首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of selective sweeps to pinpoint causative genomic regions involved in chicken domestication has revealed a strong selective sweep on chromosome 4 in layer chickens. The autoregulatory α-adrenergic receptor 2C (ADRA2C) gene is the closest to the selective sweep and was proposed as an important gene in the domestication of layer chickens. The ADRA2C promoter region was also hypermethylated in comparison to the non-selected ancestor of all domesticated chicken breeds, the Red Junglefowl, further supporting its relevance. In mice the receptor is involved in the fight-or-flight response as it modulates epinephrine release from the adrenals. To investigate the involvement of ADRA2C in chicken domestication, we measured gene expression in the adrenals and radiolabeled receptor ligand in three brain regions comparing the domestic White Leghorn strain with the wild ancestor Red Junglefowl. In adrenals ADRA2C was twofold greater expressed than the related receptor gene ADRA2A, indicating that ADRA2C is the predominant modulator of epinephrine release but no strain differences were measured. In hypothalamus and amygdala, regions associated with the stress response, and in striatum, receptor binding pIC50 values ranged between 8.1–8.4, and the level was not influenced by the genotyped allele. Because chicken strains differ in morphology, physiology and behavior, differences attributed to a single gene may be lost in the noise caused by the heterogeneous genetic background. Therefore an F10 advanced intercross strain between White Leghorn and Red Junglefowl was used to investigate effects of ADRA2C alleles on fear related behaviors and fecundity. We did not find compelling genotype effects in open field, tonic immobility, aerial predator, associative learning or fecundity. Therefore we conclude that ADRA2C is probably not involved in the domestication of the stress response in chicken, and the strong selective sweep is probably caused by selection of some unknown genetic element in the vicinity of the gene.  相似文献   

2.
Itoh Y  Kampf K  Arnold AP 《Chromosoma》2011,120(6):587-598
The male hypermethylated (MHM) region of the chicken Z chromosome encodes a non-coding RNA that is expressed only in females. The MHM sequence is found only in galliform birds, and Z genes near this region show an unusual degree of dosage compensation between males and females despite the overall low level of dosage compensation in Z chromosome gene expression in birds. Here we report that the MHM locus shows a dramatic sex difference in the configuration of chromatin, open in females and condensed in males, based on DNA fluorescent in situ hybridization of an MHM probe in interphase nuclei. The demethylating agent 5-aza-cytidine causes an asymmetric effect on the two Z chromosomes of males, altering the chromatin configuration, MHM RNA expression, and H4K16Ac modification, suggesting an inequality in the methylation status and chromatin of the two Z chromosomes. We identified numerous MHM-related genomic and RNA sequences that possess a short conserved sequence common to the majority of clones, suggesting the functional importance of the MHM region. Some of the RNA sequences, which like MHM are expressed in females but not in males, are likely to be polyadenylated and have genomic intron/exon structure. The turkey, another galliform bird, has repetitive sequences in the predicted turkey MHM region, raising the question of regional dosage compensation in the turkey as in the chicken.  相似文献   

3.
Regional variation in sex-specific gene regulation has been observed across sex chromosomes in a range of animals and is often a function of sex chromosome age. The avian Z chromosome exhibits substantial regional variation in sex-specific regulation, where older regions show elevated levels of male-biased expression. Distinct sex-specific regulation also has been observed across the male hypermethylated (MHM) region, which has been suggested to be a region of nascent dosage compensation. Intriguingly, MHM region regulatory features have not been observed in distantly related avian species despite the hypothesis that it is situated within the oldest region of the avian Z chromosome and is therefore orthologous across most birds. This situation contrasts with the conservation of other aspects of regional variation in gene expression observed on the avian sex chromosomes but could be the result of sampling bias. We sampled taxa across the Galloanserae, an avian clade spanning 90 million years, to test whether regional variation in sex-specific gene regulation across the Z chromosome is conserved. We show that the MHM region is conserved across a large portion of the avian phylogeny, together with other sex-specific regulatory features of the avian Z chromosome. Our results from multiple lines of evidence suggest that the sex-specific expression pattern of the MHM region is not consistent with nascent dosage compensation.  相似文献   

4.
Red Junglefowl (Gallus gallus) are among the few remaining ancestors of an extant domesticated livestock species, the domestic chicken, that still occur in the wild. Little is known about genetic diversity, population structure, and demography of wild Red Junglefowl in their natural habitats. Extinction threats from habitat loss or genetic alteration from domestic introgression exacerbate further the conservation status of this progenitor species. In a previous study, we reported extraordinary adaptive genetic variation in the MHC B‐locus in wild Red Junglefowl and no evidence of allelic introgression between wild and domestic chickens was observed. In this study, we characterized spatial genetic variation and population structure in naturally occurring populations of Red Junglefowl in their core distribution range in South Central Vietnam. A sample of 212 Red Junglefowl was obtained from geographically and ecologically diverse habitats across an area of 250 × 350 km. We used amplified fragment‐length polymorphism markers obtained from 431 loci to determine whether genetic diversity and population structure varies. We found that Red Junglefowl are widely distributed but form small and isolated populations. Strong spatial genetic patterns occur at both local and regional scales. At local scale, population stratification can be identified to approximately 5 km. At regional scale, we identified distinct populations of Red Junglefowl in the southern lowlands, northern highlands, and eastern coastal portions of the study area. Both local and long‐distance genetic patterns observed in wild Red Junglefowl may reflect the species’ ground‐dwelling and territorial characteristics, including dispersal barriers imposed by the Annamite Mountain Range. Spatially explicit analyses with neutral genetic markers can be highly informative and here elevates the conservation profile of the wild ancestors of domesticated chickens.  相似文献   

5.
Birds have a unique bone physiology, due to the demands placed on them through egg production. In particular their medullary bone serves as a source of calcium for eggshell production during lay and undergoes continuous and rapid remodelling. We take advantage of the fact that bone traits have diverged massively during chicken domestication to map the genetic basis of bone metabolism in the chicken. We performed a quantitative trait locus (QTL) and expression QTL (eQTL) mapping study in an advanced intercross based on Red Junglefowl (the wild progenitor of the modern domestic chicken) and White Leghorn chickens. We measured femoral bone traits in 456 chickens by peripheral computerised tomography and femoral gene expression in a subset of 125 females from the cross with microarrays. This resulted in 25 loci for female bone traits, 26 loci for male bone traits and 6318 local eQTL loci. We then overlapped bone and gene expression loci, before checking for an association between gene expression and trait values to identify candidate quantitative trait genes for bone traits. A handful of our candidates have been previously associated with bone traits in mice, but our results also implicate unexpected and largely unknown genes in bone metabolism. In summary, by utilising the unique bone metabolism of an avian species, we have identified a number of candidate genes affecting bone allocation and metabolism. These findings can have ramifications not only for the understanding of bone metabolism genetics in general, but could also be used as a potential model for osteoporosis as well as revealing new aspects of vertebrate bone regulation or features that distinguish avian and mammalian bone.  相似文献   

6.
7.
8.
A growth‐related QTL on chicken chromosome 1 has previously been shown to influence domestication behaviour in chickens. In this study, we used Red Junglefowl (RJF) and White Leghorn (WL) as well as the intercross between them to investigate whether stress affects the way birds allocate their time between familiar and unfamiliar conspecifics in a social preference test (‘social support seeking’), and how this is related to genotype at specific loci within the growth QTL. Red Junglefowl males spent more time with unfamiliar chickens before the stressful event compared to the other birds, whereas all birds except WL males tended to spend less time with unfamiliar ones after stress. A significant QTL locus was found to influence both social preference under undisturbed circumstances and social support seeking. The WL allele at this QTL was associated not only with a preference for unfamiliar individuals but also with a shift towards familiar ones in response to stress (social support seeking). A second, suggestive QTL also affected social support seeking, but in the opposite direction; the WL allele was associated with increased time spent with unfamiliar individuals. The region contains several possible candidate genes, and gene expression analysis of a number of them showed differential expression between RJF and WL of AVPR2 (receptor for vasotocin), and possibly AVPR1a (another vasotocin receptor) and NRCAM (involved in neural development) in the lower frontal lobes of the brains of RJF and WL animals. These three genes continue to be interesting candidates for the observed behavioural effects .  相似文献   

9.
10.
In many organisms, dosage compensation is needed to equalize sex-chromosome gene expression in males and females. Several genes on silkworm Z chromosome were previously detected to show a higher expression level in males and lacked dosage compensation. Whether silkworm lacks global dosage compensation still remains poorly known. Here, we analyzed male:female (M:F) ratios of expression of chromosome-wide Z-linked genes in the silkworm using microarray data. The expression levels of genes on Z chromosome in each tissue were significantly higher in males compared to females, which indicates no global dosage compensation in silkworm. Interestingly, we also found some genes with no bias (M:F ratio: 0.8–1.2) on the Z chromosome. Comparison of male-biased (M:F ratio more than 1.5) and unbiased genes indicated that the two sets of the genes have functional differences. Analysis of gene expression by sex showed that M:F ratios were, to some extent, associated with their expression levels. These results provide useful clues to further understanding roles of dosage of Z chromosome and some Z-linked sexual differences in silkworms.  相似文献   

11.
12.
D P Frisby  R A Weiss  M Roussel  D Stehelin 《Cell》1979,17(3):623-634
The chicken is a domesticated form of Red Jungle-fowl (Gallus gallus), which belongs to the Pheasant family (Phasianidae) within the order Galliformes. Domestic chickens carry the genome of the endogenous retrovirus RAV-O as DNA sequences integrated into host chromosomes transmitted through the germ line. We have examined the presence and distribution of RAV-O-related sequences in the DNA of Red Junglefowl and other closely related species of Junglefowl, as well as more distantly related Pheasants and Quail. DNA sequences homologous to RAV-O were analyzed by molecular hybridization in liquid and after electrophoresis of restriction endonuclease fragments. The presence of RAV-O-related sequences in avian DNA does not correlate with phylogenetic relationships. Under stringent conditions of hybridization in liquid, DNA sequences homologous to RAV-O cDNA were detected at high levels (greater than 80% homology( only in the genomes of the domestic chicken and its phylogenetic ancestor, the Red Junglefowl (Gallus gallus). The DNA of two other species of Gallus (G. sonnerati, Sonnerat's Junglefowl and G. varius, Green Junglefowl), of Ring-necked Pheasant and of Japanese Quail contained sequences with less than 10% homology to RAV-O cDNA. Under conditions permitting mismatching, however, Ring-necked Pheasant DNA hybridized up to 50% of the RAV-O cDNA, and Quail DNA 24%, whereas the extent of hybridization to Sonnerat's and Green Junglefowl DNA was not markedly increased. Analysis of restriction enzyme digests revealed several distinct fragments of DNA hybridizing to chick retrovirus cDNA in both Red Junglefowl and domestic chicken, and multiple fragments in DNA from two species of Phasianus. No fragments with sequences related to chicken retroviruses were found, however, in digests of DNA prepared from Sonnerat's, Ceylonese and Green Junglefowl, from two other Pheasant genera (Chrysolophus and Lophura), or from one Quail genus (Coturnix). Thus the DNA of three Junglefowl species closely related to Gallus gallus lacked RAV-O sequences while the DNA of more distantly related Phasianus species showed significant homology. These results show that RAV-O-related sequences have not diverged together with the normal host genes during the evolution of the Phasianidae. Although RAV-O sequences are endogenous in all domestic chickens and Red Junglefowl studied thus far, it appears that the RAV-O genome has been introduced relatively recently into the germ line of Gallus gallus, following speciation but before domestication, and independently of the related sequences found in members of the genus Phasianus.  相似文献   

13.
14.
Abnormalities in chromosome number have the potential to disrupt the balance of gene expression and thereby decrease organismal fitness and viability. Such abnormalities occur in most solid tumors and also cause severe developmental defects and spontaneous abortions. In contrast to the imbalances in chromosome dose that cause pathologies, the difference in X-chromosome dose used to determine sexual fate across diverse species is well tolerated. Dosage compensation mechanisms have evolved in such species to balance X-chromosome gene expression between the sexes, allowing them to tolerate the difference in X-chromosome dose. This review analyzes the chromosome counting mechanism that tallies X-chromosome number to determine sex (XO male and XX hermaphrodite) in the nematode Caenorhabditis elegans and the associated dosage compensation mechanism that balances X-chromosome gene expression between the sexes. Dissecting the molecular mechanisms underlying X-chromosome counting has revealed how small quantitative differences in intracellular signals can be translated into dramatically different fates. Dissecting the process of X-chromosome dosage compensation has revealed the interplay between chromatin modification and chromosome structure in regulating gene expression over vast chromosomal territories.  相似文献   

15.
Domesticated species differ from their wild ancestors in a number of traits, generally referred to as the domesticated phenotype. Reduced fear of humans is assumed to have been an early prerequisite for the successful domestication of virtually all species. We hypothesized that fear of humans is linked to other domestication related traits. For three generations, we selected Red Junglefowl (ancestors of domestic chickens) solely on the reaction in a standardized Fear of Human-test. In this, the birds were exposed for a gradually approaching human, and their behaviour was continuously scored. This generated three groups of animals, high (H), low (L) and intermediate (I) fearful birds. The birds in each generation were additionally tested in a battery of behaviour tests, measuring aspects of fearfulness, exploration, and sociality. The results demonstrate that the variation in fear response of Red Junglefowl towards humans has a significant genetic component and is genetically correlated to behavioural responses in other contexts, of which some are associated with fearfulness and others with exploration. Hence, selection of Red Junglefowl on low fear for humans can be expected to lead to a correlated change of other behavioural traits over generations. It is therefore likely that domestication may have caused an initial suite of behavioural modifications, even without selection on anything besides tameness.  相似文献   

16.
17.
The thyroid stimulating hormone receptor (TSHR) has been suggested to be a “domestication locus” in the chicken, due to a strong selective sweep over the gene found in domesticated chickens, differentiating them from their wild ancestor the Red Junglefowl (RJF). We investigated the effect of the mutation on development (incubation time), behaviour and thyroid hormone levels in intercross chickens homozygous for the mutation (d/d), wild type homozygotes (w/w) or heterozygotes (d/w). This allowed an assessment of the effect of genotype at this locus against a random mix of RJF and WL genotypes throughout the rest of the genome, controlling for family effects. The d/d genotype showed a longer incubation time, less fearful behaviours, lower number of aggressive behaviours and decreased levels of the thyroid hormone T4, in comparison to the w/w genotype. The difference between TSHR genotypes (d/d vs. w/w) in these respects mirrors the differences in development and behaviour between pure domesticated White Leghorns and pure RJF chickens. Higher individual T3 and T4 levels were associated with more aggression. Our study indicates that the TSHR mutation affects typical domestication traits, possibly through modifying plasma levels of thyroid hormones, and may therefore have been important during the evolution of the domestic chicken.  相似文献   

18.
Maintenance of dosage compensation for housekeeping genes on the human X chromosome is mediated through differential methylation of clustered CpG nucleotides associated with these genes. To determine if methylation has a role in maintaining inactivity of X-linked genes which show tissue-specific expression, we examined the locus for blood clotting Factor IX. The analysis encompassed 91% of the HpaII and HhaI sites in the 41-kb region that includes the presumed promoter region, 5 kb of 5'- and 4 kb of 3'-flanking sequences. Although there are sex differences in methylation of the locus in leukocytes, the methylation pattern in liver, where the gene is expressed, is essentially the same for loci on the active and inactive X chromosome. The lack of differences in methylation of active and inactive genes makes it unlikely that methylation within the locus has a role in expression of the Factor IX gene. These findings, along with the absence of clustered CpG dinucleotides within the Factor IX locus, suggest that functional differences in DNA methylation related to X chromosome dosage compensation may be limited to CpG clusters. In any event, dosage compensation seems to be maintained regionally, rather than locus by locus.  相似文献   

19.
Dosage compensation ensures similar levels of X-linked gene products in males (XY or XO) and females (XX), despite their different numbers of X chromosomes. In mammals, flies, and worms, dosage compensation is mediated by a specialized machinery that localizes to one or both of the X chromosomes in one sex resulting in a change in gene expression from the affected X chromosome(s). In mammals and flies, dosage compensation is associated with specific histone posttranslational modifications and replacement with variant histones. Until now, no specific histone modifications or histone variants have been implicated in Caenorhabditis elegans dosage compensation. Taking a candidate approach, we have looked at specific histone modifications and variants on the C. elegans dosage compensated X chromosomes. Using RNAi-based assays, we show that reducing levels of the histone H2A variant, H2A.Z (HTZ-1 in C. elegans), leads to partial disruption of dosage compensation. By immunofluorescence, we have observed that HTZ-1 is under-represented on the dosage compensated X chromosomes, but not on the non-dosage compensated male X chromosome. We find that reduction of HTZ-1 levels by RNA interference (RNAi) and mutation results in only a very modest change in dosage compensation complex protein levels. However, in these animals, the X chromosome–specific localization of the complex is partially disrupted, with some nuclei displaying DCC localization beyond the X chromosome territory. We propose a model in which HTZ-1, directly or indirectly, serves to restrict the dosage compensation complex to the X chromosome by acting as or regulating the activity of an autosomal repellant.  相似文献   

20.
A wide diversity of domesticated chicken breeds exist due to artificial selection on the basis of human interests. Miniature variants (bantams) are eminently illustrative of the large changes from ancestral junglefowls. In this report, the genetic characterization of seven Japanese miniature chicken breeds and varieties, together with institute-kept Red Junglefowl, was conducted by means of typing 40 microsatellites located on 21 autosomes. We drew focus to genetic differentiation between the miniature chicken breeds and Red Junglefowl in particular. A total of 305 alleles were identified: 27 of these alleles (8.9%) were unique to the Red Junglefowl with high frequencies (>20%). Significantly high genetic differences ( F ST) were obtained between Red Junglefowl and all other breeds with a range of 0.3901–0.5128. Individual clustering (constructed from combinations of the proportion of shared alleles and the neighbour-joining method) indicated high genetic divergence among breeds including Red Junglefowl. There were also individual assignments on the basis of the Bayesian and distance-based approaches. The microsatellite differences in the miniature chicken breeds compared to the presumed wild ancestor reflected the phenotypic diversity among them, indicating that each of these miniature chicken breeds is a unique gene pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号