首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
There is a growing interest to improve feed efficiency (FE) traits in cattle. The genomic selection was proposed to improve these traits since they are difficult and expensive to measure. Up to date, there are scarce studies about the implementation of genomic selection for FE traits in indicine cattle under different scenarios of pseudo-phenotypes, models, and validation strategies on a commercial large scale. Thus, the aim was to evaluate the feasibility of genomic selection implementation for FE traits in Nelore cattle applying different models and pseudo-phenotypes under validation strategies. Phenotypic and genotypic information from 4 329 and 3 467 animals were used, respectively, which were tested for residual feed intake, DM intake, feed efficiency, feed conversion ratio, residual BW gain, and residual intake and BW gain. Six prediction methods were used: single-step genomic best linear unbiased prediction, Bayes A, Bayes B, Bayes Cπ, Bayesian least absolute shrinkage and selection operator (BLASSO), and Bayes R. Phenotypes adjusted for fixed effects (Y*), estimated breeding value (EBV), and EBV deregressed (DEBV) were used as pseudo-phenotypes. The validation approaches used were: (1) random: the data was randomly divided into ten subsets and the validation was done in each subset at a time; (2) age: the partition into training and testing sets was based on year of birth and testing animals were born after 2016; and (3) EBV accuracy: the data was split into two groups, being animals with accuracy above 0.45 the training set; and below 0.45 the validation set. In the analyses that used the Y* as pseudo-phenotype, prediction ability (PA) was obtained by dividing the correlation between pseudo-phenotype and genomic EBV (GEBV) by the square root of the heritability of the trait. When EBV and DEBV were used as the pseudo-phenotype, the simple correlation of this quantity with the GEBV was considered as PA. The prediction methods show similar results for PA and bias. The random cross-validation presented higher PA (0.17) than EBV accuracy (0.14) and age (0.13). The PA was higher for Y* than for EBV and DEBV (30.0 and 34.3%, respectively). Random validation presented the highest PA, being indicated for use in populations composed mainly of young animals and traits with few generations of data recording. For high heritability traits, the validation can be done by age, enabling the prediction of the next-generation genetic merit. These results would support breeders to identify genomic approaches that are more viable for genomic prediction for FE-related traits.  相似文献   

2.
Yi Jia  Jean-Luc Jannink 《Genetics》2012,192(4):1513-1522
Genetic correlations between quantitative traits measured in many breeding programs are pervasive. These correlations indicate that measurements of one trait carry information on other traits. Current single-trait (univariate) genomic selection does not take advantage of this information. Multivariate genomic selection on multiple traits could accomplish this but has been little explored and tested in practical breeding programs. In this study, three multivariate linear models (i.e., GBLUP, BayesA, and BayesCπ) were presented and compared to univariate models using simulated and real quantitative traits controlled by different genetic architectures. We also extended BayesA with fixed hyperparameters to a full hierarchical model that estimated hyperparameters and BayesCπ to impute missing phenotypes. We found that optimal marker-effect variance priors depended on the genetic architecture of the trait so that estimating them was beneficial. We showed that the prediction accuracy for a low-heritability trait could be significantly increased by multivariate genomic selection when a correlated high-heritability trait was available. Further, multiple-trait genomic selection had higher prediction accuracy than single-trait genomic selection when phenotypes are not available on all individuals and traits. Additional factors affecting the performance of multiple-trait genomic selection were explored.  相似文献   

3.
In maize breeding, genomic prediction may be an efficient tool for selecting single-crosses evaluated under abiotic stress conditions. In addition, a promising strategy is applying multiple-trait genomic prediction using selection indices (SIs), increasing genetics gains and reducing time per cycles. In this study, we aimed (i) to compare accuracy of single- and multi-trait genomic prediction (STGP; MTGP) in two maize datasets, (ii) to evaluate prediction of four selection indices that could contribute to the selection of tropical maize hybrids under contrasting nitrogen conditions, and (iii) to compare the use of linear (GBLUP) and nonlinear (RKHS/GK) kernels in STGP and MTGP analyses. For either single-trait GBLUP and RKHS analyses, the highest values obtained for accuracy were 0.40 and 0.41 using harmonic mean (HM), respectively. From multi-trait GBLUP and GK, using the combination of selection indices in MTGP seems to be suitable, increasing the accuracy. Adding grain yield and plant height in MTGP showed a slight improvement in accuracy compared to STGP. In general, there was a modest benefit of using single-trait RKHS and GK multi-trait, rather than GBLUP.  相似文献   

4.
Using breeding values in parental selection of self-pollinating crops seems to be superior to conventional selection strategies, where selection is often based on several traits which are correlated among each other. However, analysing each trait separately can bias estimates of breeding values. This study examined responses to selection for total merit indices based on breeding values resulting from single- and multiple-trait best linear unbiased prediction (BLUP). We generated data for a multi-environment trial of a “virtual” parental population in which the phenotypic value of inbred lines was influenced by additive, additive-by-additive epistatic, year, location, block and genotype-by-environment interaction effects. Two traits with heritabilities of 0.7 and 0.3 and nine different correlation scenarios between traits (estimated phenotypic correlation ranging from −0.39 to +0.36) were simulated. Gain in selection response was greater for multiple-trait than for single-trait breeding values, especially if traits were negatively correlated. For all correlation scenarios, the overall standard errors of difference of multiple-trait predictors were lower than those of single-trait analysis.  相似文献   

5.

Key message

Predictabilities for wheat hybrids less related to the estimation set were improved by shifting from single- to multiple-trait genomic prediction of Fusarium head blight severity.

Abstract

Breeding for improved Fusarium head blight resistance (FHBr) of wheat is a very laborious and expensive task. FHBr complexity is mainly due to its highly polygenic nature and because FHB severity (FHBs) is greatly influenced by the environment. Associated traits plant height and heading date may provide additional information related to FHBr, but this is ignored in single-trait genomic prediction (STGP). The aim of our study was to explore the benefits in predictabilities of multiple-trait genomic prediction (MTGP) over STGP of target trait FHBs in a population of 1604 wheat hybrids using information on 17,372 single nucleotide polymorphism markers along with indicator traits plant height and heading date. The additive inheritance of FHBs allowed accurate hybrid performance predictions using information on general combining abilities or average performance of both parents without the need of markers. Information on molecular markers and indicator trait(s) improved FHBs predictabilities for hybrids less related to the estimation set. Indicator traits must be observed on the predicted individuals to benefit from MTGP. Magnitudes of genetic and phenotypic correlations along with improvements in predictabilities made plant height a better indicator trait for FHBs than heading date. Thus, MTGP having only plant height as indicator trait already maximized FHBs predictabilities. Provided a good indicator trait was available, MTGP could reduce the impacts of genotype environment \(\times\) interaction on STGP for hybrids less related to the estimation set.
  相似文献   

6.
Information on 26 434 German Warmblood horses born between 1992 and 2001 was used for multivariate genetic analyses of radiographic health, conformation and performance traits to compare different modes of single- and multiple-trait selection of sires. Results of standardized radiological examinations of 5155 Hanoverian Warmblood horses, conformation evaluations from studbook inspections of 20 603 mares, and performance evaluations from mare performance tests and auction horse inspections of 16 098 horses were used for multivariate genetic analyses. Genetic parameters were estimated with restricted maximum likelihood (REML), and relative breeding values (RBV) were predicted with best linear unbiased prediction (BLUP) in multivariate linear animal models for four radiographic health traits, three conformation traits and five performance traits. Heritability estimates for osseous fragments in fetlock joints (OFF), osseous fragments in hock joints (OFH), deforming arthropathy in hock joints (DAH) and distinct radiographic findings in the navicular bones (DNB) ranged between 0.15 and 0.35 after transformation to the liability scale. Front limb conformation, hind limb conformation, withers height, walk, trot, canter, rideability and free jumping showed heritabilities between 0.09 and 0.49 and additive genetic correlations with OFF, OFH, DAH and DNB ranging between -0.53 and +0.52. Selection of sires was based on RBV or combinations of RBV, with selection for individual traits or traits from one of the three considered trait groups being considered as single-trait selection, and selection for traits from more than one trait group being considered as multiple-trait selection. The selection modes were compared by means of the expected selection response after one generation, calculated as the relative change in the prevalences of the radiographic findings or the mean conformation or performance scores in the offspring of the selected sires when compared with the offspring of all sires. The prevalences of OFF, OFH, DAH and DNB decreased by 30% to 57% after single-trait selection and 14% to 29% after multiple-trait selection, while mean conformation and performance scores increased by up to 4%. The results indicated that it is possible to simultaneously improve the radiographic health of the limbs, limb conformation, quality of gaits and rideability. However, genetic progress in free jumping ability and style could only be achieved by single- or multiple-trait selection with focus on jumping performance.  相似文献   

7.
Newcastle disease (ND) and avian influenza (AI) are the most feared diseases in the poultry industry worldwide. They can cause flock mortality up to 100%, resulting in a catastrophic economic loss. This is the first study to investigate the feasibility of genomic selection for antibody response to Newcastle disease virus (Ab-NDV) and antibody response to Avian Influenza virus (Ab-AIV) in chickens. The data were collected from a crossbred population. Breeding values for Ab-NDV and Ab-AIV were estimated using a pedigree-based best linear unbiased prediction model (BLUP) and a genomic best linear unbiased prediction model (GBLUP). Single-trait and multiple-trait analyses were implemented. According to the analysis using the pedigree-based model, the heritability for Ab-NDV estimated from the single-trait and multiple-trait models was 0.478 and 0.487, respectively. The heritability for Ab-AIV estimated from the two models was 0.301 and 0.291, respectively. The estimated genetic correlation between the two traits was 0.438. A four-fold cross-validation was used to assess the accuracy of the estimated breeding values (EBV) in the two validation scenarios. In the family sample scenario each half-sib family is randomly allocated to one of four subsets and in the random sample scenario the individuals are randomly divided into four subsets. In the family sample scenario, compared with the pedigree-based model, the accuracy of the genomic prediction increased from 0.086 to 0.237 for Ab-NDV and from 0.080 to 0.347 for Ab-AIV. In the random sample scenario, the accuracy was improved from 0.389 to 0.427 for Ab-NDV and from 0.281 to 0.367 for Ab-AIV. The multiple-trait GBLUP model led to a slightly higher accuracy of genomic prediction for both traits. These results indicate that genomic selection for antibody response to ND and AI in chickens is promising.  相似文献   

8.
The objective of this study was to compare accuracies of different Bayesian regression models in predicting molecular breeding values for health traits in Holstein cattle. The dataset was composed of 2505 records reporting the occurrence of retained fetal membranes (RFM), metritis (MET), mastitis (MAST), displaced abomasum (DA), lameness (LS), clinical endometritis (CE), respiratory disease (RD), dystocia (DYST) and subclinical ketosis (SCK) in Holstein cows, collected between 2012 and 2014 in 16 dairies located across the US. Cows were genotyped with the Illumina BovineHD (HD, 777K). The quality controls for SNP genotypes were HWE P-value of at least 1 × 10−10; MAF greater than 0.01 and call rate greater than 0.95. The FImpute program was used for imputation of missing SNP markers. The effect of each SNP was estimated using the Bayesian Ridge Regression (BRR), Bayes A, Bayes B and Bayes Cπ methods. The prediction quality was assessed by the area under the curve, the prediction mean square error and the correlation between genomic breeding value and the observed phenotype, using a leave-one-out cross-validation technique that avoids iterative cross-validation. The highest accuracies of predictions achieved were: RFM [Bayes B (0.34)], MET [BRR (0.36)], MAST [Bayes B (0.55), DA [Bayes Cπ (0.26)], LS [Bayes A (0.12)], CE [Bayes A (0.32)], RD [Bayes Cπ (0.23)], DYST [Bayes A (0.35)] and SCK [Bayes Cπ (0.38)] models. Except for DA, LS and RD, the predictive abilities were similar between the methods. A strong relationship between the predictive ability and the heritability of the trait was observed, where traits with higher heritability achieved higher accuracy and lower bias when compared with those with low heritability. Overall, it has been shown that a high-density SNP panel can be used successfully to predict genomic breeding values of health traits in Holstein cattle and that the model of choice will depend mostly on the genetic architecture of the trait.  相似文献   

9.

Background

Nellore cattle play an important role in beef production in tropical systems and there is great interest in determining if genomic selection can contribute to accelerate genetic improvement of production and fertility in this breed. We present the first results of the implementation of genomic prediction in a Bos indicus (Nellore) population.

Methods

Influential bulls were genotyped with the Illumina Bovine HD chip in order to assess genomic predictive ability for weight and carcass traits, gestation length, scrotal circumference and two selection indices. 685 samples and 320 238 single nucleotide polymorphisms (SNPs) were used in the analyses. A forward-prediction scheme was adopted to predict the genomic breeding values (DGV). In the training step, the estimated breeding values (EBV) of bulls were deregressed (dEBV) and used as pseudo-phenotypes to estimate marker effects using four methods: genomic BLUP with or without a residual polygenic effect (GBLUP20 and GBLUP0, respectively), a mixture model (Bayes C) and Bayesian LASSO (BLASSO). Empirical accuracies of the resulting genomic predictions were assessed based on the correlation between DGV and dEBV for the testing group.

Results

Accuracies of genomic predictions ranged from 0.17 (navel at weaning) to 0.74 (finishing precocity). Across traits, Bayesian regression models (Bayes C and BLASSO) were more accurate than GBLUP. The average empirical accuracies were 0.39 (GBLUP0), 0.40 (GBLUP20) and 0.44 (Bayes C and BLASSO). Bayes C and BLASSO tended to produce deflated predictions (i.e. slope of the regression of dEBV on DGV greater than 1). Further analyses suggested that higher-than-expected accuracies were observed for traits for which EBV means differed significantly between two breeding subgroups that were identified in a principal component analysis based on genomic relationships.

Conclusions

Bayesian regression models are of interest for future applications of genomic selection in this population, but further improvements are needed to reduce deflation of their predictions. Recurrent updates of the training population would be required to enable accurate prediction of the genetic merit of young animals. The technical feasibility of applying genomic prediction in a Bos indicus (Nellore) population was demonstrated. Further research is needed to permit cost-effective selection decisions using genomic information.  相似文献   

10.
Usually, genetic selection is carried out based on several traits, which can be genetically correlated. In this case, selection bias may occur if these traits are analyzed individually. Thus, the present work aimed to evaluate the applicability and efficiency of multiple-trait best linear unbiased prediction (BLUP) in the genetic selection of Eucalyptus. The data used in this work refer to the evaluation of a partial diallel of Eucalyptus spp. in relation to height, diameter at breast height (DBH), and volume. Variance components and genetic and non-genetic parameters were estimated via residual maximum likelihood (REML). Multiple-trait BLUP led to estimates of mean additive genetic variance higher than the estimates obtained via single-trait BLUP and, consequently, led to higher estimates of narrow-sense individual interpopulational heritabilities and mean accuracies. Partial genetic correlations obtained via multiple-trait BLUP allowed a real understanding of the association between traits, differently from those obtained via single-trait BLUP. Multiple-trait BLUP led to higher gains predicted with the selection for height, DBH, and volume and can be efficiently applied in the genetic selection of Eucalyptus.  相似文献   

11.
The increasing cost of energy and finite oil and gas reserves have created a need to develop alternative fuels from renewable sources. Due to its abiotic stress tolerance and annual cultivation, high-biomass sorghum (Sorghum bicolor L. Moench) shows potential as a bioenergy crop. Genomic selection is a useful tool for accelerating genetic gains and could restructure plant breeding programs by enabling early selection and reducing breeding cycle duration. This work aimed at predicting breeding values via genomic selection models for 200 sorghum genotypes comprising landrace accessions and breeding lines from biomass and saccharine groups. These genotypes were divided into two sub-panels, according to breeding purpose. We evaluated the following phenotypic biomass traits: days to flowering, plant height, fresh and dry matter yield, and fiber, cellulose, hemicellulose, and lignin proportions. Genotyping by sequencing yielded more than 258,000 single-nucleotide polymorphism markers, which revealed population structure between subpanels. We then fitted and compared genomic selection models BayesA, BayesB, BayesCπ, BayesLasso, Bayes Ridge Regression and random regression best linear unbiased predictor. The resulting predictive abilities varied little between the different models, but substantially between traits. Different scenarios of prediction showed the potential of using genomic selection results between sub-panels and years, although the genotype by environment interaction negatively affected accuracies. Functional enrichment analyses performed with the marker-predicted effects suggested several interesting associations, with potential for revealing biological processes relevant to the studied quantitative traits. This work shows that genomic selection can be successfully applied in biomass sorghum breeding programs.  相似文献   

12.
Feed efficiency traits (FETs) are important economic indicators in poultry production. Because feed intake (FI) is a time-dependent variable, longitudinal models can provide insights into the genetic basis of FET variation over time. It is expected that the application of longitudinal models as part of genome-wide association (GWA) and genomic selection (i.e. genome-wide selection (GS)) studies will lead to an increase in accuracy of selection. Thus, the objectives of this study were to evaluate the accuracy of estimated breeding values (EBVs) based on pedigree as well as high-density single nucleotide polymorphism (SNP) genotypes, and to conduct a GWA study on longitudinal FI and residual feed intake (RFI) in a total of 312 chickens with phenotype and genotype in the F2 population. The GWA and GS studies reported in this paper were conducted using β-spline random regression models for FI and RFI traits in a chicken F2 population, with FI and BW recorded for each bird weekly between 2 and 10 weeks of age. A single SNP regression approach was used on spline coefficients for weekly FI and RFI traits, with results showing that two significant SNPs for FI occur in the synuclein (SNCAIP) gene. Results also show that these regions are significantly associated with the spline coefficients (q2) for 5- and 6-week-old birds, while GWA study results showed no SNP association with RFI in F2 chickens. Estimated breeding value predictions obtained using a pedigree-based best linear unbiased prediction (ABLUP) model were then compared with predictions based on genomic best linear unbiased prediction (GBLUP). The accuracy was measured as correlation between genomic EBV and EBV with the phenotypic value corrected for fixed effects divided by the square root of heritability. The regression of observed on predicted values was used to estimate bias of methods. Results show that prediction accuracies using GBLUP and ABLUP for the FI measured from 2nd to 10th week were between 0.06 and 0.46 and 0.03 and 0.37, respectively. These results demonstrate that genomic methods are able to increase the accuracy of predicted breeding values at later ages on the basis of both traits, and indicate that use of a longitudinal model can improve selection accuracy for the trajectory of traits in F2 chickens when compared with conventional methods.  相似文献   

13.
Genomic prediction has been widely utilized to estimate genomic breeding values (GEBVs) in farm animals. In this study, we conducted genomic prediction for 20 economically important traits including growth, carcass and meat quality traits in Chinese Simmental beef cattle. Five approaches (GBLUP, BayesA, BayesB, BayesCπ and BayesR) were used to estimate the genomic breeding values. The predictive accuracies ranged from 0.159 (lean meat percentage estimated by BayesCπ) to 0.518 (striploin weight estimated by BayesR). Moreover, we found that the average predictive accuracies across 20 traits were 0.361, 0.361, 0.367, 0.367 and 0.378, and the averaged regression coefficients were 0.89, 0.86, 0.89, 0.94 and 0.95 for GBLUP, BayesA, BayesB, BayesCπ and BayesR respectively. The genomic prediction accuracies were mostly moderate and high for growth and carcass traits, whereas meat quality traits showed relatively low accuracies. We concluded that Bayesian regression approaches, especially for BayesR and BayesCπ, were slightly superior to GBLUP for most traits. Increasing with the sizes of reference population, these two approaches are feasible for future application of genomic selection in Chinese beef cattle.  相似文献   

14.

Background

The one-step blending approach has been suggested for genomic prediction in dairy cattle. The core of this approach is to incorporate pedigree and phenotypic information of non-genotyped animals. The objective of this study was to investigate the improvement of the accuracy of genomic prediction using the one-step blending method in Chinese Holstein cattle.

Findings

Three methods, GBLUP (genomic best linear unbiased prediction), original one-step blending with a genomic relationship matrix, and adjusted one-step blending with an adjusted genomic relationship matrix, were compared with respect to the accuracy of genomic prediction for five milk production traits in Chinese Holstein. For the two one-step blending methods, de-regressed proofs of 17 509 non-genotyped cows, including 424 dams and 17 085 half-sisters of the validation cows, were incorporated in the prediction model. The results showed that, averaged over the five milk production traits, the one-step blending increased the accuracy of genomic prediction by about 0.12 compared to GBLUP. No further improvement in accuracies was obtained from the adjusted one-step blending over the original one-step blending in our situation. Improvements in accuracies obtained with both one-step blending methods were almost completely contributed by the non-genotyped dams.

Conclusions

Compared with GBLUP, the one-step blending approach can significantly improve the accuracy of genomic prediction for milk production traits in Chinese Holstein cattle. Thus, the one-step blending is a promising approach for practical genomic selection in Chinese Holstein cattle, where the reference population mainly consists of cows.  相似文献   

15.
Lactose and somatic cell score (SCS) are major economic traits of milk. However, for many countries, they are typically not directly considered in the national genetic evaluation of Simmental cattle. This study aimed to estimate the genetic relationships between lactose, SCS, and growth traits of Simmental cattle to provide information for the national genetic evaluation of the selection of traits of this cattle population. The data of 1781 animals with 6519 records obtained over a period of 41 years (1975–2016) were collected from Xinjiang Hutubi Farm, China. The analyzed traits included 305 days of milk yield (305MY), milk fat percentage (MFP), milk protein percentage (MPP), milk lactose percentage (MLP), total solids (TS), SCS, body height (BH), body length (BL), chest girth (CG), abdominal circumference (AC), rump width (RW), rump length (RL), leg circumference (LC), and cannon circumference (CC). The multiple-trait repeatability model was adopted to estimate (co)variance components using the average information-restricted maximum likelihood method implemented using the DMU statistical package. The heritability estimates for milk components and growth traits ranged from 0.09 (SCS) to 0.51 (BH). Genetic correlations for milk components ranged from 0.03 ± 0.14 (MFP and MLP) to 0.81 ± 0.08 (MFP and MPP). Genetic correlation between MLP and SCS was moderate and negative (− 0.50 ± 0.15) compared with that among other traits. Genetic correlations between the milk components and growth traits ranged from 0.00 ± 0.07 (305MY and RW) to − 0.64 ± 0.15 (MLP and BL). Genetic correlations of BL, LC, RW, and RL with MLP were moderate to high and negative ranging from − 0.39 to − 0.64. Somatic cell score showed the highest correlation with BL (0.41) followed by LC (0.21). An increase in MLP would result in an increase in 305MY or TS and a decrease in BL, LC, RW, and RL. Additionally, a decrease in SCS would occur with the selection of increased MLP and reduced BL. We conclude that selection based on easily and inexpensively measured growth traits could improve the milk quality from Simmental cattle.  相似文献   

16.
Genetic selection against boar taint, which is caused by high skatole and androstenone concentrations in fat, is a more acceptable alternative than is the current practice of castration. Genomic predictors offer an opportunity to overcome the limitations of such selection caused by the phenotype being expressed only in males at slaughter, and this study evaluated different approaches to obtain such predictors. Samples from 1000 pigs were included in a design which was dominated by 421 sib pairs, each pair having one animal with high and one with low skatole concentration (≥0.3 μg/g). All samples were measured for both skatole and androstenone and genotyped using the Illumina SNP60 porcine BeadChip for 62 153 single nucleotide polymorphisms. The accuracy of predicting phenotypes was assessed by cross‐validation using six different genomic evaluation methods: genomic best linear unbiased prediction (GBLUP) and five Bayesian regression methods. In addition, this was compared to the accuracy of predictions using only QTL that showed genome‐wide significance. The range of accuracies obtained by different prediction methods was narrow for androstenone, between 0.29 (Bayes Lasso) and 0.31 (Bayes B), and wider for skatole, between 0.21 (GBLUP) and 0.26 (Bayes SSVS). Relative accuracies, corrected for h2, were 0.54–0.56 and 0.75–0.94 for androstenone and skatole respectively. The whole‐genome evaluation methods gave greater accuracy than using only the QTL detected in the data. The results demonstrate that GBLUP for androstenone is the simplest genomic technology to implement and was also close to the most accurate method. More specialised models may be preferable for skatole.  相似文献   

17.
J Jiang  Q Zhang  L Ma  J Li  Z Wang  J-F Liu 《Heredity》2015,115(1):29-36
Predicting organismal phenotypes from genotype data is important for preventive and personalized medicine as well as plant and animal breeding. Although genome-wide association studies (GWAS) for complex traits have discovered a large number of trait- and disease-associated variants, phenotype prediction based on associated variants is usually in low accuracy even for a high-heritability trait because these variants can typically account for a limited fraction of total genetic variance. In comparison with GWAS, the whole-genome prediction (WGP) methods can increase prediction accuracy by making use of a huge number of variants simultaneously. Among various statistical methods for WGP, multiple-trait model and antedependence model show their respective advantages. To take advantage of both strategies within a unified framework, we proposed a novel multivariate antedependence-based method for joint prediction of multiple quantitative traits using a Bayesian algorithm via modeling a linear relationship of effect vector between each pair of adjacent markers. Through both simulation and real-data analyses, our studies demonstrated that the proposed antedependence-based multiple-trait WGP method is more accurate and robust than corresponding traditional counterparts (Bayes A and multi-trait Bayes A) under various scenarios. Our method can be readily extended to deal with missing phenotypes and resequence data with rare variants, offering a feasible way to jointly predict phenotypes for multiple complex traits in human genetic epidemiology as well as plant and livestock breeding.  相似文献   

18.
The Korean Hanwoo cattle have been intensively selected for production traits, especially high intramuscular fat content. It is believed that ancient crossings between different breeds contributed to forming the Hanwoo, but little is known about the genomic differences and similarities between other cattle breeds and the Hanwoo. In this work, cattle breeds were grouped by origin into four types and used for comparisons: the Europeans (represented by six breeds), zebu (Nelore), African taurine (N'Dama) and Hanwoo. All animals had genotypes for around 680 000 SNPs after quality control of genotypes. Average heterozygosity was lower in Nelore and N'Dama (0.22 and 0.21 respectively) than in Europeans (0.26–0.31, with Shorthorn as outlier at 0.24) and Hanwoo (0.29). Pairwise FST analyses demonstrated that Hanwoo are more related to European cattle than to Nelore, with N'Dama in an intermediate position. This finding was corroborated by principal components and unsupervised hierarchical clustering. Using genome‐wide smoothed FST, 55 genomic regions potentially under positive selection in Hanwoo were identified. Among these, 29 were regions also detected in previous studies. Twenty‐four regions were exclusive to Hanwoo, and a number of other regions were shared with one or two of the other groups. These regions overlap a number of genes that are related to immune, reproduction and fatty acid metabolism pathways. Further analyses are needed to better characterize the ancestry of the Hanwoo cattle and to define the genes responsible to the identified selection peaks.  相似文献   

19.

Background

Accuracy of genomic prediction depends on number of records in the training population, heritability, effective population size, genetic architecture, and relatedness of training and validation populations. Many traits have ordered categories including reproductive performance and susceptibility or resistance to disease. Categorical scores are often recorded because they are easier to obtain than continuous observations. Bayesian linear regression has been extended to the threshold model for genomic prediction. The objective of this study was to quantify reductions in accuracy for ordinal categorical traits relative to continuous traits.

Methods

Efficiency of genomic prediction was evaluated for heritabilities of 0.10, 0.25 or 0.50. Phenotypes were simulated for 2250 purebred animals using 50 QTL selected from actual 50k SNP (single nucleotide polymorphism) genotypes giving a proportion of causal to total loci of.0001. A Bayes C π threshold model simultaneously fitted all 50k markers except those that represented QTL. Estimated SNP effects were utilized to predict genomic breeding values in purebred (n = 239) or multibreed (n = 924) validation populations. Correlations between true and predicted genomic merit in validation populations were used to assess predictive ability.

Results

Accuracies of genomic estimated breeding values ranged from 0.12 to 0.66 for purebred and from 0.04 to 0.53 for multibreed validation populations based on Bayes C π linear model analysis of the simulated underlying variable. Accuracies for ordinal categorical scores analyzed by the Bayes C π threshold model were 20% to 50% lower and ranged from 0.04 to 0.55 for purebred and from 0.01 to 0.44 for multibreed validation populations. Analysis of ordinal categorical scores using a linear model resulted in further reductions in accuracy.

Conclusions

Threshold traits result in markedly lower accuracy than a linear model on the underlying variable. To achieve an accuracy equal or greater than for continuous phenotypes with a training population of 1000 animals, a 2.25 fold increase in training population size was required for categorical scores fitted with the threshold model. The threshold model resulted in higher accuracies than the linear model and its advantage was greatest when training populations were smallest.  相似文献   

20.

Key Message

Multi-trait genomic prediction models are useful to allocate available resources in breeding programs by targeted phenotyping of correlated traits when predicting expensive and labor-intensive quality parameters.

Abstract

Multi-trait genomic prediction models can be used to predict labor-intensive or expensive correlated traits where phenotyping depth of correlated traits could be larger than phenotyping depth of targeted traits, reducing resources and improving prediction accuracy. This is particularly important in the context of allocating phenotyping resource in plant breeding programs. The objective of this work was to evaluate multi-trait models predictive ability with different depth of phenotypic information from correlated traits. We evaluated 495 wheat advanced breeding lines for eight baking quality traits which were genotyped with genotyping-by-sequencing. Through different approaches for cross-validation, we evaluated the predictive ability of a single-trait model and a multi-trait model. Moreover, we evaluated different sizes of the training population (from 50 to 396 individuals) for the trait of interest, different depth of phenotypic information for correlated traits (50 and 100%) and the number of correlated traits to be used (one to three). There was no loss in the predictive ability by reducing the training population up to a 30% (149 individuals) when using correlated traits. A multi-trait model with one highly correlated trait phenotyped for both the training and testing sets was the best model considering phenotyping resources and the gain in predictive ability. The inclusion of correlated traits in the training and testing lines is a strategic approach to replace phenotyping of labor-intensive and high cost traits in a breeding program.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号