首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Schistosomiasis is a neglected tropical disease of public health concern. The most devastating pathology in schistosomiasis japonica and mansoni is mainly attributed to the egg-induced granulomatous response and secondary fibrosis in host liver, which may lead to portal hypertension or even death of the host. Schistosome eggs induce M2 macrophages-rich granulomas and these M2 macrophages play critical roles in the maintenance of granuloma and subsequent fibrosis. Reactive oxygen species (ROS), which are highly produced by stimulated macrophages during infection and necessary for the differentiation of M2 macrophages, are massively distributed around deposited eggs in the liver. However, whether ROS are induced by schistosome eggs to subsequently promote M2 macrophage differentiation, and the possible underlying mechanisms as well, remain to be clarified during S. japonicum infection. Herein, we observed that extensive expression of ROS in the liver of S. japonicum-infected mice. Injection of ROS inhibitor in infected mice resulted in reduced hepatic granulomatous responses and fibrosis. Further investigations revealed that inhibition of ROS production in S. japonicum-infected mice reduces the differentiation of M2, accompanied by increased M1 macrophage differentiation. Finally, we proved that S. japonicum egg antigens (SEA) induce a high level of ROS production via both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and mitochondria in macrophages. Our study may help to better understand the mechanism of schistosomiasis japonica-induced hepatic pathology and contribute to the development of potential therapeutic strategies by interfering with ROS production.  相似文献   

2.
Early-stage hepatic granuloma and advanced-stage fibrosis are important characteristics of schistosomiasis. The direct consequences of gadolinium chloride (GdCl3) in egg-induced granuloma formation have not been reported, although GdCl3 is known to block the macrophages. In present study, mice were infected with 15 Schistosoma japonicum (S. japonicum) cercariae and treated with GdCl3 (10 mg/kg body weight) twice weekly from day 21 to day 42 post-infection during the onset of egg-laying towards early granuloma formation. Histochemical staining showed that repeated injection of GdCl3 decreased macrophages infiltration in liver of mice infected with S. japonicum. Macrophage depletion by GdCl3 during the initial phase attenuated liver pathological injury characterized by smaller granuloma size and decreased immune inflammation as well as less fibrogenesis. In addition, IL-13Rα2 expression was reduced by GdCl3 in liver of mice infected with S. japonicum. The results suggest that GdCl3 depleted macrophages, which attenuated helminth infected immune responses involving with IL-13Rα2 signal. These findings would highlight a therapeutic potential via manipulating IL-13Rα2+ macrophage in schistosomiasis.  相似文献   

3.
CD4+T cells differentiate into distinct functional effector and inhibitory subsets are facilitated by distinct cytokine cues present at the time of antigen recognition. Maintaining a balance between T helper 17 (Th17) and regulatory T (Treg) cells are critical for the control of the immunopathogenesis of liver diseases. Here, by using the mouse model of helminth Schistosoma japonicum (S japonicum) infection, we show that the hepatic mRNA levels of P21‐activated kinase 1 (PAK1), a key regulator of the actin cytoskeleton, adhesion and cell motility, are significantly increased and associated with the development of liver pathology during S japonicum infection. In addition, PAK1‐deficient mice are prone to suppression of Th17 cell responses but increased Treg cells. Furthermore, PAK1 enhances macrophage activation through promoting IRF1 nuclear translocation in an NF‐κB‐dependent pathway, resulting in promoting Th17 cell differentiation through inducing IL‐6 production. These findings highlight the importance of PAK1 in macrophages fate determination and suggest that PAK1/IRF1 axis‐dependent immunomodulation can ameliorate certain T cell–based immune pathologies.  相似文献   

4.

Background

Granulomatous and fibrosing inflammation in response to parasite eggs is the main pathology that occurs during infection with Schistosoma spp. CD4+ T cells play critical roles in both host immune responses against parasitic infection and immunopathology in schistosomiasis,and coordinate many types of immune cells that contribute to fibrosis. ICOSL plays an important role in controlling specific aspects of T cell activation, differentiation, and function. Previous work has suggested that ICOS is essential for Th17 cell development. However, the immunopathogenesis of this pathway in schistosomiasis fibrosisis still unclear.

Methodology/Principal Findings

Using models of schistosomiasis in ICOSL KO and the C57BL/6 WT mice, we studied the role of the ICOSL/ICOS interaction in the mediation of the Th17 response in host granulomatous inflammation, particularly in liver fibrosis during S. japonicum infection, and investigated the immune responses and pathology of ICOSL KO mice in these models. The results showed that ICOSL KO mice exhibited improved survival, reduced liver granulomatous inflammation around parasite eggs, markedly inhibited hepatic fibrosis development, lower levels of Th17-related cytokines (IL-17/IL-21), Th2-related cytokines (IL-4/IL-6/IL-10), a pro-fibrotic cytokine (IL-13), and TGF-β1, but higher level of Th1-related cytokine (IFN-γ) compared to wild-type (WT) mice. The reduced progression of fibrogenesis was correlated with the down-regulation of Th17 and Th2 and the elimination of ICOSL/ICOS interactions.

Conclusions/Significance

Our findings suggest that IL-17-producing cells contribute to the hepatic granulomatous inflammation and subsequent fibrosis. Importantly, there was a clearly positive correlation between the presence of IL-17-producing cells and ICOS expression in ICOSL KO mice, and additional results indicated that Th17 was involved in the pathological tissue remodeling in liver fibrosis induced by schistosomiasis.  相似文献   

5.
Schistosomiasis, which is caused by infection with Schistosoma spp., is characterized by granuloma and fibrosis in response to egg deposition. Pattern recognition receptors are important to sense invading Schistosoma, triggering an innate immune response, and subsequently shaping adaptive immunity. Cyclic GMP-AMP synthase (cGAS) was identified as a major cytosolic DNA sensor, which catalyzes the formation of cyclic GMP-AMP (cGAMP), a critical second messenger for the activation of the adaptor protein stimulator of interferon genes (STING). The engagement of STING by cGAMP leads to the activation of TANK-binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), and the subsequent type I interferon (IFN) response. cGAS is suggested to regulate infectious diseases, autoimmune diseases, and cancer. However, the function of cGAS in helminth infection is unclear. In this study, we found that Cgas deficiency enhanced the survival of mice infected with S. japonicum markedly, without affecting the egg load in the liver. Consistently, Cgas deletion alleviated liver pathological impairment, reduced egg granuloma formation, and decreased fibrosis severity. In contrast, Sting deletion reduced the formation of egg granulomas markedly, but not liver fibrosis. Notably, Cgas or Sting deficiency reduced the production of IFNβ drastically in mice infected with S. japonicum. Intriguingly, intravenous administration of recombinant IFNβ exacerbated liver damage and promoted egg granuloma formation, without affecting liver fibrosis. Clodronate liposome-mediated depletion of macrophages indicated that macrophages are the major type of cells contributing to the induction of the type I IFN response during schistosome infection. Moreover, cGAS is important for type I IFN production and phosphorylation of TBK1 and IRF3 in response to stimulation with S. japonicum egg- or adult worm-derived DNA in macrophages. Our results clarified the immunomodulatory effect of cGAS in the regulation of liver granuloma formation during S. japonicum infection, involving sensing schistosome-derived DNA and producing type I IFN. Additionally, we showed that cGAS regulates liver fibrosis in a STING-type I–IFN-independent manner.  相似文献   

6.
Granuloma formation in schistosomiasis japonica differs in several respects from those observed in Schistosoma mansoni infections. We have utilized the lung granuloma model in mice sensitized with subcutaneous injection of Schistosoma japonicum eggs to study the kinetics and mechanisms of this response. Animals injected subcutaneously with a range of 50–50,000 S. japonicum eggs elicited a significant pulmonary granulomatous response around ova subsequently injected intravenously. The pulmonary granulomas were formed of macrophages, lymphocytes, and eosinophils. Both antithymocyte globulin and antieosinophil sera reduced significantly the size of the granulomas and depleted the corresponding cell. Nude athymic mice developed markedly reduced pulmonary granulomas as did mice treated with niridazole or hydrocortisone. Sensitization to the egg antigens was demonstrable as both immediate and arthus-type footpad responses. Our data show that cell-mediated pulmonary granulomas can form around S. japonicum eggs in animals previously sensitized by the subcutaneous route. This model may provide further insights into the pathogenesis of S. japonicum granuloma.  相似文献   

7.

Background

The current knowledge of immunological responses to schistosomiasis, a major tropical helminthic disease, is insufficient, and a better understanding of these responses would support vaccine development or therapies to control granuloma-associated immunopathology. CD4+ T cells play critical roles in both host immune responses against parasitic infection and immunopathology in schistosomiasis. The induction of T helper (Th)1, Th2 and T regulatory (Treg) cells and their roles in schistosome infections are well-illustrated. However, little in vivo data are available on the dynamics of Th17 cells, another important CD4+ T cell subset, after Schistosoma japonicum infection or whether these cells and their defining IL-17 cytokine mediate host protective responses early in infection.

Methodology

Levels of Th17 and the other three CD4+ T cell subpopulations and the cytokines related to induction or repression of Th17 cell generation in different stages of S. japonicum infection were observed. Contrary to reported in vitro studies, our results showed that the Th17 cells were induced along with the Th1, Th2, Treg cells and the IFN-γ and IL-4 cytokines in S. japonicum infected mice. The results also suggested that S. japonicum egg antigens but not adult worm antigens preferentially induced Th17 cell generation. Furthermore, decreasing IL-17 with a neutralizing anti-IL-17 monoclonal antibody (mAb) increased schistosome-specific antibody levels and partial protection against S. japonicum infection in mice.

Conclusions

Our study is the first to report the dynamics of Th17 cells during S. japonicum infection and indicate that Th17 cell differentiation results from the integrated impact of inducing and suppressive factors promoted by the parasite. Importantly, our findings suggest that lower IL-17 levels may result in favorable host protective responses. This study significantly contributes to the understanding of immunity to schistosomiasis and may aid in developing interventions to protect hosts from infection or restrain immunopathology.  相似文献   

8.
9.
In schistosomiasis japonica and mansoni, parasite eggs trapped in host liver elicit severe liver granulomatous inflammation that subsequently leads to periportal fibrosis, portal hypertension, haemorrhage or even death. Macrophages are critical for granuloma formation and the development of liver fibrosis during schistosomiasis. However, whether the aberrant regulation of macrophage autophagy has an effect on the development of liver immunopathology in schistosomiasis remains to be elucidated. In this study, we showed that Schistosoma japonicum (S. japonicum) egg antigen (SEA)‐triggered macrophage autophagy limited the development of pathology in host liver. However, engagement of IL‐7 receptor (IL‐7R/CD127) on macrophages by S. japonicum infection‐induced IL‐7 significantly suppressed SEA‐triggered macrophage autophagy, which led to an enhanced liver pathology. In addition, anti‐IL‐7 neutralizing antibody or anti‐CD127 blocking antibody treatment increased macrophage autophagy and suppressed liver pathology. Finally, we demonstrated that IL‐7 protects macrophage against SEA‐induced autophagy through activation of AMP‐activated protein kinase (AMPK). Our study reveals a novel role for IL‐7 in macrophage autophagy and identifies AMPK as a novel downstream mediator of IL‐7‐IL‐7R signalling and suggests that manipulation of macrophage autophagy by targeting IL‐7‐IL‐7R signalling may have the potential to lead to improved treatment options for liver pathogenesis in schistosomiasis.  相似文献   

10.
Infection with schistosomes invokes severe fibrotic granulomatous responses in the liver of the host. Schistosoma mansoni infection induces dramatic fluctuations in Th1 or Th2 cytokine responses systemically; Th1 reactions are provoked in the early phase, whilst Th2 responses become dominant after oviposition begins. In the liver, various unique immune cells distinct from those of conventional immune competent organs or tissues exist, resulting in a unique immunological environment. Recently, we demonstrated that S. mansoni infection induces unique CD4+ T cell populations exhibiting unconventional cytokine profiles in the liver of mice during the period between Th1- and Th2-phases, which we term the transition phase. They produce both IFN-γ and IL-4 or both IFN-γ and IL-13 simultaneously. Moreover, T cells secreting triple cytokines IFN-γ, IL-13 and IL-4 were also induced. We term these cells Multiple Cytokine Producing Hepatic T cells (MCPHT cells). During the transition phase, when MCPHT cells increase, IL-18 secretion was up-regulated in the liver and sera. In S. mansoni-infected IL-18-deficient mice, expansion of MCPHT cells was curtailed. Thus our data suggest that IL-18 produced during S. mansoni infection play a role in the expansion of MCPHT cells.  相似文献   

11.
During infection with Schistosoma, serious hepatic disorders are induced in the host. The liver possesses unique immune systems composed of specialized cells that differ from those of other immune competent organs or tissues. Host immune responses change dramatically during Schistosoma mansoni infection; in the early phase, Th1-related responses are induced, whereas during the late phase Th2 reactions dominate. Here, we describe unique T cell populations induced in the liver of mice during the period between Th1- and Th2-phases, which we term the transition phase. During this phase, varieties of immune cells including T lymphocytes increase in the liver. Subsets of CD4+ T cells exhibit unique cytokine production profiles, simultaneously producing both IFN-γ and IL-13 or both IFN-γ and IL-4. Furthermore, cells triply positive for IFN-γ, IL-13 and IL-4 also expand in the S. mansoni-infected liver. The induction of these unique cell populations does not occur in the spleen, indicating it is a phenomenon specific to the liver. In single hepatic CD4+ T cells showing the unique cytokine profiles, both T-bet and GATA-3 are expressed. Thus, our studies show that S. mansoni infection triggers the induction of hepatic T cell subsets with unique cytokine profiles.  相似文献   

12.
Schistosomiasis is a parasitic zoonosis caused by small trematode worms called schistosomes, amongst which Schistosoma japonicum (S. japonicum) is endemic in Asia. In order to understand the schistosome-induced changes in the host metabolism so as to facilitate early diagnosis of schistosomiasis, we systematically investigated the dynamic metabolic responses of mice biofluids and liver tissues to S. japonicum infection for five weeks using 1H NMR spectroscopy in conjunction with multivariate data analysis. We were able to detect schistosomiasis at the third week post-infection, which was one week earlier than “gold standard” methods. We found that S. japonicum infection caused significant elevation of urinary 3-ureidopropionate, a uracil catabolic product, and disturbance of lipid metabolism, stimulation of glycolysis, depression of tricarboxylic acid cycle and disruption of gut microbiota regulations. We further found that the changes of 3-ureidopropionate and overall metabolic changes in both urinary and plasma samples were closely correlated with the time-course of disease progression. Furthermore, such changes together with liver tissue metabonome were clearly associated with the worm-burdens. These findings provided more insightful understandings of host biological responses to the infection and demonstrated that metabonomic analysis is potentially useful for early detection of schistosomiasis and comprehension of the mechanistic aspects of disease progression.  相似文献   

13.
Schistosomiasis continues to be an important cause of parasitic morbidity and mortality world-wide. Determining the molecular mechanisms regulating the development of granulomas and fibrosis will be essential for understanding how schistosome antigens interact with the host environment. We report here the first whole genome microarray analysis of the murine liver during the progression of Schistosoma japonicum egg-induced granuloma formation and hepatic fibrosis. Our results reveal a distinct temporal relationship between the expression of chemokine subsets and the recruitment of cells to the infected liver. Genes up-regulated earlier in the response included T- and B-cell chemoattractants, reflecting the early recruitment of these cells illustrated by flow cytometry. The later phases of the response corresponded with peak recruitment of eosinophils, neutrophils, macrophages and myofibroblasts/hepatic stellate cells (HSCs) and the expression of chemokines with activity for these cells including CCL11 (eotaxin 1), members of the Monocyte-chemoattractant protein family (CCL7, CCL8, CCL12) and the Hepatic Stellate Cell/Fibrocyte chemoattractant CXCL1. Peak expression of macrophage chemoattractants (CCL6, CXCL14) and markers of alternatively activated macrophages (e.g. Retnla) during this later phase provides further evidence of a role for these cells in schistosome-induced pathology. Additionally, we demonstrate that CCL7 immunolocalises to the fibrotic zone of granulomas. Furthermore, striking up-regulation of neutrophil markers and the localisation of neutrophils and the neutrophil chemokine S100A8 to fibrotic areas suggest the involvement of neutrophils in S. japonicum-induced hepatic fibrosis. These results further our understanding of the immunopathogenic and, especially, chemokine signalling pathways that regulate the development of S. japonicum-induced granulomas and fibrosis and may provide correlative insight into the pathogenesis of other chronic inflammatory diseases of the liver where fibrosis is a common feature.  相似文献   

14.
Ji F  Liu Z  Cao J  Li N  Liu Z  Zuo J  Chen Y  Wang X  Sun J 《PloS one》2008,3(3):e1724
Schistosoma egg-induced liver granuloma is a dynamic inflammatory reaction that results from complex immune responses to the infection. However, the role of B cells in inflammatory granuloma development is not yet fully understood. We report here that B cell function is required for S. japonicum egg-induced granuloma pathology in early infection. Both OBF-1 knockout mice and microMT mice develop severely reduced hepatic granulomas at five weeks post-infection compared to their wild-type counterparts. In contrast, they display no significant difference in granuloma pathology at eight weeks post-infection. Moreover, we find that B cells and antibodies accumulate in the granulomas of wild-type mice early in the infection, indicating a contribution of the B cell response to the granulomatous inflammation. Furthermore, defects in B cell function markedly reduce liver egg burden. These results suggest an important role for B cells in early granuloma pathology. Surprisingly, we found that the S. japonicum infection destroys the structure of the lymphoid follicles. This disruptive effect is correlated with a severely impaired T cell-dependent antibody response upon challenge with ovalbumin. Thus, these findings reveal a novel aspect of the interaction between Schistosoma and the host immune system.  相似文献   

15.
Extracellular vesicles are critical regulators of host-parasite interactions. We previously demonstrated that Schistosoma japonicum EVs contain a remarkably high abundance of host miR-148a. Here, we characterised the abundance of miR-148a in circulation, in peripheral immune cells, and in plasma EVs of S. japonicum-infected mice. The results suggested the high abundance of miR-148a in macrophages to be likely linked to S. japonicum EVs. Additionally, miR-148a was found to target PTEN through the PI3K/AKT pathway to regulate cytokine production in macrophages. Consequently, our findings suggest that high abundance of miR-148a in macrophages may be associated with S. japonicum EVs, and regulate the host immune response during schistosome infection.  相似文献   

16.
Schistosomiasis is caused by parasitic flatworms known as schistosomes and affects over 200 million people worldwide. Prevention of T cell exhaustion by blockade of PD-1 results in clinical benefits to cancer patients and clearance of viral infections, however it remains largely unknown whether loss of PD-1 could prevent or cure schistosomiasis in susceptible mice. In this study, we found that S. japonicum infection dramatically induced PD-1 expression in T cells of the liver where the parasites chronically inhabit and elicit deadly inflammation. Even in mice infected by non-egg-producing unisex parasites, we still observed potent induction of PD-1 in liver T cells of C57BL/6 mice following S. japonicum infection. To determine the function of PD-1 in schistosomiasis, we generated PD-1-deficient mice by CRISPR/Cas9 and found that loss of PD-1 markedly increased T cell count in the liver and spleen of infected mice. IL-4 secreting Th2 cells were significantly decreased in the infected PD-1-deficient mice whereas IFN-γ secreting CD4+ and CD8+ T cells were markedly increased. Surprisingly, such beneficial changes of T cell response did not result in eradication of parasites or in lowering the pathogen burden. In further experiments, we found that loss of PD-1 resulted in both beneficial T cell responses and amplification of regulatory T cells that prevented PD-1-deficient T cells from unleashing anti-parasite activity. Moreover, such PD-1-deficient Tregs exert excessive immunosuppression and express larger amounts of adenosine receptors CD39 and CD73 that are crucial for Treg-mediated immunosuppression. Our experimental results have elucidated the function of PD-1 in schistosomiasis and provide novel insights into prevention and treatment of schistosomiasis on the basis of modulating host adaptive immunity.  相似文献   

17.
Cholesteryl ester transfer protein (CETP)-deficiency manifests a unique plasma lipoprotein profile without other apparent symptoms. It is highly common in East Asia while rather rare anywhere else. A potential environmental screening factor(s) may therefore contribute to this eccentric distribution, such as its selective advantage against a regional illness, most likely an infectious disease, in relation to plasma lipoproteins. Blood flukes use the host plasma lipoproteins as nutrient sources through the lipoprotein receptor-like systems. Its Asian-specific species, Schistosoma (S) japonicum, which has been endemic in East Asia, takes up cholesteryl ester (CE) from high-density lipoprotein (HDL) for the embryonation of their eggs to miracidia, a critical step of the hepatic pathogenesis of this parasite, but poorly from HDL of CETP-deficiency. CD36-related protein (CD36RP) was cloned from the adults and the eggs of S. japonicum, with 1880-bp encoding 506 amino-acid residues exhibiting the CD36 domains and two transmembrane regions. Its extracellular domain selectively bound human HDL but neither LDL nor CETP-deficiency HDL, and the antibody against the extracellular domain suppressed the selective HDL-CE uptake and embryonation of the eggs. When infected with S. japonicum, wild-type mice developed less hepatic granulomatosis than CETP-transgenic mice by the ectopic egg embryonation. CD36RP is thus a candidate receptor of S. japonicum to facilitate uptake of HDL-CE necessary for egg embryonation. Abnormal HDL caused by CETP-deficiency retards this process and thereby protects the patients from development of hepatic lesions. S. japonicum infection is a potential screening factor for high prevalence of CETP deficiency in East Asia.  相似文献   

18.
Female mice of 12 inbred strains were exposed to 20–25 cercariae of Schistosoma japonicum and infection status determined at day 40 by counting numbers of adult worms, eggs in faeces and eggs in a segment of liver. Most mouse strains appeared to be ‘permissive’ hosts although at least one strain (129/J) was shown to be relatively resistant in terms of day 40 adult worm numbers. In a radioisotopic lung assay for sensitivity to eggs, and developed as a rapid means of assessing granuloma formation, CBA/H mice were shown to differ from C57BL/6 mice in being non-responders. Histological examination of lungs of sensitized CBA/H and C57BL/6 mice injected intravenously with eggs established that granuloma formation was much more intense in C57BL/6 than CBA/H mice. Preliminary indications are that infected CBA/H mice are also low anti egg circumoval precipitin (COP) responders. Analysis of immune responses to isolated egg antigens in these two strains, and identification of the antigens of eggs to which such responses are directed in C57BL/6 mice, should provide insights into immunological disease processes (such as granulomatous inflammation) in this model system of japonicum schistosomiasis.  相似文献   

19.
Schistosomiasis is a serious and widespread parasitic disease caused by infection with Schistosoma. Because the parasite’s eggs are primarily responsible for schistosomiasis dissemination and pathogenesis, inhibiting egg production is a potential approach to control the spread and severity of the disease. The bromodomain and extra-terminal (BET) proteins represent promising targets for the development of epigenetic drugs against Schistosoma. JQ-1 is a selective inhibitor of the BET protein family. In the present study, JQ-1 was applied to S. japonicum in vitro. By using laser confocal scanning microscopy and EdU incorporation assays, we showed that application of JQ-1 to worms in vitro affected egg laying and the development of both the male and female reproductive systems. JQ-1 also inhibited the expression of the reproductive-related genes SjPlk1 and SjNanos1 in S. japonicum. Mice infected with S. japonicum were treated with JQ-1 during egg granuloma formation. JQ-1 treatment significantly reduced the size of the liver granulomas and levels of serum alanine aminotransferase and aspartate aminotransferase in mice and suppressed both egg laying and the development of male and female S. japonicum reproductive systems in vivo. Moreover, the mRNA expression levels of some proinflammatory cytokines were decreased in the parasites. Our findings suggest that JQ-1 treatment attenuates S. japonicum egg–induced hepatic granuloma due at least in part to suppressing the development of the reproductive system and egg production of S. japonicum. These findings further suggest that JQ-1 or other BET inhibitors warrant additional study as a new approach for the treatment or prevention of schistosomiasis.  相似文献   

20.
Primaquine (PQ) and Tafenoquine (TQ) are clinically important 8‐aminoquinolines (8‐AQ) used for radical cure treatment of Pvivax infection, known to target hepatic hypnozoites. 8‐AQs can trigger haemolytic anaemia in individuals with glucose‐6‐phosphate dehydrogenase deficiency (G6PDd), yet the mechanisms of haemolytic toxicity remain unknown. To address this issue, we used a humanized mouse model known to predict haemolytic toxicity responses in G6PDd human red blood cells (huRBCs). To evaluate the markers of eryptosis, huRBCs were isolated from mice 24–48 h post‐treatment and analysed for effects on phosphatidylserine (PS), intracellular reactive oxygen species (ROS) and autofluorescence. Urinalysis was performed to evaluate the occurrence of intravascular and extravascular haemolysis. Spleen and liver tissue harvested at 24 h and 5–7 days post‐treatment were stained for the presence of CD169+ macrophages, F4/80+ macrophages, Ter119+ mouse RBCs, glycophorin A+ huRBCs and murine reticulocytes (muRetics). G6PDd‐huRBCs from PQ/TQ treated mice showed increased markers for eryptosis as early as 24 h post‐treatment. This coincided with an early rise in levels of muRetics. Urinalysis revealed concurrent intravascular and extravascular haemolysis in response to PQ/TQ. Splenic CD169+ macrophages, present in all groups at day 1 post‐dosing were eliminated by days 5–7 in PQ/TQ treated mice only, while liver F4/80 macrophages and iron deposits increased. Collectively, our data suggest 8‐AQ treated G6PDd‐huRBCs have early physiological responses to treatment, including increased markers for eryptosis indicative of oxidative stress, resulting in extramedullary haematopoiesis and loss of splenic CD169+ macrophages, prompting the liver to act as the primary site of clearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号