首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
HOXD13, the homeobox-containing gene located at the most 5' end of the HOXD cluster, plays a critical role in limb development. It has been shown that mutations in human HOXD13 can give rise to limb malformations, with variable expressivity and a wide spectrum of clinical manifestations. Polyalanine expansions in HOXD13 cause synpolydactyly, whereas amino acid substitutions in the homeodomain are associated with brachydactyly types D and E. We describe two large Han Chinese families with different limb malformations, one with syndactyly type V and the other with limb features overlapping brachydactyly types A4, D, and E and mild syndactyly of toes 2 and 3. Two-point linkage analysis showed LOD scores >3 (theta =0) for markers within and/or flanking the HOXD13 locus in both families. In the family with syndactyly type V, we identified a missense mutation in the HOXD13 homeodomain, c.950A-->G (p.Q317R), which leads to substitution of the highly conserved glutamine that is important for DNA-binding specificity and affinity. In the family with complex brachydactyly and syndactyly, we detected a deletion of 21 bp in the imperfect GCN (where N denotes A, C, G, or T) triplet-containing exon 1 of HOXD13, which results in a polyalanine contraction of seven residues. Moreover, we found that the mutant HOXD13 with the p.Q317R substitution was unable to transactivate the human EPHA7 promoter. Molecular modeling data supported these experimental results. The calculated interactions energies were in agreement with the measured changes of the activity. Our data established the link between HOXD13 and two additional limb phenotypes--syndactyly type V and brachydactyly type A4--and demonstrated that a polyalanine contraction in HOXD13, most likely, led to other digital anomalies but not to synpolydactyly. We suggest the term "HOXD13 limb morphopathies" for the spectrum of limb disorders caused by HOXD13 mutations.  相似文献   

2.

Background

To investigate the dynamics of inter- and intratumoral molecular alterations during tumor progression in recurrent gliomas.

Methodology/Principal Findings

To address intertumoral heterogeneity we investigated non- microdissected tumor tissue of 106 gliomas representing 51 recurrent tumors. To address intratumoral heterogeneity a set of 16 gliomas representing 7 tumor pairs with at least one recurrence, and 4 single mixed gliomas were investigated by microdissection of distinct oligodendroglial and astrocytic tumor components. All tumors and tumor components were analyzed for allelic loss of 1p/19q (LOH 1p/19q), for TP53- mutations and for R132 mutations in the IDH1 gene. The investigation of non- microdissected tumor tissue revealed clonality in 75% (38/51). Aberrant molecular alterations upon recurrence were detected in 25% (13/51). 64% (9/14) of these were novel and associated with tumor progression. Loss of previously detected alterations was observed in 36% (5/14). One tumor pair (1/14; 7%) was significant for both. Intratumoral clonality was detected in 57% (4/7) of the microdissected tumor pairs and in 75% (3/4) of single microdissected tumors. 43% (3/7) of tumor pairs and one single tumor (25%) revealed intratumoral heterogeneity. While intratumoral heterogeneity affected both the TP53- mutational status and the LOH1p/19q status, all tumors with intratumoral heterogeneity shared the R132 IDH1- mutation as a common feature in both their microdissected components.

Conclusions/Significance

The majority of recurrent gliomas are of monoclonal origin. However, the detection of divertive tumor cell clones in morphological distinct tumor components sharing IDH1- mutations as early event may provide insight into the tumorigenesis of true mixed gliomas.  相似文献   

3.

Background

Desmin-related myopathy (DRM) is an autosomally inherited skeletal and cardiac myopathy, mainly caused by dominant mutations in the desmin gene (DES). We describe new families carrying the p.S13F or p.N342D DES mutations, the cardiac phenotype of all carriers, and the founder effects.

Methods

We collected the clinical details of all carriers of p.S13F or p.N342D. The founder effects were studied using genealogy and haplotype analysis.

Results

We identified three new index patients carrying the p.S13F mutation and two new families carrying the p.N342D mutation. In total, we summarised the clinical details of 39 p.S13F carriers (eight index patients) and of 21 p.N342D carriers (three index patients). The cardiac phenotype of p.S13F carriers is fully penetrant and severe, characterised by cardiac conduction disease and cardiomyopathy, often with right ventricular involvement. Although muscle weakness is a prominent and presenting symptom in p.N342D carriers, their cardiac phenotype is similar to that of p.S13F carriers. The founder effects of p.S13F and p.N342D were demonstrated by genealogy and haplotype analysis.

Conclusion

DRM may occur as an apparently isolated cardiological disorder. The cardiac phenotypes of the DES founder mutations p.S13F and p.N342D are characterised by cardiac conduction disease and cardiomyopathy, often with right ventricular involvement.

Electronic supplementary material

The online version of this article (doi:10.1007/s12471-011-0233-y) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.

Introduction

Germline BRCA1 or BRCA2 mutations account for 20–30% of familial clustering of breast cancer. The main indication for BRCA2 screening is currently the family history but the yield of mutations identified in patients selected this way is low.

Methods

To develop more efficient approaches to screening we have compared the gene expression and genomic profiles of BRCA2-mutant breast tumors with those of breast tumors lacking BRCA1 or BRCA2 mutations.

Results

We identified a group of 66 genes showing differential expression in our training set of 7 BRCA2-mutant tumors and in an independent validation set of 19 BRCA2-mutant tumors. The differentially expressed genes include a prominent cluster of genes from chromosomes 13 and 14 whose expression is reduced. Gene set enrichment analysis confirmed that genes in specific bands on 13q and 14q showed significantly reduced expression, suggesting that the affected bands may be preferentially deleted in BRCA2-mutant tumors. Genomic profiling showed that the BRCA2-mutant tumors indeed harbor deletions on chromosomes 13q and 14q. To exploit this information we have created a simple fluorescence in situ hybridization (FISH) test and shown that it detects tumors with deletions on chromosomes 13q and 14q.

Conclusion

Together with previous reports, this establishes that deletions on chromosomes 13q and 14q are a hallmark of BRCA2-mutant tumors. We propose that FISH to detect these deletions would be an efficient and cost-effective first screening step to identify potential BRCA2-mutation carriers among breast cancer patients without a family history of breast cancer.  相似文献   

6.

Background

Malignant fibrous histiocytomas (MFHs), or undifferentiated pleomorphic sarcomas, are in general high-grade tumours with extensive chromosomal aberrations. In order to identify recurrent chromosomal regions of gain and loss, as well as novel gene targets of potential importance for MFH development and/or progression, we have analysed DNA copy number changes in 33 MFHs using microarray-based comparative genomic hybridisation (array CGH).

Principal findings

In general, the tumours showed numerous gains and losses of large chromosomal regions. The most frequent minimal recurrent regions of gain were 1p33-p32.3, 1p31.3-p31.2 and 1p21.3 (all gained in 58% of the samples), as well as 1q21.2-q21.3 and 20q13.2 (both 55%). The most frequent minimal recurrent regions of loss were 10q25.3-q26.11, 13q13.3-q14.2 and 13q14.3-q21.1 (all lost in 64% of the samples), as well as 2q36.3-q37.2 (61%), 1q41 (55%) and 16q12.1-q12.2 (52%). Statistical analyses revealed that gain of 1p33-p32.3 and 1p21.3 was significantly associated with better patient survival (P = 0.021 and 0.046, respectively). Comparison with similar array CGH data from 44 leiomyosarcomas identified seven chromosomal regions; 1p36.32-p35.2, 1p21.3-p21.1, 1q32.1-q42.13, 2q14.1-q22.2, 4q33-q34.3, 6p25.1-p21.32 and 7p22.3-p13, which were significantly different in copy number between the MFHs and leiomyosarcomas.

Conclusions

A number of recurrent regions of gain and loss have been identified, some of which were associated with better patient survival. Several specific chromosomal regions with significant differences in copy number between MFHs and leiomyosarcomas were identified, and these aberrations may be used as additional tools for the differential diagnosis of MFHs and leiomyosarcomas.  相似文献   

7.
8.
9.
AK Kwong  CW Fung  SY Chan  VC Wong 《PloS one》2012,7(7):e41802

Background

Dravet syndrome is a severe form of epilepsy. Majority of patients have a mutation in SCN1A gene, which encodes a voltage-gated sodium channel. A recent study has demonstrated that 16% of SCN1A-negative patients have a mutation in PCDH19, the gene encoding protocadherin-19. Mutations in other genes account for only a very small proportion of families. TSPYL4 is a novel candidate gene within the locus 6q16.3-q22.31 identified by linkage study.

Objective

The present study examined the mutations in epileptic Chinese children with emphasis on Dravet syndrome.

Methods

A hundred children with severe epilepsy were divided into Dravet syndrome and non-Dravet syndrome groups and screened for SCN1A mutations by direct sequencing. SCN1A-negative Dravet syndrome patients and patients with phenotypes resembling Dravet syndrome were checked for PCDH19 and TSPYL4 mutations.

Results

Eighteen patients (9 males, 9 females) were diagnosed to have Dravet syndrome. Among them, 83% (15/18) had SCN1A mutations including truncating (7), splice site (2) and missense mutations (6). The truncating/splice site mutations were associated with moderate to severe degree of intellectual disability (p<0.05). During the progression of disease, 73% (11/15) had features fitting into the diagnostic criteria of autism spectrum disorder and 53% (8/15) had history of vaccination-induced seizures. A novel PCDH19 p.D377N mutation was identified in one SCN1A-negative female patient with Dravet syndrome and a known PCDH19 p.N340S mutation in a female non-Dravet syndrome patient. The former also inherited a TSPYL4 p.G60R variant.

Conclusion

A high percentage of SCN1A mutations was identified in our Chinese cohort of Dravet syndrome patients but none in the rest of patients. We demonstrated that truncating/splice site mutations were linked to moderate to severe intellectual disability in these patients. A de novo PCDH19 missense mutation together with an inherited TSPYL4 missense variant were identified in a patient with Dravet syndrome.  相似文献   

10.

Background

Mutations of the NR5A1 gene encoding steroidogenic factor-1 have been reported in association with a wide spectrum of 46,XY DSD (Disorder of Sex Development) phenotypes including severe forms of hypospadias.

Methodology/Principal Findings

We evaluated the frequency of NR5A1 gene mutations in a large series of patients presenting with 46,XY DSD and hypospadias. Based on their clinical presentation 77 patients were classified either as complete or partial gonadal dysgenesis (uterus seen at genitography and/or surgery, n = 11), ambiguous external genitalia without uterus (n = 33) or hypospadias (n = 33). We identified heterozygous NR5A1 mutations in 4 cases of ambiguous external genitalia without uterus (12.1%; p.Trp279Arg, pArg39Pro, c.390delG, c140_141insCACG) and a de novo missense mutation in one case with distal hypospadias (3%; p.Arg313Cys). Mutant proteins showed reduced transactivation activity and mutants p.Arg39Pro and p.Arg313Cys did not synergize with the GATA4 cofactor to stimulate reporter gene activity, although they retained their ability to physically interact with the GATA4 protein.

Conclusions/Significance

Mutations in NR5A1 were observed in 5/77 (6.5%) cases of 46,XY DSD including hypospadias. Excluding the cases of 46,XY gonadal dysgenesis the incidence of NR5A1 mutations was 5/66 (7.6%). An individual with isolated distal hypopadias carried a de novo heterozygous missense mutation, thus extending the range of phenotypes associated with NR5A1 mutations and suggesting that this group of patients should be screened for NR5A1 mutations.  相似文献   

11.

Background

Urothelial carcinoma shows frequent amplifications at 6p22 and 1q21–24. The main target gene at 6p22 is believed to be E2F3, frequently co-amplified with CDKAL1 and SOX4. There are however reports on 6p22 amplifications that do not include E2F3. Previous analyses have identified frequent aberrations occurring at 1q21–24. However, due to complex rearrangements it has been difficult to identify specific 1q21–24 target regions and genes.

Methods

We selected 29 cases with 6p and 37 cases with 1q focal genomic amplifications from 261 cases of urothelial carcinoma analyzed by array-CGH for high resolution zoom-in oligonucleotide array analyses. Genomic analyses were combined with gene expression data and genomic sequence analyses to characterize and fine map 6p22 and 1q21–24 amplifications.

Results

We show that the most frequently amplified gene at 6p22 is SOX4 and that SOX4 can be amplified and overexpressed without the E2F3 or CDKAL1 genes being included in the amplicon. Hence, our data point to SOX4 as an auxiliary amplification target at 6p22. We further show that at least three amplified regions are observed at 1q21–24. Copy number data, combined with gene expression data, highlighted BCL9 and CHD1L as possible targets in the most proximal region and MCL1, SETDB1, and HIF1B as putative targets in the middle region, whereas no obvious targets could be determined in the most distal amplicon. We highlight enrichment of G4 quadruplex sequence motifs and a high number of intraregional sequence duplications, both known to contribute to genomic instability, as prominent features of the 1q21–24 region.

Conclusions

Our detailed analyses of the 6p22 amplicon suggest SOX4 as an auxiliary target gene for amplification. We further demonstrate three separate target regions for amplification at 1q21–24 and identified BCL9, CHD1L, and MCL1, SETDB1, and HIF1B as putative target genes within these regions.  相似文献   

12.
Tuna M  Smid M  Zhu D  Martens JW  Amos CI 《PloS one》2010,5(11):e15094

Background

Genetic alterations in cellular signaling networks are a hallmark of cancer, however, effective methods to discover them are lacking. A novel form of abnormality called acquired uniparental disomy (aUPD) was recently found to pinpoint the region of mutated genes in various cancers, thereby identifying the region for next-generation sequencing.

Methods/Principal Findings

We retrieved large genomic data sets from the Gene Expression Omnibus database to perform genome-wide analysis of aUPD in breast tumor samples and cell lines using approaches that can reliably detect aUPD. aUPD was identified in 52.29% of the tumor samples. The most frequent aUPD regions were located at chromosomes 2q, 3p, 5q, 9p, 9q, 10q, 11q, 13q, 14q and 17q. We evaluated the data for any correlation between the most frequent aUPD regions and HER2/neu, ER, and PR status, and found a statistically significant correlation between the recurrent regions of aUPD and triple negative (TN) breast cancers. aUPD at chromosome 17q (VEZF1, WNT3), 3p (SUMF1, GRM7), 9p (MTAP, NFIB) and 11q (CASP1, CASP4, CASP5) are predictors for TN. The frequency of aUPD was found to be significantly higher in TN breast cancer cases compared to HER2/neu-positive and/or ER or PR-positive cases. Furthermore, using previously published mutation data, we found TP53 homozygously mutated in cell lines having aUPD in that locus.

Conclusions/Significance

We conclude that aUPD is a common and non-random molecular feature of breast cancer that is most prominent in triple negative cases. As aUPD regions are different among the main pathological subtypes, specific aUPD regions may aid the sub-classification of breast cancer. In addition, we provide statistical support using TP53 as an example that identifying aUPD regions can be an effective approach in finding aberrant genes. We thus conclude that a genome-wide scale analysis of aUPD regions for homozygous sequence alterations can provide valuable insights into breast tumorigenesis.  相似文献   

13.

Background

Charcot-Marie-Tooth disease type 2 (CMT2) is a clinically and genetically heterogeneous group of inherited axonal neuropathies. The aim of this study was to extensively investigate the mutational spectrum of CMT2 in a cohort of patients of Han Chinese.

Methodology and Principal Findings

Genomic DNA from 36 unrelated Taiwanese CMT2 patients of Han Chinese descent was screened for mutations in the coding regions of the MFN2, RAB7, TRPV4, GARS, NEFL, HSPB1, MPZ, GDAP1, HSPB8, DNM2, AARS and YARS genes. Ten disparate mutations were identified in 14 patients (38.9% of the cohort), including p.N71Y in AARS (2.8%), p.T164A in HSPB1 (2.8%), and p.[H256R]+[R282H] in GDAP1 (2.8%) in one patient each, three NEFL mutations in six patients (16.7%) and four MFN2 mutations in five patients (13.9%). The following six mutations were novel: the individual AARS, HSPB1 and GDAP1 mutations and c.475-1G>T, p.L233V and p.E744M mutations in MFN2. An in vitro splicing assay revealed that the MFN2 c.475-1G>T mutation causes a 4 amino acid deletion (p.T159_Q162del). Despite an extensive survey, the genetic causes of CMT2 remained elusive in the remaining 22 CMT2 patients (61.1%).

Conclusions and Significance

This study illustrates the spectrum of CMT2 mutations in a Taiwanese CMT2 cohort and expands the number of CMT2-associated mutations. The relevance of the AARS and HSPB1 mutations in the pathogenesis of CMT2 is further highlighted. Moreover, the frequency of the NEFL mutations in this study cohort was unexpectedly high. Genetic testing for NEFL and MFN2 mutations should, therefore, be the first step in the molecular diagnosis of CMT2 in ethnic Chinese.  相似文献   

14.

Context

TAC3/TACR3 mutations have been reported in normosmic congenital hypogonadotropic hypogonadism (nCHH) (OMIM #146110). In the absence of animal models, studies of human neuroendocrine phenotypes associated with neurokinin B and NK3R receptor dysfunction can help to decipher the pathophysiology of this signaling pathway.

Objective

To evaluate the prevalence of TAC3/TACR3 mutations, characterize novel TACR3 mutations and to analyze neuroendocrine profiles in nCHH caused by deleterious TAC3/TACR3 biallelic mutations.

Results

From a cohort of 352 CHH, we selected 173 nCHH patients and identified nine patients carrying TAC3 or TACR3 variants (5.2%). We describe here 7 of these TACR3 variants (1 frameshift and 2 nonsense deleterious mutations and 4 missense variants) found in 5 subjects. Modeling and functional studies of the latter demonstrated the deleterious consequence of one missense mutation (Tyr267Asn) probably caused by the misfolding of the mutated NK3R protein.We found a statistically significant (p<0.0001) higher mean FSH/LH ratio in 11 nCHH patients with TAC3/TACR3 biallelic mutations than in 47 nCHH patients with either biallelic mutations in KISS1R, GNRHR, or with no identified mutations and than in 50 Kallmann patients with mutations in KAL1, FGFR1 or PROK2/PROKR2. Three patients with TAC3/TACR3 biallelic mutations had an apulsatile LH profile but low-frequency alpha-subunit pulses. Pulsatile GnRH administration increased alpha-subunit pulsatile frequency and reduced the FSH/LH ratio.

Conclusion

The gonadotropin axis dysfunction associated with nCHH due to TAC3/TACR3 mutations is related to a low GnRH pulsatile frequency leading to a low frequency of alpha-subunit pulses and to an elevated FSH/LH ratio. This ratio might be useful for pre-screening nCHH patients for TAC3/TACR3 mutations.  相似文献   

15.

Background

While the heritability of cigarette smoking and nicotine dependence (ND) is well-documented, the contribution of specific genetic variants to specific phenotypes has not been closely examined. The objectives of this study were to test the associations between 321 tagging single-nucleotide polymorphisms (SNPs) that capture common genetic variation in 24 genes, and early smoking and ND phenotypes in novice adolescent smokers, and to assess if genetic predictors differ across these phenotypes.

Methods

In a prospective study of 1294 adolescents aged 12–13 years recruited from ten Montreal-area secondary schools, 544 participants who had smoked at least once during the 7–8 year follow-up provided DNA. 321 single-nucleotide polymorphisms (SNPs) in 24 candidate genes were tested for an association with number of cigarettes smoked in the past 3 months, and with five ND phenotypes (a modified version of the Fagerstrom Tolerance Questionnaire, the ICD-10 and three clusters of ND symptoms representing withdrawal symptoms, use of nicotine for self-medication, and a general ND/craving symptom indicator).

Results

The pattern of SNP-gene associations differed across phenotypes. Sixteen SNPs in seven genes (ANKK1, CHRNA7, DDC, DRD2, COMT, OPRM1, SLC6A3 (also known as DAT1)) were associated with at least one phenotype with a p-value <0.01 using linear mixed models. After permutation and FDR adjustment, none of the associations remained statistically significant, although the p-values for the association between rs557748 in OPRM1 and the ND/craving and self-medication phenotypes were both 0.076.

Conclusions

Because the genetic predictors differ, specific cigarette smoking and ND phenotypes should be distinguished in genetic studies in adolescents. Fifteen of the 16 top-ranked SNPs identified in this study were from loci involved in dopaminergic pathways (ANKK1/DRD2, DDC, COMT, OPRM1, and SLC6A3).

Impact

Dopaminergic pathways may be salient during early smoking and the development of ND.  相似文献   

16.

Background

Expansion of a CAG repeat in the coding region of exon 1 in the ATXN2 gene located in human chromosome 12q24.1 causes the neurodegenerative disease spinocerebellar ataxia type 2 (SCA2). In contrast to other polyglutamine (polyQ) disorders, the SCA2 repeat is not highly polymorphic in central European (CEU) controls with Q22 representing 90% of alleles, and Q23 contributing between 5–7% of alleles. Recently, the ATXN2 CAG repeat has been identified as a target of adaptive selection in the CEU population. Mouse lines deficient for atxn2 develop marked hyperphagia and obesity raising the possibility that loss-of-function mutations in the ATXN2 gene may be related to energy balance in humans. Some linkage studies of obesity related phenotypes such as antipsychotic induced weight gain have reported significant lod scores on chromosome 12q24. We tested the hypothesis that rare loss-of-function ATXN2 variants cause obesity analogous to rare mutations in the leptin, leptin receptor and MC4R genes.

Methodology/Principal Findings

We sequenced the coding region of ATXN2 including intron-exon boundaries in 92 severely obese children with a body mass index (BMI) >3.2 standard deviations above age- and gender-adjusted means. We confirmed five previously identified single nucleotide polymorphisms (SNPs) and three new SNPs resulting in two synonymous substitutions and one intronic polymorphism. Alleles encoding >Q22 were overrepresented in our sample of obese children and contributed 15% of alleles in children identified by their parents as white. SNP rs695872 closely flanking the CAG repeat showed a greatly increased frequency of C/C homozygotes and G/C heterozygotes compared with reported frequencies in the CEU population.

Conclusions/Significance

Although we did not identify variants leading to novel amino acid substitutions, nonsense or frameshift mutations, this study warrants further examination of variation in the ATXN2 gene in obesity and related phenotypes in a larger case-control study with emphasis on rs695872 and CAG repeat structure.  相似文献   

17.

Background

Non-motor symptoms are increasingly recognized as important features of Parkinson’s disease (PD). LRRK2 mutations are common causes of familial and sporadic PD. Non-motor features have not been yet comprehensively evaluated in LRRK2 transgenic mouse models.

Objective

Using a transgenic mouse model overexpressing the R1441G mutation of the human LRRK2 gene, we have investigated the longitudinal correlation between motor and non-motor symptoms and determined if specific non-motor phenotypes precede motor symptoms.

Methodology

We investigated the onset of motor and non-motor phenotypes on the LRRK2R1441G BAC transgenic mice and their littermate controls from 4 to 21 month-old using a battery of behavioral tests. The transgenic mutant mice displayed mild hypokinesia in the open field from 16 months old, with gastrointestinal dysfunctions beginning at 6 months old. Non-motor features such as depression and anxiety-like behaviors, sensorial functions (pain sensitivity and olfaction), and learning and memory abilities in the passive avoidance test were similar in the transgenic animals compared to littermate controls.

Conclusions

LRRK2R1441G BAC transgenic mice displayed gastrointestinal dysfunction at an early stage but did not have abnormalities in fine behaviors, olfaction, pain sensitivity, mood disorders and learning and memory compared to non-transgenic littermate controls. The observations on olfaction and gastrointestinal dysfunction in this model validate findings in human carriers. These mice did recapitulate mild Parkinsonian motor features at late stages but compensatory mechanisms modulating the progression of PD in these models should be further evaluated.  相似文献   

18.
Iqbal A  Lim YA  Surin J  Sim BL 《PloS one》2012,7(2):e31139

Background

Currently, there is a lack of vital information in the genetic makeup of Cryptosporidium especially in developing countries. The present study aimed at determining the genotypes and subgenotypes of Cryptosporidium in hospitalized Malaysian human immunodeficiency virus (HIV) positive patients.

Methodology/Principal Findings

In this study, 346 faecal samples collected from Malaysian HIV positive patients were genetically analysed via PCR targeting the 60 kDa glycoprotein (gp60) gene. Eighteen (5.2% of 346) isolates were determined as Cryptosporidium positive with 72.2% (of 18) identified as Cryptosporidium parvum whilst 27.7% as Cryptosporidium hominis. Further gp60 analysis revealed C. parvum belonging to subgenotypes IIaA13G1R1 (2 isolates), IIaA13G2R1 (2 isolates), IIaA14G2R1 (3 isolates), IIaA15G2R1 (5 isolates) and IIdA15G1R1 (1 isolate). C. hominis was represented by subgenotypes IaA14R1 (2 isolates), IaA18R1 (1 isolate) and IbA10G2R2 (2 isolates).

Conclusions/Significance

These findings highlighted the presence of high diversity of Cryptosporidium subgenotypes among Malaysian HIV infected individuals. The predominance of the C. parvum subgenotypes signified the possibility of zoonotic as well as anthroponotic transmissions of cryptosporidiosis in HIV infected individuals.  相似文献   

19.
Ren X  Cui X  Lin S  Wang J  Jiang Z  Sui D  Li J  Wang Z 《PloS one》2012,7(3):e32764

Objective

To characterize co-deletion of chromosome 1p/19q and IDH1/2 mutation in Chinese brain tumor patients and to assess their associations with clinical features.

Methods

In a series of 528 patients with gliomas, pathological and radiological materials were reviewed. Pathological constituents of tumor subsets, incidences of 1p/19q co-deletion and IDH1/2 mutation in gliomas by regions and sides in the brain were analyzed.

Results

Overall, 1p and 19q was detected in 339 patients by FISH method while the sequence of IDH1/2 was determined in 280 patients. Gliomas of frontal, temporal and insular origin had significantly different pathological constituents of tumor subsets (P<0.001). Gliomas of frontal origin had significantly higher incidence of 1p/19q co-deletion (50.4%) and IDH1/2 mutation (73.5%) than those of non-frontal origin (27.0% and 48.5%, respectively) (P<0.001), while gliomas of temporal origin had significantly lower incidence of 1p/19q co-deletion (23.9%) and IDH1/2 mutation (41.7%) than those of non-temporal origin (39.9% and 63.2%, respectively) (P = 0.013 and P = 0.003, respectively). Subgroup analysis confirmed these findings in oligoastrocytic and oligodendroglial tumors, respectively. Although the difference of 1p/19q co-deletion was not statistically significant in temporal oligodendroglial tumors, the trend was marginally significant (P = 0.082). However, gliomas from different sides of the brain did not show significant different pathological constituents, incidences of 1p/19q co-deletion or IDH1/2 mutation.

Conclusion

Preferential distribution of pathological subsets, 1p/19q co-deletion and IDH1/2 mutation were confirmed in some brain regions in Chinese glioma patients, implying their distinctive tumor genesis and predictive value for prognosis.  相似文献   

20.

Background

Tobacco smoke and genetic susceptibility are risk factors for asthma and wheezing. The aim of this study was to investigate whether there is a combined effect of interleukin-13 gene (IL13) polymorphisms and tobacco smoke on persistent childhood wheezing and asthma.

Methods

In the Isle of Wight birth cohort (UK, 1989–1999), five IL13 single nucleotide polymorphisms (SNPs): rs1800925 (-1112C/T), rs2066960, rs1295686, rs20541 (R130Q) and rs1295685 were genotyped. Parents were asked whether their children had wheezed in the last 12 months at ages 1, 2, 4 and 10 years. Children who reported wheeze in the first 4 years of life and also had wheezing at age 10 were classified as early-onset persistent wheeze phenotype; non-wheezers never wheezed up to age 10. Persistent asthma was defined as having a diagnosis of asthma both during the first four years of life and at age 10. Logistic regression methods were used to analyze data on 791 children with complete information. Potential confounders were gender, birth weight, duration of breast feeding, and household cat or dog present during pregnancy.

Results

Maternal smoking during pregnancy was associated with early-onset persistent wheeze (OR 2.93, p < 0.0001); polymorphisms in IL13 were not (OR 1.15, p = 0.60 for the common haplotype pair). However, the effect of maternal smoking during pregnancy was stronger in children with the common IL13 haplotype pair compared to those without it (OR 5.58 and OR 1.29, respectively; p for interaction = 0.014). Single SNP analysis revealed a similar statistical significance for rs20541 (p for interaction = 0.02). Comparable results were observed for persistent childhood asthma (p for interaction = 0.03).

Conclusion

This is the first report that shows a combined effect of in utero exposure to smoking and IL13 on asthma phenotypes in childhood. The results emphasize that genetic studies need to take environmental exposures into account, since they may explain contradictory findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号