首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subclass Chaetothyriomycetidae (Eurotiomycetes, Ascomycota) is an assemblage of ecologically diverse species, ranging from mutualistic lichenised fungi to human opportunistic pathogens. Recent contributions from molecular studies have changed our understanding of the composition of this subclass. Among others, ant-associated fungi, deep-sea fungi and bryophilous fungi were also shown to belong to this group of ascomycetes. The delimitation of orders and families within this subclass has not previously been re-assessed using a broad phylogenetic study and the phylogenetic position of some taxa such as the lichenised family Celotheliaceae or the Chaetothyrialean bryophilous fungi is still unclear. In our study, we assemble new and published sequences from 132 taxa and reconstruct phylogenetic relationships using four markers (nuLSU, nuSSU, mtSSU and RPB1). Results highlight several shortfalls in the current classification of this subclass, mainly due to un-assigned paraphyletic taxa. The family Epibryaceae is therefore described to circumscribe a previously un-assigned lineage. Celotheliales ad int. is suggested for the lineage including the lichen genus Celothelium and various plant pathogens. The delimitation of the family Trichomeriaceae is also broadened to include the genus Knufia and some anamorphic taxa. As defined here, Chaetothyriomycetidae includes four orders (Celotheliales ad int., Chaetothyriales, Pyrenulales, and Verrucariales) and ten families (Adelococcaceae, Celotheliaceae, Chaetothyriaceae, Cyphellophoraceae, Epibryaceae fam. nov., Herpotrichiellaceae, Pyrenulaceae, Requienellaceae, Trichomeriaceae, and Verrucariaceae).  相似文献   

2.
Ericaceae associate with a wide spectrum of root mycobionts, but the most common are ascomycetous ericoid mycorrhizal fungi and dark septate endophytes (DSE), followed by basidiomycetous fungi and glomeracean arbuscular mycorrhizal fungi. We investigated distribution and morphological diversity of ericoid mycorrhizae (ErM), DSE associations, ectomycorrhizae (EcM) and arbuscular mycorrhizae (AM) in hair roots of six European native Rhododendron species and found that i) while EcM and AM were absent, ErM and DSE associations were simultaneously present in all screened plants; ii) their levels were negatively correlated, suggesting Ericaceae preference for certain root-fungus association in certain habitats; iii) the highest ErM colonization occurred at sites in southern and central Europe, while the highest DSE colonization was found in a subarctic site in northern Finland and in a subalpine site in the Carpathians, suggesting a latitudinal/altitudinal shift in Ericaceae root-fungus associations; iv) some mycelia could simultaneously form structures corresponding to ErM and DSE association, which occasionally resulted in a unique ectendomycorrhizal colonization comprising an intercellular parenchymatous net and intracellular hyphal coils. These results indicate frequent interactions between ErM fungi and DSE in roots of European rhododendrons and a morphological continuum between ErM and DSE associations. The new ectendomycorrhizal type deserves further investigation.  相似文献   

3.
The unresolved ecophysiological significance of Dark Septate Endophytes (DSE) may be in part due to existence of morphologically indistinguishable cryptic species in the most common Phialocephala fortinii s. l.—Acephala applanata species complex (PAC). We inoculated three middle European forest plants (European blueberry, Norway spruce and silver birch) with 16 strains of eight PAC cryptic species and other DSE and ectomycorrhizal/ericoid mycorrhizal fungi and focused on intraradical structures possibly representing interfaces for plant-fungus nutrient transfer and on host growth response. The PAC species Acephala applanata simultaneously formed structures resembling ericoid mycorrhiza (ErM) and DSE microsclerotia in blueberry. A. macrosclerotiorum, a close relative to PAC, formed ectomycorrhizae with spruce but not with birch, and structures resembling ErM in blueberry. Phialocephala glacialis, another close relative to PAC, formed structures resembling ErM in blueberry. In blueberry, six PAC strains significantly decreased dry shoot biomass compared to ErM control. In birch, one A. macrosclerotiorum strain increased root biomass and the other shoot biomass in comparison with non-inoculated control. The dual mycorrhizal ability of A. macrosclerotiorum suggested that it may form mycorrhizal links between Ericaceae and Pinaceae. However, we were unable to detect this species in Ericaceae roots growing in a forest with presence of A. macrosclerotiorum ectomycorrhizae. Nevertheless, the diversity of Ericaceae mycobionts was high (380 OTUs) with individual sites often dominated by hitherto unreported helotialean and chaetothyrialean/verrucarialean species; in contrast, typical ErM fungi were either absent or low in abundance. Some DSE apparently have a potential to form mycorrhizae with typical middle European forest plants. However, except A. applanata, the tested representatives of all hitherto described PAC cryptic species formed typical DSE colonization without specific structures necessary for mycorrhizal nutrient transport. A. macrosclerotiorum forms ectomycorrhiza with conifers but not with broadleaves and probably does not form common mycorrhizal networks between conifers with Ericaceae.  相似文献   

4.
The Sebacinales are a monophyletic group of ubiquitous hymenomycetous mycobionts which form ericoid and orchid mycorrhizae, ecto- and ectendomycorrhizae, and nonspecific root endophytic associations with a wide spectrum of plants. However, due to the complete lack of fungal isolates derived from Ericaceae roots, the Sebacinales ericoid mycorrhizal (ErM) potential has not yet been tested experimentally. Here, we report for the first time isolation of a serendipitoid (formerly Sebacinales Group B) mycobiont from Ericaceae which survived in pure culture for several years. This allowed us to test its ability to form ericoid mycorrhizae with an Ericaceae host in vitro, to describe its development and colonization pattern in host roots over time, and to compare its performance with typical ErM fungi and other serendipitoids derived from non-Ericaceae hosts. Out of ten serendipitoid isolates tested, eight intracellularly colonized Vaccinium hair roots, but only the Ericaceae-derived isolate repeatedly formed typical ericoid mycorrhiza morphologically identical to ericoid mycorrhiza commonly found in naturally colonized Ericaceae, but yet different from ericoid mycorrhiza formed in vitro by the prominent ascomycetous ErM fungus Rhizoscyphus ericae. One Orchidaceae-derived isolate repeatedly formed abundant hyaline intracellular microsclerotia morphologically identical to those occasionally found in naturally colonized Ericaceae, and an isolate of Serendipita (= Piriformospora) indica produced abundant intracellular chlamydospores typical of this species. Our results confirm for the first time experimentally that some Sebacinales can form ericoid mycorrhiza, point to their broad endophytic potential in Ericaceae hosts, and suggest possible ericoid mycorrhizal specificity in Serendipitaceae.  相似文献   

5.
Roots of plants in the genus Enkianthus, which belongs to the earliest diverging lineage in the Ericaceae, are commonly colonized by arbuscular mycorrhizal (AM) fungi. We documented the community of fungal root endophytes associated with Enkianthus species using a culture-based method for better understanding the members of root-colonizing fungi, except for AM fungi. Fungal isolates were successfully obtained from 610 out of 3,599 (16.9 %) root segments. Molecular analysis of fungal cultures based on ribosomal internal transcribed spacer (ITS) sequences yielded 63 operational taxonomical units (OTUs: 97 % sequence similarity cutoff) from 315 representative isolates. Further phylogenetic analysis showed that most (296 isolates) belonged to Ascomycota and were either members of Helotiales (Dermataceae, Hyaloscyphaceae, Phialocephala and Rhizoscyphus ericae aggregate), Oidiodendron, or other Pezizomycotina. Twenty-three out of 63 OTUs, which mainly consisted of Leotiomycetes, showed high similarities with reference sequences derived from roots of other ericaceous plants such as Rhododendron. The results indicated that Enkianthus houses variable root mycobionts including putative endophytic and mycorrhizal fungi in addition to AM fungi.  相似文献   

6.
Three hundred and twenty-seven fungal endophyte isolates were obtained from hair roots of neighbouring Woollsia pungens Cav. (Muell.) and Leucopogon parviflorus (Andr.) Lindl. (both Ericaceae) plants at an Australian dry sclerophyll forest site and mapped according to the root segments from which they were obtained. Restriction fragment length polymorphism (RFLP) analysis of the rDNA internal transcribed spacer (ITS) region indicated that the isolate assemblage comprised 21 RFLP-types (= putative taxa), five of which were shown in gnotobiotic culture experiments to be ericoid mycorrhizal endophytes. While two mycorrhizal RFLP-types were exclusive to either W. pungens or L. parviflorus, RFLP-type VI was isolated from both hosts. This putative taxon had strong ITS sequence identity with Helotiales ericoid mycorrhizal ascomycetes, comprised ca. 75% of all isolates from each plant and was spatially widespread in both root systems. Inter-simple sequence repeat PCR analysis indicated that two and four genotypes of RFLP-type VI were present in the W. pungens and L. parviflorus root systems respectively, however single genotypes appeared to dominate each root system. One genotype was present in both root systems. The data suggest that assemblages of ericoid mycorrhizal fungi from hair roots of individual Ericaceae plants in dry sclerophyll forest habitats are characterised by relatively low genetic diversity.  相似文献   

7.
Ericaceae (the heath family) are widely distributed calcifuges inhabiting soils with inherently poor nutrient status. Ericaceae overcome nutrient limitation through symbiosis with ericoid mycorrhizal (ErM) fungi that mobilize nutrients complexed in recalcitrant organic matter. At present, recognized ErM fungi include a narrow taxonomic range within the Ascomycota, and the Sebacinales, basal Hymenomycetes with unclamped hyphae and imperforate parenthesomes. Here we describe a novel type of basidiomycetous ErM symbiosis, termed 'sheathed ericoid mycorrhiza', discovered in two habitats in mid-Norway as a co-dominant mycorrhizal symbiosis in Vaccinium spp. The basidiomycete forming sheathed ErM possesses clamped hyphae with perforate parenthesomes, produces 1- to 3-layer sheaths around terminal parts of hair roots and colonizes their rhizodermis intracellularly forming hyphal coils typical for ErM symbiosis. Two basidiomycetous isolates were obtained from sheathed ErM and molecular and phylogenetic tools were used to determine their identity; they were also examined for the ability to form sheathed ErM and lignocellulolytic potential. Surprisingly, ITS rDNA of both conspecific isolates failed to amplify with the most commonly used primer pairs, including ITS1 and ITS1F + ITS4. Phylogenetic analysis of nuclear LSU, SSU and 5.8S rDNA indicates that the basidiomycete occupies a long branch residing in the proximity of Trechisporales and Hymenochaetales, but lacks a clear sequence relationship (>90% similarity) to fungi currently placed in these orders. The basidiomycete formed the characteristic sheathed ErM symbiosis and enhanced growth of Vaccinium spp. in vitro, and degraded a recalcitrant aromatic substrate that was left unaltered by common ErM ascomycetes. Our findings provide coherent evidence that this hitherto undescribed basidiomycete forms a morphologically distinct ErM symbiosis that may occur at significant levels under natural conditions, yet remain undetected when subject to amplification by 'universal' primers. The lignocellulolytic assay suggests the basidiomycete may confer host adaptations distinct from those provisioned by the so far investigated ascomycetous ErM fungi.  相似文献   

8.
To investigate the diversity of root endophytes in Rhododendron fortunei, fungal strains were isolated from the hair roots of plants from four habitats in subtropical forests of China. In total, 220 slow-growing fungal isolates were isolated from the hair roots of R. fortunei. The isolates were initially grouped into 17 types based on the results of internal transcribed spacer-restriction fragment length polymorphism (ITS-RFLP) analysis. ITS sequences were obtained for representative isolates from each RFLP type and compared phylogenetically with known sequences of ericoid mycorrhizal endophytes and selected ascomycetes or basidiomycetes. Based on phylogenetic analysis of the ITS sequences in GenBank, 15 RFLP types were confirmed as ascomycetes, and two as basidiomycetes; nine of these were shown to be ericoid mycorrhizal endophytes in experimental cultures. The only common endophytes of R. fortunei were identified as Oidiodendron maius at four sites, although the isolation frequency (3–65%) differed sharply according to habitat. Phialocephala fortinii strains were isolated most abundantly from two habitats which related to the more acidic soil and pine mixed forests. A number of less common mycorrhizal RFLP types were isolated from R. fortunei at three, two, or one of the sites. Most of these appeared to have strong affinities for some unidentified root endophytes from Ericaceae hosts in Australian forests. We concluded that the endophyte population isolated from R. fortunei is composed mainly of ascomycete, as well as a few basidiomycete strains. In addition, one basidiomycete strain was confirmed as a putative ericoid mycorrhizal fungus.  相似文献   

9.
This study aimed to isolate, identify, and characterise metal-tolerant fungi colonising poplar roots at a metal-contaminated phytoremediation site. Poplar roots were colonised by arbuscular mycorrhizal, ectomycorrhizal, and endophytic fungi, and the species were determined by ITS molecular analyses. Eight different isolates were successfully isolated into pure culture. Three isolates belonging to the Helotiales (P02, P06) and the Serendipita vermifera species (P04) were highly tolerant to metals (Cd, Zn, Pb, and Cu) compared to the mycorrhizal Hebeloma isolates. The three isolates degraded complex carbohydrates, such as xylan and cellulose, indicating that they could partially degrade root cell walls and penetrate into cells. This hypothesis was confirmed by further in vitro re-synthesis experiments, which showed that the three isolates colonised root tissues of poplar plantlets whereas two of them formed microsclerotia-like structures. Taken together, these results suggest an endophytic lifestyle of these isolates. This is the first evidence of S. vermifera as a root endophyte of poplar. A new endophytic putative species belonging to the Helotiales and closely related to Leohumicola is also reported. Interestingly, and when compared to mock-inoculated plants, both P06 and P04 isolates increased the number of root tips of inoculated poplar plantlets in vitro. Moreover, the S. vermifera P04 isolate also increased the shoot biomass. The results are discussed in relation to the potential use of endophytic strains for tree-based phytoremediation of metal-contaminated sites.  相似文献   

10.
Beta-glucuronidase-negative, sorbitol-nonfermenting isolates of Shiga toxin-producing Escherichia coli O157 comprise part of a clone complex of related enterohemorrhagic E. coli isolates. High-resolution genotyping shows that the O157 populations have diverged into two different lineages that appear to have different ecologies. To identify genomic regions unique to the most common human-associated genotype, suppression subtractive hybridization was used to identify DNA sequences present in two clinical strains representing the human lineage I O157:H7 strains but absent from two bovine-derived lineage II strains. PCR assays were then used to test for the presence of these regions in 10 lineage I strains and 20 lineage II strains. Twelve conserved regions of genomic difference for lineage I (CRDI) were identified that were each present in at least seven of the lineage I strains but absent in most of the lineage II strains tested. The boundaries of the lineage I conserved regions were further delimited by PCR. Eleven of these CRDI were associated with E. coli Sakai S-loops 14, 16, 69, 72, 78, 82, 83, 91 to 93, 153, and 286, and the final CRDI was located on the pO157 virulence plasmid. Several potential virulence factors were identified within these regions, including a putative hemolysin-activating protein, an iron transport system, and several possible regulatory genes. Cluster analysis based on lineage I conserved regions showed that the presence/absence of these regions was congruent with the inferred phylogeny of the strains.  相似文献   

11.
Plant mycorrhizal associations influence the accumulation and persistence of soil organic matter and could therefore shape ecosystem biogeochemical responses to global changes that are altering forest composition. For instance, arbuscular mycorrhizal (AM) tree dominance is increasing in temperate forests, and ericoid mycorrhizal (ErM) shrubs can respond positively to canopy disturbances. Yet how shifts in the co-occurrence of trees and shrubs with different mycorrhizal associations will affect soil organic matter pools remains largely unknown. We examine the effects of ErM shrubs on soil carbon and nitrogen stocks and indicators of microbial activity at different depths across gradients of AM versus ectomycorrhizal (EcM) tree dominance in three temperate forest sites. We find that ErM shrubs strongly modulate tree mycorrhizal dominance effects. In surface soils, ErM shrubs increase particulate organic matter accumulation and weaken the positive relationship between soil organic matter stocks and indicators of microbial activity. These effects are strongest under AM trees that lack fungal symbionts that can degrade organic matter. In subsurface soil organic matter pools, by contrast, tree mycorrhizal dominance effects are stronger than those of ErM shrubs. Ectomycorrhizal tree dominance has a negative influence on particulate and mineral-associated soil organic matter pools, and these effects are stronger for nitrogen than for carbon stocks. Our findings suggest that increasing co-occurrence of ErM shrubs and AM trees will enhance particulate organic matter accumulation in surface soils by suppressing microbial activity while having little influence on mineral-associated organic matter in subsurface soils. Our study highlights the importance of considering interactions between co-occurring plant mycorrhizal types, as well as their depth-dependent effects, for projecting changes in soil carbon and nitrogen stocks in response to compositional shifts in temperate forests driven by disturbances and global change.  相似文献   

12.
In natural forests, hundreds of fungal species colonize plant roots. The preference or specificity for partners in these symbiotic relationships is a key to understanding how the community structures of root‐associated fungi and their host plants influence each other. In an oak‐dominated forest in Japan, we investigated the root‐associated fungal community based on a pyrosequencing analysis of the roots of 33 plant species. Of the 387 fungal taxa observed, 153 (39.5%) were identified on at least two plant species. Although many mycorrhizal and root‐endophytic fungi are shared between the plant species, the five most common plant species in the community had specificity in their association with fungal taxa. Likewise, fungi displayed remarkable variation in their association specificity for plants even within the same phylogenetic or ecological groups. For example, some fungi in the ectomycorrhizal family Russulaceae were detected almost exclusively on specific oak (Quercus) species, whereas other Russulaceae fungi were found even on “non‐ectomycorrhizal” plants (e.g., Lyonia and Ilex). Putatively endophytic ascomycetes in the orders Helotiales and Chaetothyriales also displayed variation in their association specificity and many of them were shared among plant species as major symbionts. These results suggest that the entire structure of belowground plant–fungal associations is described neither by the random sharing of hosts/symbionts nor by complete compartmentalization by mycorrhizal type. Rather, the colonization of multiple types of mycorrhizal fungi on the same plant species and the prevalence of diverse root‐endophytic fungi may be important features of belowground linkage between plant and fungal communities.  相似文献   

13.
Four in vitro experiments were set up to verify the colonization potential of ectomycorrhizal (EcM) Cenococcum geophilum FR. (strain CGE-4), saprotrophic Geomyces pannorum (LINK) SIGLER & CARMICHAEL (GPA-1) and a frequent root-associated, potentially ericoid mycorrhiza (ErM)-forming Meliniomyces variabilis Hambleton & Sigler (MVA-1) in roots of Rhododendron and Vaccinium. A typical ErM fungus, Rhizoscyphus ericae (Read) Zhuang & Korf (RER-1), was included for comparison. All fungal strains intracellularly colonized rooted Vaccinium microcuttings: GPA-1 occasionally produced hyphal loops similar to ErM, MVA-1 and RER-1 exhibited a typical ErM colonization pattern. CGE-4 hyphae grew vigorously on and around newly formed roots and rarely penetrated turgescent rhizodermal cells forming intracellular loose loops. Rooting of Rhododendron sp. microcuttings was not promoted by any fungal strain except CGE-4, which also promoted the most vigorous growth of Rhododendron ponticum L. seedlings. The widespread EcM fungus C. geophilum has a potential to colonize non-EcM roots and support their development which may influence overall growth of ericaceous plants. As shown for G. pannorum, structures resembling ErM may be formed by fungi that are to date not regarded as ericoid mycorrhizal.  相似文献   

14.
Ericoid mycorrhizal fungal endophytes form mycorrhizal associations with Ericaceae plant taxa and are regarded as essential to the ecological fitness of the plants in extremely nutrient-poor soils worldwide. We isolated fungi from roots of Epacris pulchella (Ericaceae) in a south-eastern Australian sclerophyll forest and compared rDNA internal transcribed spacer (ITS) restriction fragment length polymorphisms (RFLPs) and sequences for the cultured isolate assemblage with fungi identified in DNA extracted directly from the same root systems by cloning or denaturing gradient gel electrophoresis (DGGE). The most abundant RFLP types in the cultured isolate assemblage were identified as putative ericoid mycorrhizal ascomycete endophytes, and these also represented the most abundant RFLP types in the cloned assemblage and the most intense bands in DGGE profiles. Each method identified unique taxa, notably putative basidiomycetes in the DNA extracted directly from E. pulchella roots. However, the relative abundance of these was low.  相似文献   

15.
Responses of the mycorrhizal fungal community in terrestrial ecosystems to global change factors are not well understood. However, virtually all land plants form symbiotic associations with mycorrhizal fungi, with approximately 20% of the plants' net primary production transported down to the fungal symbionts. In this study, we investigated how ericoid mycorrhiza (ErM), fine endophytes (FE) and dark septate endophytes (DSE) in roots responded to elevated atmospheric CO2 concentrations and warming in the dwarf shrub understory of a birch forest in the subarctic region of northern Sweden. To place the belowground results into an ecosystem context we also investigated how plant cover and nutrient concentrations in leaves responded to elevated atmospheric CO2 concentrations and warming. The ErM colonization in ericaceous dwarf shrubs increased under elevated atmospheric CO2 concentrations, but did not respond to warming following 6 years of treatment. This suggests that the higher ErM colonization under elevated CO2 might be due to increased transport of carbon belowground to acquire limiting resources such as N, which was diluted in leaves of ericaceous plants under enhanced CO2. The elevated CO2 did not affect total plant cover but the plant cover was increased under warming, which might be due to increased N availability in soil. FE colonization in grass roots decreased under enhanced CO2 and under warming, which might be due to increased root growth, to which the FE fungi could not keep up, resulting in proportionally lower colonization. However, no responses in aboveground cover of Deschampsia flexuosa were seen. DSE hyphal colonization in grass roots significantly increased under warmer conditions, but did not respond to elevated CO2. This complex set of responses by mycorrhizal and other root‐associated fungi to global change factors of all the fungal types studied could have broad implications for plant community structure and biogeochemistry of subarctic ecosystems.  相似文献   

16.
Ericoid mycorrhizal fungi (ERM) may specialize in capturing nutrients from their host's litter as a strategy for regulating nutrient cycles in terrestrial ecosystems. In spite of their potential significance, we know little about the structure of ERM fungal communities and the genetic basis of their saprotrophic traits (e.g., genes encoding extracellular enzymes). Rhododendron maximum is a model ERM understory shrub that influences the nutrient cycles of montane hardwood forests in the southern Appalachians (North Carolina, USA). We sampled ERM roots of R. maximum from organic and mineral soil horizons and identified root fungi by amplifying and sequencing internal transcribed spacer (ITS) ribosomal DNA (rDNA) collected from cultures and clones. We observed 71 fungal taxa on ERM roots, including known symbionts Rhizoscyphus ericae and Oidiodendron maius, putative symbionts from the Helotiales, Chaetothyriales, and Sebacinales, ectomycorrhizal symbionts, and saprotrophs. Supporting the idea that ERM fungi are adept saprotrophs, richness of root-fungi was greater in organic than in mineral soil horizons. To study the genetic diversity of oxidative enzymes that contribute to decomposition, we amplified and sequenced a portion of genes encoding multicopper oxidases (MCOs) from ERM ascomycetes. Most fungi possessed multiple copies of MCO sequences with strong similarities to known ferroxidases and laccases. Our findings indicate that R. maximum associates with a taxonomically and ecologically diverse fungal community. The study of MCO gene diversity and expression may be useful for understanding how ERM root fungi regulate the cycling of nutrients between the host plant and the soil environment.  相似文献   

17.
Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae   总被引:1,自引:0,他引:1  
The class Eurotiomycetes (Ascomycota, Pezizomycotina) is a monophyletic group comprising two major clades of very different ascomycetous fungi: (i) the subclass Eurotiomycetidae, a clade that contains most of the fungi previously recognized as Plectomycetes because of their mostly enclosed ascomata and prototunicate asci; and (ii) the subclass Chaetothyriomycetidae, a group of fungi that produce ascomata with an opening reminiscent of those produced by Dothideomycetes or Sordariomycetes. In this paper we use phylogenetic analyses based on data available from the Assembling the Fungal Tree of Life project (AFTOL), in addition to sequences in GenBank, to outline this important group of fungi. The Eurotiomycetidae include producers of toxic and useful secondary metabolites, fermentation agents used to make food products and enzymes, xerophiles and psychrophiles, and the important genetics model Aspergillus nidulans. The Chaetothyriomycetidae include the common black yeast fungi, some of which are pathogens of humans and animals, as well as some primarily lichenized groups newly found to be phylogenetically associated with this group. The recently proposed order Mycocaliciales shows a sister relationship with Eurotiomycetes. The great majority of human pathogenic Pezizomycotina are Eurotiomycetes, particularly in Eurotiales, Onygenales and Chaetothyriales. Due to their broad importance in basic research, industry and public health, several genome projects have focused on species in Onygenales and Eurotiales.  相似文献   

18.

Aims

This study aimed to determine the effect of arbuscular mycorrhizal (AM) fungi and phosphorus (P) supply levels on β-carotene concentrations in sweet potato (Ipomoea batatas L.) tubers.

Methods

Two commercial AM fungal isolates of Glomus intraradices (IFP Glintra) and Glomus mosseae (IFP Glm) which differ in their life cycles were used. Sweet potato plants were grown in a horizontal split-root system that consisted of two root compartments. A root-free fungal compartment that allowed the quantification of mycelial development was inserted into each root compartment. The two root compartments were inoculated either with the same or with different AM isolates, or remained free of mycorrhizal propagules. Each fungal treatment was carried out in two P supply levels.

Results

In the low P supply level, mycorrhizal colonization significantly increased β-carotene concentrations in sweet potato tubers compared with the non-mycorrhizal plants. Glomus intraradices appeared to be more efficient in increasing β-carotene concentrations than G. mosseae. Dual inoculation of the root system with the two mycorrhizal fungi did not result in a higher increase in tuber β-carotene concentrations than inoculation with the single isolates. Improved P nutrition led to higher plant tuber biomass but was not associated with increased β-carotene concentrations.

Conclusions

The results indicate a remarkable potential of mycorrhizal fungi to improve β-carotene concentrations in sweet potato tubers in low P fertilized soils. These results also suggest that β-carotene metabolism in sweet potato tubers might be specifically activated by root mycorrhizal colonization.  相似文献   

19.
Cichlid fishes are emblematic models for the study of adaptive radiation, driven by natural and sexual selection. Parasite mediated selection is an important component in these processes, and the evolution of their immune system therefore merits special attention. In this study, light is shed on the phylogeny of the b family of cichlid major histocompatibility complex (MHC) class IIB genes. Full-length coding sequences were used to reconstruct phylogenies using criteria of maximum parsimony, maximum likelihood and Bayesian inference. All analyses suggest monophyly of the b family of cichlid MHC class IIB genes, although sequences of the cichlid sister taxa are currently not available. Two evolutionary lineages of these genes, respectively encompassing the recently defined genomic regions DBB-DEB-DFB and DCB-DDB, show highly contrasting levels of differentiation. To explore putative causes for these differences, exon 2 sequences were screened for variation in recombination rate and strength of selection. The more diversified lineage of cichlid MHC class IIB b genes was found to have higher levels of both recombination and selection. This is consistent with the observation in other taxa that recombination facilitates the horizontal spread of positively selected sites across MHC loci and hence contributes to fast sequence evolution. In contrast, the lineage that showed low diversification might either be under stabilizing selection or is evolutionary constrained by its low recombination rate. We speculate whether this lineage might include MHC genes with non-classical functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号