首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to detect the genetic architecture of maize tolerance to Alachlor, a widely used chloroacetanilide, linkage analysis between the expression of the trait and allelic composition of molecular markers was performed. The experiment was carried out on a population of 142 recombinant inbred lines, developed starting from the F1 between two lines with different reactivity to the herbicide, and self-fertilized for 10 generations; the lines were typed by 48 RFLP markers and 66 microsatellites (SSR). Besides seedling tolerance, evaluated as proportion of normal (non-injured) plants after herbicide treatment, other minor components of tolerance were studied: seed germination ability, pollen germination and tube growth in the presence of the herbicide. The analysis, performed by three statistical methods, revealed the presence of factors controlling seedling tolerance on seven chromosomal regions. Five QTLs appeared to be involved in seed germination ability in the presence of Alachlor, four QTLs in pollen tolerance in terms of germination and four in tube growth under stress were detected. Three loci, on chromosomes 1, 7 and 10, explained most of the variation of seedling tolerance, thus being interesting candidate for marker-assisted selection.  相似文献   

2.
3.

Background

High density genotyping data are indispensable for genomic analyses of complex traits in animal and crop species. Maize is one of the most important crop plants worldwide, however a high density SNP genotyping array for analysis of its large and highly dynamic genome was not available so far.

Results

We developed a high density maize SNP array composed of 616,201 variants (SNPs and small indels). Initially, 57 M variants were discovered by sequencing 30 representative temperate maize lines and then stringently filtered for sequence quality scores and predicted conversion performance on the array resulting in the selection of 1.2 M polymorphic variants assayed on two screening arrays. To identify high-confidence variants, 285 DNA samples from a broad genetic diversity panel of worldwide maize lines including the samples used for sequencing, important founder lines for European maize breeding, hybrids, and proprietary samples with European, US, semi-tropical, and tropical origin were used for experimental validation. We selected 616 k variants according to their performance during validation, support of genotype calls through sequencing data, and physical distribution for further analysis and for the design of the commercially available Affymetrix® Axiom® Maize Genotyping Array. This array is composed of 609,442 SNPs and 6,759 indels. Among these are 116,224 variants in coding regions and 45,655 SNPs of the Illumina® MaizeSNP50 BeadChip for study comparison. In a subset of 45,974 variants, apart from the target SNP additional off-target variants are detected, which show only a minor bias towards intermediate allele frequencies. We performed principal coordinate and admixture analyses to determine the ability of the array to detect and resolve population structure and investigated the extent of LD within a worldwide validation panel.

Conclusions

The high density Affymetrix® Axiom® Maize Genotyping Array is optimized for European and American temperate maize and was developed based on a diverse sample panel by applying stringent quality filter criteria to ensure its suitability for a broad range of applications. With 600 k variants it is the largest currently publically available genotyping array in crop species.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-823) contains supplementary material, which is available to authorized users.  相似文献   

4.
Hao Z  Li X  Xie C  Weng J  Li M  Zhang D  Liang X  Liu L  Liu S  Zhang S 《植物学报(英文版)》2011,53(8):641-652
Single nucleotide polymorphism (SNP) is a common form of genetic variation and popularly exists in maize genome. An Illumina GoldenGate assay with 1 536 SNP markers was used to genotype maize inbred lines and identified the functional genetic variations underlying drought tolerance by association analysis. Across 80 lines, 1 006 polymorphic SNPs (65.5% of the total) in the assay with good call quality were used to estimate the pattern of genetic diversity, population structure, and familial relatedness. The analysis showed the best number of fixed subgroups was six, which was consistent with their original sources and results using only simple sequence repeat markers. Pairwise linkage disequilibrium (LD) and association mapping with phenotypic traits investigated under water-stressed and well-watered regimes showed rapid LD decline within 100-500 kb along the physical distance of each chromosome, and that 29 SNPs were associated with at least two phenotypic traits in one or more environments, which were related to drought-tolerant or drought-responsive genes. These drought-tolerant SNPs could be converted into functional markers and then used for maize improvement by marker-assisted selection.  相似文献   

5.
Long terminal repeat (LTR) retrotransposons are predominant mobile elements that play important roles in plant genome evolution. Here, we isolated the first putative complete Ty1/copia-like retrotransposon of 6303 bp in mangrove Rhizophora apiculata, named RARE-1. RARE-1 was homologous to the soybean retroelement 1 (SORE-1) and exhibited abundant cis-regulatory motifs involved in various stress responses in its LTRs. Using the sequence-specific amplification polymorphism (S-SAP) technique, we obtained a total of 112 bands for two R. apiculata populations from Hainan, China and Ranong, Thailand. The Hainan population showed slightly higher S-SAP polymorphism but fewer unique bands than the Ranong population. Moreover, the Hainan population also had significantly more copies of RARE-1 than the Ranong population as revealed by quantitative real-time PCR (qPCR). Our results suggested that RARE-1 might have been domesticated in the R. apiculata genome, as a result of the long-term evolution of mangroves under the extreme environment.  相似文献   

6.

Background

There is growing evidence for the prevalence of copy number variation (CNV) and its role in phenotypic variation in many eukaryotic species. Here we use array comparative genomic hybridization to explore the extent of this type of structural variation in domesticated barley cultivars and wild barleys.

Results

A collection of 14 barley genotypes including eight cultivars and six wild barleys were used for comparative genomic hybridization. CNV affects 14.9% of all the sequences that were assessed. Higher levels of CNV diversity are present in the wild accessions relative to cultivated barley. CNVs are enriched near the ends of all chromosomes except 4H, which exhibits the lowest frequency of CNVs. CNV affects 9.5% of the coding sequences represented on the array and the genes affected by CNV are enriched for sequences annotated as disease-resistance proteins and protein kinases. Sequence-based comparisons of CNV between cultivars Barke and Morex provided evidence that DNA repair mechanisms of double-strand breaks via single-stranded annealing and synthesis-dependent strand annealing play an important role in the origin of CNV in barley.

Conclusions

We present the first catalog of CNVs in a diploid Triticeae species, which opens the door for future genome diversity research in a tribe that comprises the economically important cereal species wheat, barley, and rye. Our findings constitute a valuable resource for the identification of CNV affecting genes of agronomic importance. We also identify potential mechanisms that can generate variation in copy number in plant genomes.  相似文献   

7.
The discovery of copy number variations (CNV) in the human genome opened new perspectives in the study of the genetic causes of inherited disorders and the etiology of common diseases. Differently patterned instances of somatic mosaicism in CNV regions have been shown to be present in monozygotic twins and throughout different tissues within an individual. A single-cell-level investigation of CNV in different human cell types led us to uncover mitotically derived genomic mosaicism, which is stable in different cell types of one individual. A unique study of immortalized B-lymphoblastoid cell lines obtained with 20 year interval from the same two subjects shows that mitotic changes in CNV regions may happen early during embryonic development and seem to occur only once, as levels of mosaicism remained stable. This finding has the potential to change our concept of dynamic human genome variation. We propose that further genomic studies should focus on the single-cell level, to understand better the etiology and physiology of aging and diseases mediated by somatic variations.  相似文献   

8.
Although the locations of many common deletion variants in the human genome are unknown, such deletions may be causative in rare disorders. Deletions can be mapped through the identification of Mendelian inconsistencies in pedigrees. Data for a total of 341,577 SNPs from an ACD family cohort (n = 551) and 341,039 SNPs from a Korean-Vietnamese family cohort (n = 554) were collected for a genome-wide association study using Illumina 370K-Duo Beadchips®. In the present study, a Mendelian inconsistency analysis of genotype data identified 1029 deletion variants in Korean and Korean-Vietnam family cohorts of 404 trios comprising 1105 individuals. Small-deletion copy number variations adjacent to 10 deletion variants were then validated by the real-time quantitative polymerase chain reaction. The expected copy numbers of each deletion variant were directly matched to its genotype cluster image. Deletion variants were also in strong linkage disequilibrium with nearby SNPs. To determine the overall contribution of the 1029 deletion variants, we analyzed case-control trio associations with the risk for Avellino corneal dystrophy. One SNP marker (rs885945) neighboring the gene encoding major histocompatibility complex class I F (HLA-F) was significantly associated with the risk of Avellino corneal dystrophy (P = 0.0003). rs885945 showed high LD with SNPs within the HLA-F gene. Therefore, HLA-F may be a potential candidate gene for Avellino corneal dystrophy.  相似文献   

9.

Background

Although numerous efforts have been made, the pathogenesis underlying lung squamous-cell carcinoma (SCC) remains unclear. This study aimed to identify the CNV-driven genes by an integrated analysis of both the gene differential expression and copy number variation (CNV).

Results

A higher burden of the CNVs was found in 10–50 kb length. The 16 CNV-driven genes mainly located in chr 1 and chr 3 were enriched in immune response [e.g. complement factor H (CFH) and Fc fragment of IgG, low affinity IIIa, receptor (FCGR3A)], starch and sucrose metabolism [e.g. amylase alpha 2A (AMY2A)]. Furthermore, 38 TFs were screened for the 9 CNV-driven genes and then the regulatory network was constructed, in which the GATA-binding factor 1, 2, and 3 (GATA1, GATA2, GATA3) jointly regulated the expression of TP63.

Conclusions

The above CNV-driven genes might be potential contributors to the development of lung SCC.  相似文献   

10.
Crop yields are significantly reduced by aluminum (Al) toxicity on acidic soils, which comprise up to 50% of the world’s arable land. Al‐activated release of ligands (such as organic acids) from the roots is a major Al tolerance mechanism in plants. In maize, Al‐activated root citrate exudation plays an important role in tolerance. However, maize Al tolerance is a complex trait involving multiple genes and physiological mechanisms. Recently, transporters from the MATE family have been shown to mediate Al‐activated citrate exudation in a number of plant species. Here we describe the cloning and characterization of two MATE family members in maize, ZmMATE1 and ZmMATE2, which co‐localize to major Al tolerance QTL. Both genes encode plasma membrane proteins that mediate significant anion efflux when expressed in Xenopus oocytes. ZmMATE1 expression is mostly concentrated in root tissues, is up‐regulated by Al and is significantly higher in Al‐tolerant maize genotypes. In contrast, ZmMATE2 expression is not specifically localized to any particular tissue and does not respond to Al. [14C]‐citrate efflux experiments in oocytes demonstrate that ZmMATE1 is a citrate transporter. In addition, ZmMATE1 expression confers a significant increase in Al tolerance in transgenic Arabidopsis. Our data suggests that ZmMATE1 is a functional homolog of the Al tolerance genes recently characterized in sorghum, barley and Arabidopsis, and is likely to underlie the largest maize Al tolerance QTL found on chromosome 6. However, ZmMATE2 most likely does not encode a citrate transporter, and could be involved in a novel Al tolerance mechanism.  相似文献   

11.
《遗传学报》2021,48(10):908-916
Chromosomes are well-organized carriers of genetic information in eukaryotes and are usually quite long, carrying hundreds and thousands of genes. Intriguingly, a clade of single-celled ciliates, Spirotrichea, feature nanochromosomes—also called “gene-sized chromosomes”. These chromosomes predominantly carry only one gene, flanked by short telomere sequences. However, the organization and copy number variation of the chromosomes in these highly fragmented genomes remain unexplored in many groups of Spirotrichea, including the marine Strombidium. Using deep genome sequencing, we assembled the macronuclear genome of Strombidium stylifer into more than 18,000 nanochromosomes (~2.4 Kb long on average). Our results show that S. stylifer occupies an intermediate position during the evolutionary history of Strombidium lineage and experienced significant expansions in several gene families related to guanyl ribonucleotide binding. Based on the nucleotide distribution bias analysis and conserved motifs search in non-genic regions, we found that the subtelomeric regions have a conserved adenine-thymine (AT)-rich sequence motif. We also found that the copy number of nanochromosomes lacks precise regulation. This work sheds light on the unique features of chromosome structure in eukaryotes with highly fragmented genomes and reveals that a rather specialized evolutionary strategy at the genomic level has resulted in great diversity within the ciliated lineages.  相似文献   

12.
拷贝数变异是指基因组中发生大片段的DNA序列的拷贝数增加或者减少。根据现有的研究可知,拷贝数变异是多种人类疾病的成因,与其发生与发展机制密切相关。高通量测序技术的出现为拷贝数变异检测提供了技术支持,在人类疾病研究、临床诊疗等领域,高通量测序技术已经成为主流的拷贝数变异检测技术。虽然不断有新的基于高通量测序技术的算法和软件被人们开发出来,但是准确率仍然不理想。本文全面地综述基于高通量测序数据的拷贝数变异检测方法,包括基于reads深度的方法、基于双末端映射的方法、基于拆分read的方法、基于从头拼接的方法以及基于上述4种方法的组合方法,深入探讨了每类不同方法的原理,代表性的软件工具以及每类方法适用的数据以及优缺点等,并展望未来的发展方向。  相似文献   

13.
 The genetic basis of resistance to rice yellow mottle virus (RYMV) was studied in a doubled-haploid (DH) population derived from a cross between the very susceptible indica variety ‘IR64’ and the resistant upland japonica variety Azucena. As a quantitative trait locus (QTL) involved in virus content estimated with an ELISA test has been previously identified on chromosome 12, we performed a wide search for interactions between this QTL and the rest of the genome, and between this QTL and morphological traits segregating in the population. Multiple regression with all identified genetic factors was used to validate the interactions. Significant epistasis accounting for a major part of the total genetic variation was observed. A complementary epistasis between the QTL located on chromosome 12 and a QTL located on chromosome 7 could be the major genetic factor controlling the virus content. Resistance was also affected by a morphology-dependent mechanism since tillering was interfering with the resistance mechanism conditioned by the epistasis between the two QTLs. Marker-assisted backcross breeding was developed to introgress the QTLs of chromosome 7 and chromosome 12 in the susceptible ‘IR64’ genetic background. First results confirmed that if both QTLs do not segregate in a backcross-derived F2 population, then the QTL of chromosome 12 cannot explain differences in virus content. A near-isogenic line (NIL) approach is currently being developed to confirm the proposed genetic model of resistance to RYMV. Received: 20 April 1990 / Accepted: 30 April 1998  相似文献   

14.
G. Yi  L. Qu  S. Chen  G. Xu  N. Yang 《Animal genetics》2015,46(2):148-157
Phenotypic diversity is a direct consequence resulting mainly from the impact of underlying genetic variation, and recent studies have shown that copy number variation (CNV) is emerging as an important contributor to both phenotypic variability and disease susceptibility. Herein, we performed a genome‐wide CNV scan in 96 chickens from 12 diversified breeds, benefiting from the high‐density Affymetrix 600 K SNP arrays. We identified a total of 231 autosomal CNV regions (CNVRs) encompassing 5.41 Mb of the chicken genome and corresponding to 0.59% of the autosomal sequence. The length of these CNVRs ranged from 2.6 to 586.2 kb with an average of 23.4 kb, including 130 gain, 93 loss and eight both gain and loss events. These CNVRs, especially deletions, had lower GC content and were located particularly in gene deserts. In particular, 102 CNVRs harbored 128 chicken genes, most of which were enriched in immune responses. We obtained 221 autosomal CNVRs after converting probe coordinates to Galgal3, and comparative analysis with previous studies illustrated that 153 of these CNVRs were regarded as novel events. Furthermore, qPCR assays were designed for 11 novel CNVRs, and eight (72.73%) were validated successfully. In this study, we demonstrated that the high‐density 600 K SNP array can capture CNVs with higher efficiency and accuracy and highlighted the necessity of integrating multiple technologies and algorithms. Our findings provide a pioneering exploration of chicken CNVs based on a high‐density SNP array, which contributes to a more comprehensive understanding of genetic variation in the chicken genome and is beneficial to unearthing potential CNVs underlying important traits of chickens.  相似文献   

15.
Leaf collection from the field, labeling and tracking back to the source plants after genotyping are rate limiting steps in leaf DNA-based genotyping. In this study, an optimized genotyping method using endosperm DNA sampled from single maize seeds was developed, which can be used to replace leaf DNA-based genotyping for both genetic studies and breeding applications. A similar approach is likely to be suitable for all plants with relatively large seeds. Part of the endosperm was excised from imbibed maize seeds and DNA extracted in 96-tube plates using individuals from eight F2 populations and seven inbreds. The quality of the resultant DNA was functionally comparable to DNA extracted from leaf tissue. Extraction from 30 mg of endosperm yields 3–10 μg DNA, which is sufficient for analysis of 200–400 agarose-gel PCR-based markers, with the potential for several million chip-based SNP marker analyses. By comparing endosperm DNA and leaf DNA for individuals from an F2 population, genotyping errors caused by pericarp contamination and hetero-fertilization were found to average 3.8 and 0.6%, respectively. Endosperm sampling did not affect germination rates under controlled conditions, although under normal field conditions the germination rate, seedling establishment, and growth vigor were significantly lower than that of non-sampled controls for some genotypes. However, careful field management can compensate for these effects. Seed DNA-based genotyping lowered costs by 24.6% compared to leaf DNA-based genotyping due to reduced field plantings and labor costs. A substantial advantage of this approach is that it can be used to select desirable genotypes before planting. As such it provides an opportunity for dramatic improvements in the efficiency and selective gain of breeding systems based on optimum combinations of marker-assisted selection and phenotypic selection within and between generations.  相似文献   

16.
The usefulness of marker-assisted selection (MAS) to develop salt-tolerant breeding lines from a F2 derived from L. esculentum x L. pimpinellifolium has been studied. Interval mapping methodology of quantitative trait locus (QTL) analysis was used to locate more precisely previously detected salt tolerance QTLs. A new QTL for total fruit weight under salinity (TW) near TG24 was detected. Most of the detected QTLs [3 for TW, 5 for fruit number, (FN) and 4 for fruit weight (FW)] had low R 2 values, except the FW QTL in the TG180-TG48 interval, which explains 36.6% of the total variance. Dominant and overdominant effects were detected at the QTLs for TW, whereas gene effects at the QTLs for FJV and FW ranged from additive to partial dominance. Phenotypic selection of F2 familes and marker-assisted selection of F3 families were carried out. Yield under salinity decreased in the F2 generation. F3 means were similar to those of the F1 as a consequence of phentoypic selection. The most important selection response for every trait was obtained from the F3 to F4 where MAS was applied. While F3 variation was mainly due to the within-family component, in the F4 the FN and FW between-family component was larger than the within-family one, indicating an efficient compartmentalization and fixation of QTLs into the F4 families. Comparison of the yield of these families under control versus saline conditions showed that fruit weight is a key trait to success in tomato salt-tolerance improvement using wild Lycopersicon germplasm. The QTLs we have detected under salinity seem to be also working under control conditions, although the interaction family x treatment was significant for TW, thereby explaining the fact that the selected families responded differently to salinity.  相似文献   

17.
Seed quality QTLs identified in a molecular map of early maturing soybean   总被引:23,自引:0,他引:23  
This study identified QTLs influencing seed quality characters in a cross of two early maturing soybean (Glycine max [L.] Merr.) cultivars (Ma.Belle and Proto) adapted to the short growing seasons of Central Europe. A molecular linkage map was constructed by using 113 SSR, 6 RAPD and 1 RFLP markers segregating in 82 individuals of an F2 population. The map consists of 23 linkage groups and corresponds wellto previously published soybean maps. Using phenotypic data of the F2-derived lines grown in five environments, four markers for protein content, three for oil content and eight for seed weight were identified. Four from fifteen seed quality QTL-regions identified in the present study were also found by other authors. Markers associated with seed weight QTLs were consistent across all environments and proved to have effects large enough to be useful in a marker-assisted breeding program, whereas protein and oil QTLs showed environmental interactions. Received: 9 October 2000 / Accepted: 26 February 2001  相似文献   

18.
A copy number mutant of the Rtsl replicon (copy number 1–2 copies/cell) was obtained. A one-base substitution in the repA region results in a single amino acid change from histidine to asparagine at position 159. This mutation increased the plasmid copy number by up to 120-fold depending upon the growth conditions. At 42.5° C the plasmid with the wild type replicon was unstable while the mutated replicon was relatively stable.  相似文献   

19.
Reliable and accurate pre-implantation genetic diagnosis(PGD) of patient’s embryos by next-generation sequencing(NGS) is dependent on efficient whole genome amplification(WGA) of a representative biopsy sample. However, the performance of the current state of the art WGA methods has not been evaluated for sequencing. Using low template DNA(15 pg) and single cells, we showed that the two PCR-based WGA systems Sure Plex and MALBAC are superior to the REPLI-g WGA multiple displacement amplification(MDA) system in terms of consistent and reproducible genome coverage and sequence bias across the 24 chromosomes, allowing better normalization of test to reference sequencing data. When copy number variation sequencing(CNV-Seq) was applied to single cell WGA products derived by either Sure Plex or MALBAC amplification, we showed that known disease CNVs in the range of 3e15 Mb could be reliably and accurately detected at the correct genomic positions. These findings indicate that our CNV-Seq pipeline incorporating either Sure Plex or MALBAC as the key initial WGA step is a powerful methodology for clinical PGD to identify euploid embryos in a patient’s cohort for uterine transplantation.  相似文献   

20.
Copy number variation (CNV) represents a major source of genomic variation. We investigated the diversity of CNV distribution using SNP array data collected from a comprehensive collection of geographically dispersed sheep breeds. We identified 24,558 putative CNVs, which can be merged into 619 CNV regions, spanning 197 Mb of total length and corresponding to ~ 6.9% of the sheep genome. Our results reveal a population differentiation in CNV between different geographical areas, including Africa, America, Asia, Southwestern Asia, Central Europe, Northern Europe and Southwestern Europe. We observed clear distinctions in CNV prevalence between diverse groups, possibly reflecting the population history of different sheep breeds. We sought to determine the gene content of CNV, and found several important CNV-overlapping genes (BTG3, PTGS1 and PSPH) which were involved in fetal muscle development, prostaglandin (PG) synthesis, and bone color. Our study generates a comprehensive CNV map, which may contribute to genome annotation in sheep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号