid-reactive substances values. Nuggets prepared from Con and Con-as meat had superior (P < 0.05) sensory attributes with an overall palatability. Fatty acid profile of longissimus thoracis muscle showed lower (P < 0.05) atherogenic and thrombogenic indices in Con-as and higher (P < 0.05) in Con-el group. Moreover, in Con-as group, the proportion of C16:0 was lower (P < 0.05) and C18:3n-3 was higher (P < 0.05), but no effect was observed on the amount of conjugated linoleic acid (CLA; C18:2 c9t11). In case of adipose tissue, the content of CLA was higher (P < 0.05), and the ratio of n-6:n-3 was more nearer to desirable levels in Con-as group. Therefore, it can be concluded that aniseed straw is a promising feed supplement compared to eucalyptus leaves for improving meat quality and fatty acid profile in lambs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号