首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The classical Hodgkin-Huxley (HH) model neglects the time-dependence of ion concentrations in spiking dynamics. The dynamics is therefore limited to a time scale of milliseconds, which is determined by the membrane capacitance multiplied by the resistance of the ion channels, and by the gating time constants. We study slow dynamics in an extended HH framework that includes time-dependent ion concentrations, pumps, and buffers. Fluxes across the neuronal membrane change intra- and extracellular ion concentrations, whereby the latter can also change through contact to reservoirs in the surroundings. Ion gain and loss of the system is identified as a bifurcation parameter whose essential importance was not realized in earlier studies. Our systematic study of the bifurcation structure and thus the phase space structure helps to understand activation and inhibition of a new excitability in ion homeostasis which emerges in such extended models. Also modulatory mechanisms that regulate the spiking rate can be explained by bifurcations. The dynamics on three distinct slow times scales is determined by the cell volume-to-surface-area ratio and the membrane permeability (seconds), the buffer time constants (tens of seconds), and the slower backward buffering (minutes to hours). The modulatory dynamics and the newly emerging excitable dynamics corresponds to pathological conditions observed in epileptiform burst activity, and spreading depression in migraine aura and stroke, respectively.  相似文献   

3.
The energy-transducing cytoplasmic membrane of bacteria contains pumps and antiports maintaining the membrane potential and ion gradients. We have developed a method for rapid, single-cell measurement of the internal sodium concentration ([Na+]in) in Escherichia coli using the sodium ion fluorescence indicator, Sodium Green. The bacterial flagellar motor is a molecular machine that couples the transmembrane flow of ions, either protons (H+) or sodium ions (Na+), to flagellar rotation. We used an E. coli strain containing a chimeric flagellar motor with H+- and Na+-driven components that functions as a sodium motor. Changing external sodium concentration ([Na+]ex) in the range 1–85 mM resulted in changes in [Na+]in between 5–14 mM, indicating a partial homeostasis of internal sodium concentration. There were significant intercell variations in the relationship between [Na+]in and [Na+]ex, and the internal sodium concentration in cells not expressing chimeric flagellar motors was 2–3 times lower, indicating that the sodium flux through these motors is a significant fraction of the total sodium flux into the cell.  相似文献   

4.
The availability of nutrients and energy is a main driver of biodiversity for plant and animal communities in terrestrial and marine ecosystems, but we are only beginning to understand whether and how energy–diversity relationships may be extended to complex natural bacterial communities. Here, we analyzed the link between phytodetritus input, diversity and activity of bacterial communities of the Siberian continental margin (37–3427 m water depth). Community structure and functions, such as enzymatic activity, oxygen consumption and carbon remineralization rates, were highly related to each other, and with energy availability. Bacterial richness substantially increased with increasing sediment pigment content, suggesting a positive energy–diversity relationship in oligotrophic regions. Richness leveled off, forming a plateau, when mesotrophic sites were included, suggesting that bacterial communities and other benthic fauna may be structured by similar mechanisms. Dominant bacterial taxa showed strong positive or negative relationships with phytodetritus input and allowed us to identify candidate bioindicator taxa. Contrasting responses of individual taxa to changes in phytodetritus input also suggest varying ecological strategies among bacterial groups along the energy gradient. Our results imply that environmental changes affecting primary productivity and particle export from the surface ocean will not only affect bacterial community structure but also bacterial functions in Arctic deep-sea sediment, and that sediment bacterial communities can record shifts in the whole ocean ecosystem functioning.  相似文献   

5.
Vertebrate Hedgehog (HH) signaling is controlled by several ligand-binding antagonists including Patched-1 (PTCH1), PTCH2, and HH-interacting protein 1 (HHIP1), whose collective action is essential for proper HH pathway activity. However, the molecular mechanisms used by these inhibitors remain poorly understood. In this paper, we investigated the mechanisms underlying HHIP1 antagonism of HH signaling. Strikingly, we found evidence that HHIP1 non–cell-autonomously inhibits HH-dependent neural progenitor patterning and proliferation. Furthermore, this non–cell-autonomous antagonism of HH signaling results from the secretion of HHIP1 that is modulated by cell type–specific interactions with heparan sulfate (HS). These interactions are mediated by an HS-binding motif in the cysteine-rich domain of HHIP1 that is required for its localization to the neuroepithelial basement membrane (BM) to effectively antagonize HH pathway function. Our data also suggest that endogenous, secreted HHIP1 localization to HS-containing BMs regulates HH ligand distribution. Overall, the secreted activity of HHIP1 represents a novel mechanism to regulate HH ligand localization and function during embryogenesis.  相似文献   

6.
Host nutrient supply can mediate host–pathogen and pathogen–pathogen interactions. In terrestrial systems, plant nutrient supply is mediated by soil microbes, suggesting a potential role of soil microbes in plant diseases beyond soil‐borne pathogens and induced plant defenses. Long‐term nitrogen (N) enrichment can shift pathogenic and nonpathogenic soil microbial community composition and function, but it is unclear if these shifts affect plant–pathogen and pathogen–pathogen interactions. In a growth chamber experiment, we tested the effect of long‐term N enrichment on infection by Barley Yellow Dwarf Virus (BYDV‐PAV) and Cereal Yellow Dwarf Virus (CYDV‐RPV), aphid‐vectored RNA viruses, in a grass host. We inoculated sterilized growing medium with soil collected from a long‐term N enrichment experiment (ambient, low, and high N soil treatments) to isolate effects mediated by the soil microbial community. We crossed soil treatments with a N supply treatment (low, high) and virus inoculation treatment (mock‐, singly‐, and co‐inoculated) to evaluate the effects of long‐term N enrichment on plant–pathogen and pathogen–pathogen interactions, as mediated by N availability. We measured the proportion of plants infected (i.e., incidence), plant biomass, and leaf chlorophyll content. BYDV‐PAV incidence (0.96) declined with low N soil (to 0.46), high N supply (to 0.61), and co‐inoculation (to 0.32). Low N soil mediated the effect of N supply on BYDV‐PAV: instead of N supply reducing BYDV‐PAV incidence, the incidence increased. Additionally, ambient and low N soil ameliorated the negative effect of co‐inoculation on BYDV‐PAV incidence. BYDV‐PAV infection only reduced chlorophyll when plants were grown with low N supply and ambient N soil. There were no significant effects of long‐term N soil on CYDV‐RPV incidence. Soil inoculant with different levels of long‐term N enrichment had different effects on host–pathogen and pathogen–pathogen interactions, suggesting that shifts in soil microbial communities with long‐term N enrichment may mediate disease dynamics.  相似文献   

7.
Cattle grazing profoundly affects abiotic and biotic characteristics of ecosystems. While most research has been performed on grasslands, the effect of large managed ungulates on forest ecosystems has largely been neglected. Compared to a baseline seminatural state, we investigated how long‐term cattle grazing of birch forest patches affected the abiotic state and the ecological community (microbes and invertebrates) of the soil subsystem. Grazing strongly modified the soil abiotic environment by increasing phosphorus content, pH, and bulk density, while reducing the C:N ratio. The reduced C:N ratio was strongly associated with a lower microbial biomass, mainly caused by a reduction of fungal biomass. This was linked to a decrease in fungivorous nematode abundance and the nematode channel index, indicating a relative uplift in the importance of the bacterial energy‐channel in the nematode assemblages. Cattle grazing highly modified invertebrate community composition producing distinct assemblages from the seminatural situation. Richness and abundance of microarthropods was consistently reduced by grazing (excepting collembolan richness) and grazing‐associated changes in soil pH, Olsen P, and reduced soil pore volume (bulk density) limiting niche space and refuge from physical disturbance. Anecic earthworm species predominated in grazed patches, but were absent from ungrazed forest, and may benefit from manure inputs, while their deep vertical burrowing behavior protects them from physical disturbance. Perturbation of birch forest habitat by long‐term ungulate grazing profoundly modified soil biodiversity, either directly through increased physical disturbance and manure input or indirectly by modifying soil abiotic conditions. Comparative analyses revealed the ecosystem engineering potential of large ungulate grazers in forest systems through major shifts in the composition and structure of microbial and invertebrate assemblages, including the potential for reduced energy flow through the fungal decomposition pathway. The precise consequences for species trophic interactions and biodiversity–ecosystem function relationships remain to be established, however.  相似文献   

8.
The viral protein U (Vpu) encoded by HIV-1 has been shown to assist in the detachment of virion particles from infected cells. Vpu forms cation-specific ion channels in host cells, and has been proposed as a potential drug target. An understanding of the mechanism of ion transport through Vpu is desirable, but remains limited because of the unavailability of an experimental structure of the channel. Using a structure of the pentameric form of Vpu – modeled and validated based on available experimental data – umbrella sampling molecular dynamics simulations (cumulative simulation time of more than 0.4 µs) were employed to elucidate the energetics and the molecular mechanism of ion transport in Vpu. Free energy profiles corresponding to the permeation of Na+ and K+ were found to be similar to each other indicating lack of ion selection, consistent with previous experimental studies. The Ser23 residue is shown to enhance ion transport via two mechanisms: creating a weak binding site, and increasing the effective hydrophilic length of the channel, both of which have previously been hypothesized in experiments. A two-dimensional free energy landscape has been computed to model multiple ion permeation, based on which a mechanism for ion conduction is proposed. It is shown that only one ion can pass through the channel at a time. This, along with a stretch of hydrophobic residues in the transmembrane domain of Vpu, explains the slow kinetics of ion conduction. The results are consistent with previous conductance studies that showed Vpu to be a weakly conducting ion channel.  相似文献   

9.
Tan ZJ  Chen SJ 《Nucleic acids research》2006,34(22):6629-6639
Metal ions are crucial for nucleic acid folding. From the free energy landscapes, we investigate the detailed mechanism for ion-induced collapse for a paradigm system: loop-tethered short DNA helices. We find that Na+ and Mg2+ play distinctive roles in helix–helix assembly. High [Na+] (>0.3 M) causes a reduced helix–helix electrostatic repulsion and a subsequent disordered packing of helices. In contrast, Mg2+ of concentration >1 mM is predicted to induce helix–helix attraction and results in a more compact and ordered helix–helix packing. Mg2+ is much more efficient in causing nucleic acid compaction. In addition, the free energy landscape shows that the tethering loops between the helices also play a significant role. A flexible loop, such as a neutral loop or a polynucleotide loop in high salt concentration, enhances the close approach of the helices in order to gain the loop entropy. On the other hand, a rigid loop, such as a polynucleotide loop in low salt concentration, tends to de-compact the helices. Therefore, a polynucleotide loop significantly enhances the sharpness of the ion-induced compaction transition. Moreover, we find that a larger number of helices in the system or a smaller radius of the divalent ions can cause a more abrupt compaction transition and a more compact state at high ion concentration, and the ion size effect becomes more pronounced as the number of helices is increased.  相似文献   

10.
Plasma membrane ATPases are primary active transporters of cations that maintain steep concentration gradients. The ion gradients and membrane potentials derived from them form the basis for a range of essential cellular processes, in particular Na(+)-dependent and proton-dependent secondary transport systems that are responsible for uptake and extrusion of metabolites and other ions. The ion gradients are also both directly and indirectly used to control pH homeostasis and to regulate cell volume. The plasma membrane H(+)-ATPase maintains a proton gradient in plants and fungi and the Na(+),K(+)-ATPase maintains a Na(+) and K(+) gradient in animal cells. Structural information provides insight into the function of these two distinct but related P-type pumps.  相似文献   

11.
DNA bending is important for the packaging of genetic material, regulation of gene expression and interaction of nucleic acids with proteins. Consequently, it is of considerable interest to quantify the energetic factors that must be overcome to induce bending of DNA, such as base stacking and phosphate–phosphate repulsions. In the present work, the electrostatic contribution of phosphate–phosphate repulsions to the free energy of bending DNA is examined for 71 bp linear and bent-form model structures. The bent DNA model was based on the crystallographic structure of a full turn of DNA in a nucleosome core particle. A Green's function approach based on a linear-scaling smooth conductor-like screening model was applied to ascertain the contribution of individual phosphate–phosphate repulsions and overall electrostatic stabilization in aqueous solution. The effect of charge neutralization by site-bound ions was considered using Monte Carlo simulation to characterize the distribution of ion occupations and contribution of phosphate repulsions to the free energy of bending as a function of counterion load. The calculations predict that the phosphate–phosphate repulsions account for ~30% of the total free energy required to bend DNA from canonical linear B-form into the conformation found in the nucleosome core particle.  相似文献   

12.
Within the ion channel–coupled purine receptor (P2X) family, P2X7 has gained particular interest because of its role in immune responses and in the growth control of several malignancies. Typical hallmarks of P2X7 are nonselective and noninactivating cation currents that are elicited by high concentrations (0.1–10 mM) of extracellular ATP. Here, we observe spurious ATP-induced currents in HEK293 cells that neither express P2X7 nor display ATP-induced Ca2+ influx or Yo-Pro-1 uptake. Although the biophysical properties of these ionic currents resemble those of P2X7 in terms of their reversal potential close to 0 mV, nonrectifying current-voltage relationship, current run-up during repeated ATP application, and augmentation in bath solutions containing low divalent cation (DIC) concentrations, they are poorly inhibited by established P2X7 antagonists. Because high ATP concentrations reduce the availability of DICs, these findings prompted us to ask whether other channel entities may become activated by our experimental regimen. Indeed, a bath solution with no added DICs yields similar currents and also a rapidly inactivating Na+-selective conductance. We provide evidence that TRPM7 and ASIC1a (acid-sensing ion channel type Ia)-like channels account for these noninactivating and phasic current components, respectively. Furthermore, we find ATP-induced currents in rat C6 glioma cells, which lack functional P2X receptors but express TRPM7. Thus, the observation of an atypical P2X7-like conductance may be caused by the activation of TRPM7 by ATP, which scavenges free DICs and thereby releases TRPM7 from permeation block. Because TRPM7 has a critical role in controlling the intracellular Mg2+ homeostasis and regulating tumor growth, these data imply that the proposed role of P2X7 in C6 glioma cell proliferation deserves reevaluation.  相似文献   

13.
The initiation and propagation of action potentials (APs) places high demands on the energetic resources of neural tissue. Each AP forces ATP-driven ion pumps to work harder to restore the ionic concentration gradients, thus consuming more energy. Here, we ask whether the ionic currents underlying the AP can be predicted theoretically from the principle of minimum energy consumption. A long-held supposition that APs are energetically wasteful, based on theoretical analysis of the squid giant axon AP, has recently been overturned by studies that measured the currents contributing to the AP in several mammalian neurons. In the single compartment models studied here, AP energy consumption varies greatly among vertebrate and invertebrate neurons, with several mammalian neuron models using close to the capacitive minimum of energy needed. Strikingly, energy consumption can increase by more than ten-fold simply by changing the overlap of the Na+ and K+ currents during the AP without changing the APs shape. As a consequence, the height and width of the AP are poor predictors of energy consumption. In the Hodgkin–Huxley model of the squid axon, optimizing the kinetics or number of Na+ and K+ channels can whittle down the number of ATP molecules needed for each AP by a factor of four. In contrast to the squid AP, the temporal profile of the currents underlying APs of some mammalian neurons are nearly perfectly matched to the optimized properties of ionic conductances so as to minimize the ATP cost.  相似文献   

14.
1. The term "coupled redox potential" is defined. 2. The system lactic ion See PDF for Equation pyruvic ion + 2H+ + 2e is shown to be reversible (when the enzyme is lactic acid dehydrogenase) and its coupled redox potential between pH 5.2 and 7.2 at 32°C. is: See PDF for Equation 3. The free energy of the reaction: lactic ion (1m) → pyruvic ion (1m) = -ΔF = –14,572. 4. The standard free energy of formation (ΔF 298) of pyruvic acid (l) is estimated at –108,127. This is merely an approximation as some necessary data are lacking. 5. The importance of coupled redox potentials as a factor in the regulation of the equilibrium of metabolites is indicated.  相似文献   

15.
This study presents the long‐term evolution of two floodplains lakes (San Juana and Barbacoas) of the Magdalena River in Colombia with varying degree of connectivity to the River and with different responses to climate events (i.e., extreme floods and droughts). Historical limnological changes were identified through a multiproxy‐based reconstruction including diatoms, sedimentation, and sediment geochemistry, while historical climatic changes were derived from the application of the Standardised Precipitation‐Evapotranspiration Index. The main gradients in climatic and limnological change were assessed via multivariate analysis and generalized additive models. The reconstruction of the more isolated San Juana Lake spanned the last c. 500 years. Between c. 1,620 and 1,750 CE, riverine‐flooded conditions prevailed as indicated by high detrital input, reductive conditions, and dominance of planktonic diatoms. Since the early 1800s, the riverine meander became disconnected, conveying into a marsh‐like environment rich in aerophil diatoms and organic matter. The current lake was then formed around the mid‐1960s with a diverse lake diatom flora including benthic and planktonic diatoms, and more oxygenated waters under a gradual increase in sedimentation and nutrients. The reconstruction for Barbacoas Lake, a waterbody directly connected to the Magdalena River, spanned the last 60 years and showed alternating riverine–wetland–lake conditions in response to varying ENSO conditions. Wet periods were dominated by planktonic and benthic diatoms, while aerophil diatom species prevailed during dry periods; during the two intense ENSO periods of 1987 and 1992, the lake almost desiccated and sedimentation rates spiked. A gradual increase in sedimentation rates post‐2000 suggests that other factors rather than climate are also influencing sediment deposition in the lake. We propose that hydrological connectivity to the Magdalena River is a main factor controlling lake long‐term responses to human pressures, where highly connected lakes respond more acutely to ENSO events while isolated lakes are more sensitive to local land‐use changes.  相似文献   

16.
Houghton (HG) base pairing plays a central role in the DNA binding of proteins and small ligands. Probing detailed transition mechanism from Watson–Crick (WC) to HG base pair (bp) formation in duplex DNAs is of fundamental importance in terms of revealing intrinsic functions of double helical DNAs beyond their sequence determined functions. We investigated a free energy landscape of a free B-DNA with an adenosine–thymine (A–T) rich sequence to probe its conformational transition pathways from WC to HG base pairing. The free energy landscape was computed with a state-of-art two-dimensional umbrella molecular dynamics simulation at the all-atom level. The present simulation showed that in an isolated duplex DNA, the spontaneous transition from WC to HG bp takes place via multiple pathways. Notably, base flipping into the major and minor grooves was found to play an important role in forming these multiple transition pathways. This finding suggests that naked B-DNA under normal conditions has an inherent ability to form HG bps via spontaneous base opening events.  相似文献   

17.
We have used ion-selective electrodes (ISEs) to quantify ion fluxes across giant membrane patches by measuring and simulating ion gradients on both membrane sides. Experimental conditions are selected with low concentrations of the ions detected on the membrane side being monitored. For detection from the cytoplasmic (bath) side, the patch pipette is oscillated laterally in front of an ISE. For detection on the extracellular (pipette) side, ISEs are fabricated from flexible quartz capillary tubing (tip diameters, 2-3 microns), and an ISE is positioned carefully within the patch pipette with the tip at a controlled distance from the mouth of the patch pipette. Transport activity is then manipulated by solution changes on the cytoplasmic side. Ion fluxes can be quantified by simulating the ion gradients with appropriate diffusion models. For extracellular (intrapatch pipette) recordings, ion diffusion coefficients can be determined from the time courses of concentration changes. The sensitivity and utility of the methods are demonstrated with cardiac membrane patches by measuring (a) potassium fluxes via ion channels, valinomycin, and Na/K pumps; (b) calcium fluxes mediated by Na/Ca exchangers; (c) sodium fluxes mediated by gramicidin and Na/K pumps; and (d) proton fluxes mediated by an unknown electrogenic mechanism. The potassium flux-to-current ratio for the Na/K pump is approximately twice that determined for potassium channels and valinomycin, as expected for a 3Na/2K pump stoichiometery (i.e., 2K/charge moved). For valinomycin-mediated potassium currents and gramicidin-mediated sodium currents, the ion fluxes calculated from diffusion models are typically 10-15% smaller than expected from the membrane currents. As presently implemented, the ISE methods allow reliable detection of calcium and proton fluxes equivalent to monovalent cation currents <1 pA in magnitude, and they allow detection of sodium and potassium fluxes equivalent to <5 pA currents. The capability to monitor ion fluxes, independent of membrane currents, should facilitate studies of both electrogenic and electroneutral ion-coupled transporters in giant patches.  相似文献   

18.
Mitochondrial homeostasis is essential for providing cellular energy, particularly in resource‐demanding neurons, defects in which cause neurodegeneration, but the function of interferons (IFNs) in regulating neuronal mitochondrial homeostasis is unknown. We found that neuronal IFN‐β is indispensable for mitochondrial homeostasis and metabolism, sustaining ATP levels and preventing excessive ROS by controlling mitochondrial fission. IFN‐β induces events that are required for mitochondrial fission, phosphorylating STAT5 and upregulating PGAM5, which phosphorylates serine 622 of Drp1. IFN‐β signaling then recruits Drp1 to mitochondria, oligomerizes it, and engages INF2 to stabilize mitochondria–endoplasmic reticulum (ER) platforms. This process tethers damaged mitochondria to the ER to separate them via fission. Lack of neuronal IFN‐β in the Ifnb –/– model of Parkinson disease (PD) disrupts STAT5‐PGAM5‐Drp1 signaling, impairing fission and causing large multibranched, damaged mitochondria with insufficient ATP production and excessive oxidative stress to accumulate. In other PD models, IFN‐β rescues dopaminergic neuronal cell death and pathology, associated with preserved mitochondrial homeostasis. Thus, IFN‐β activates mitochondrial fission in neurons through the pSTAT5/PGAM5/S622Drp1 pathway to stabilize mitochondria/ER platforms, constituting an essential neuroprotective mechanism.  相似文献   

19.
Organelle contact sites perform fundamental functions in cells, including lipid and ion homeostasis, membrane dynamics, and signaling. Using a forward proteomics approach in yeast, we identified new ER–mitochondria and ER–vacuole contacts specified by an uncharacterized protein, Ylr072w. Ylr072w is a conserved protein with GRAM and VASt domains that selectively transports sterols and is thus termed Ltc1, for Lipid transfer at contact site 1. Ltc1 localized to ER–mitochondria and ER–vacuole contacts via the mitochondrial import receptors Tom70/71 and the vacuolar protein Vac8, respectively. At mitochondria, Ltc1 was required for cell viability in the absence of Mdm34, a subunit of the ER–mitochondria encounter structure. At vacuoles, Ltc1 was required for sterol-enriched membrane domain formation in response to stress. Increasing the proportion of Ltc1 at vacuoles was sufficient to induce sterol-enriched vacuolar domains without stress. Thus, our data support a model in which Ltc1 is a sterol-dependent regulator of organelle and cellular homeostasis via its dual localization to ER–mitochondria and ER–vacuole contact sites.  相似文献   

20.
In metazoans, a ≈1 megadalton (MDa) multiprotein complex comprising the dynein–dynactin adaptor Spindly and the ROD–Zwilch–ZW10 (RZZ) complex is the building block of a fibrous biopolymer, the kinetochore fibrous corona. The corona assembles on mitotic kinetochores to promote microtubule capture and spindle assembly checkpoint (SAC) signaling. We report here a high‐resolution cryo‐EM structure that captures the essential features of the RZZ complex, including a farnesyl‐binding site required for Spindly binding. Using a highly predictive in vitro assay, we demonstrate that the SAC kinase MPS1 is necessary and sufficient for corona assembly at supercritical concentrations of the RZZ–Spindly (RZZS) complex, and describe the molecular mechanism of phosphorylation‐dependent filament nucleation. We identify several structural requirements for RZZS polymerization in rings and sheets. Finally, we identify determinants of kinetochore localization and corona assembly of Spindly. Our results describe a framework for the long‐sought‐for molecular basis of corona assembly on metazoan kinetochores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号