首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By predicting the potential signal peptides from proteins that are naturally secreted by Pichia pastoris, we identified three possible endogenous signal peptides: Scw, Dse and Exg. We compared their capability to mediate the secretion of enhanced green fluorescent protein (EGFP) and Candida antarctica lipase B (CALB) with that of the Saccharomyces cerevisiae α-factor prepro-signal. EGFP entered the secretory pathway of P. pastoris and was efficiently secreted into the culture medium by all three endogenous peptides. Further, these three putative endogenous signal peptides were also effective in secreting CALB. These endogenous signal peptides thus have the potential to mediate the efficient secretion of heterologous proteins in P. pastoris.  相似文献   

2.
Pichia pastoris is commonly used for the production of recombinant proteins due to its preferential secretion of recombinant proteins, resulting in lower production costs and increased yields of target proteins. However, not all recombinant proteins can be successfully secreted in P. pastoris. A computational method that predicts the likelihood of a protein being secreted into the supernatant would be of considerable value; however, to the best of our knowledge, no such tool has yet been developed. We present a machine-learning approach called Presep to assess the likelihood of a recombinant protein being secreted by P. pastoris based on its pseudo amino acid composition (PseAA). Using a 20-fold cross validation, Presep demonstrated a high degree of accuracy, with Matthews correlation coefficient (MCC) and overall accuracy (Q2) scores of 0.78 and 95%, respectively. Computational results were validated experimentally, with six β-galactosidase genes expressed in P. pastoris strain GS115 to verify Presep model predictions. A strong correlation (R2 = 0.967) was observed between Presep prediction secretion propensity and the experimental secretion percentage. Together, these results demonstrate the ability of the Presep model for predicting the secretion propensity of P. pastoris for a given protein. This model may serve as a valuable tool for determining the utility of P. pastoris as a host organism prior to initiating biological experiments. The Presep prediction tool can be freely downloaded at http://www.mobioinfor.cn/Presep.  相似文献   

3.
A 1,965-bp fragment encoding a poly(vinyl alcohol) dehydrogenase (PVADH) from Sphingopyxis sp. 113P3 was synthesized based on the codon bias of the methylotrophic yeast Pichia pastoris. The fragment was then amplified by polymerase chain reaction and inserted into the site between EcoRI and NotI sites in pPIC9K, which was under the control of the AOX1 promoter and α-mating factor signal sequence from Saccharomyces cerevisiae. The recombinant plasmid, designated as pPIC9K-PVADH, was linearized using SalI and transformed into P. pastoris GS115 by electroporation. The PVADH activity reached 55 U/mL in a shake flask and 902 U/mL in a 3-L bioreactor. Surprisingly, the sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis and N-terminal sequencing indicated that the secreted PVADH was truncated, and it had only 548 amino acid residues (an 81-amino acid sequence from the secreted protein was cleaved). The optimum pH and temperature ranges for the truncated PVADH were 7.0–8.0 and 41–53 °C, respectively. The activation energy of the recombinant truncated PVADH was approximately 10.36 kcal/mol between 29 and 41 °C. Both Ca2+ and Mg2+ had stimulating effects on the activity of PVADH. With PVA1799 as the substrate, the truncated PVADH had a Michaelis constant (K m) of 1.89 mg/mL and a maximum reaction rate (V max) of 34.9 nmol/(min mg protein). To the best of our knowledge, this is the first report on the expression of PVADH in P. pastoris, and the achieved PVADH yield is the highest ever reported.  相似文献   

4.
In contrast to the enormous advances made regarding mechanisms of conventional protein secretion, mechanistic insights into the unconventional secretion of proteins are lacking. Acyl coenzyme A (CoA)–binding protein (ACBP; AcbA in Dictyostelium discoideum), an unconventionally secreted protein, is dependent on Golgi reassembly and stacking protein (GRASP) for its secretion. We discovered, surprisingly, that the secretion, processing, and function of an AcbA-derived peptide, SDF-2, are conserved between the yeast Pichia pastoris and D. discoideum. We show that in yeast, the secretion of SDF-2–like activity is GRASP dependent, triggered by nitrogen starvation, and requires autophagy proteins as well as medium-chain fatty acyl CoA generated by peroxisomes. Additionally, a phospholipase D implicated in soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor–mediated vesicle fusion at the plasma membrane is necessary, but neither peroxisome turnover nor fusion between autophagosomes and the vacuole is essential. Moreover, yeast Acb1 and several proteins required for its secretion are necessary for sporulation in P. pastoris. Our findings implicate currently unknown, evolutionarily conserved pathways in unconventional secretion.  相似文献   

5.
In the Pichia pastoris expression system, increasing the copy number of the expression cassette often has the effect of increasing the amount of protein expressed. To improve the expression level of methyl parathion hydrolase (MPH), we constructed two integration vectors with four and eight direct repeats of the expression cassette using an in vitro multimerization approach. After two successive integrations, at least 12 copies of the MPH expression cassette were integrated into the P. pastoris chromosome. Under shake-flask conditions, over 55 mg active MPH/l was secreted into the medium by the multicopy clones. The extracellular enzyme activity was about 10-fold higher for the multicopy clones than for clones containing a single copy of the gene. Further investigations revealed that the multicopy MPH expression cassette could remain stably integrated and functional over five generations. Note that the expression vector pRF constructed in our study can be not only used to construct multiple copies of the expression cassette in vitro, but also integrated into the P. pastoris genome without introducing any antibiotic resistance gene, which is desirable for production of biotherapeutic proteins.  相似文献   

6.
The remarkable properties of spider dragline silk and related protein polymers will find many applications if the materials can be produced economically. We have demonstrated the production of high molecular weight spider dragline silk analog proteins encoded by synthetic genes in several microbial systems, including Escherichia coli and Pichia pastoris. In E. coli, proteins of up to 1000 amino acids in length could be produced efficiently, but the yield and homogeneity of higher molecular weight silk proteins were found to be limited by truncated synthesis, probably as a result of ribosome termination errors. No such phenomenon was observed in the yeast P. pastoris, where higher molecular weight silk proteins could be produced without heterogeneity due to truncated synthesis. Spider dragline silk analog proteins could be secreted by P. pastoris when fused to both the signal sequence and N-terminal pro-sequence of the Saccharomyces cerevisiae alpha-mating factor gene.  相似文献   

7.
The main keratinase (kerA) gene from the Bacillus licheniformis S90 was optimized by two codon optimization strategies and expressed in Pichia pastoris in order to improve the enzyme production compared to the preparations with the native kerA gene. The results showed that the corresponding mutations (synonymous codons) according to the codon bias in Pichia pastoris were successfully introduced into keratinase gene. The highest keratinase activity produced by P. pastoris pPICZαA-kerAwt, pPICZαA-kerAopti1 and pPICZαA-kerAopti2 was 195 U/ml, 324 U/ml and 293 U/ml respectively. In addition, there was no significant difference in biomass concentration, target gene copy numbers and relative mRNA expression levels of every positive strain. The molecular weight of keratinase secreted by recombinant P. pastori was approx. 39 kDa. It was optimally active at pH 7.5 and 50°C. The recombinant keratinase could efficiently degrade both α-keratin (keratin azure) and β-keratin (chicken feather meal). These properties make the P. pastoris pPICZαA-kerAopti1 a suitable candidate for industrial production of keratinases.  相似文献   

8.
Capillary electrophoretic methods have been developed to separate the enantiomers of methylphenidate (MPH) and dextromoramide. For MPH separation was achieved with heptakis (2,6-di-O-methyl)-β-cyclodextrin (DMCD) as chiral selector in a 100 mM phosphoric acid buffer adjusted to pH 3.0 with triethanolamine. Commercial samples of d,l-erytho-MPH HCl and d,l-threo-MPH HCl were analysed using the method. There was no evidence of the presence of d,l-threo-MPH HCl in d,l-erytho-MPH HCl and vice versa. The ratio of the enantiomers was determined for each diastereoisomer. Hydroxypropyl-β-cyclodextrin was the chiral selector of choice for the chiral separation of the enantiomers of moramide. The separation which gave a resolution of about 3.5 was achieved in 4 min using only a 6 cm of length of capillary. In a sample of dextro-R-moramide tartrate only a small quantity (4.9% w/w) of levo-S-moramide was detected with this method.  相似文献   

9.
10.
Phytase genephyA2, whose signal peptide encoding sequence and intron sequence had been removed, was modified. The Arg-encoding codons CGG and CAG inphyA2 were mutated into synonymous codon AGA. The modifiedphyA2 was fused behind a-factor signal sequence under the control ofAOX1 promoter in plasmid pPIC9, then introduced into the hostPichia pastoris by electroporation. The results of Southern blotting analysis and Northem blotting analysis demonstrated that thephyA2 gene had integrated into the genome ofP. pastoris and transcribed. The result of SDS-PAGE of the phytase expressed by P.pastoris showed that the modifiedphyA2 had been overexpressed and secreted. The concentration of the phytase expressed by P.pastoris with modifiedphyA2 exceeded 15 000 U/mL, which had a 3 000-fold increase over that of originAspergillus niger 963 and was 37 times higher than that of recombinantP. pastoris with non-modifiedphyA2.  相似文献   

11.
Saccharomyces cerevisiae is often used to produce heterologous proteins that are preferentially secreted to increase economic feasibility. We used N-glycosylation as a tool to enhance protein secretion. Secretion of cutinase, a lipase, and llama VHH antibody fragments by S. cerevisiae or Pichia pastoris improved following the introduction of an N-glycosylation site. When we introduced an N-glycosylation consensus sequence in the N-terminal region of a hydrophobic cutinase, secretion increased fivefold. If an N-glycosylation site was introduced in the C-terminal region, however, secretion increased only 1.8-fold. These results indicate that the use of N glycosylation can significantly enhance heterologous protein secretion.  相似文献   

12.

Background

Rhipicephalus (Boophilus) spp. ticks economically impact on cattle production in Africa and other tropical and subtropical regions of the world. Tick vaccines constitute a cost-effective and environmentally friendly alternative to tick control. The R. microplus Bm86 protective antigen has been produced by recombinant DNA technology and shown to protect cattle against tick infestations.

Results

In this study, the genes for Bm86 (R. microplus), Ba86 (R. annulatus) and Bd86 (R. decoloratus) were cloned and characterized from African or Asian tick strains and the recombinant proteins were secreted and purified from P. pastoris. The secretion of recombinant Bm86 ortholog proteins in P. pastoris allowed for a simple purification process rendering a final product with high recovery (35–42%) and purity (80–85%) and likely to result in a more reproducible conformation closely resembling the native protein. Rabbit immunization experiments with recombinant proteins showed immune cross-reactivity between Bm86 ortholog proteins.

Conclusion

These experiments support the development and testing of vaccines containing recombinant Bm86, Ba86 and Bd86 secreted in P. pastoris for the control of tick infestations in Africa.  相似文献   

13.
A Coprinus cinereus peroxidase (CiP) was successfully expressed by the methylotrophic yeast Pichia pastoris. The 1095-bp gene encoding peroxidase from C. cinereus was cloned with a highly inducible alcohol oxidase (AOX1) promoter and integrated into the genome of P. pastoris. The recombinant CiP (rCiP) fused with the α-mating factor pre-pro leader sequence derived from Saccharomyces cerevisiae accumulated neither inside the cell nor within the wall, and were efficiently secreted into the culture medium. SDS-PAGE and immunoblot analysis revealed that the rCiP was not hyper-glycosylated and its α-factor signal sequence was correctly processed. It was also found that the kinetic properties of rCiP were similar to those of native CiP. In order to produce large amounts of rCiP, the high cell density cultivation of recombinant P. pastoris was carried out in a fermentor with fed-batch mode. The peroxidase activity obtained in a 5 l fermentor cultivation became about 6 times (1200 U/ml) higher than that in shake-flask cultures (200 U/ml).  相似文献   

14.

Background

Pichia pastoris is widely used as a production platform for heterologous proteins and model organism for organelle proliferation. Without a published genome sequence available, strain and process development relied mainly on analogies to other, well studied yeasts like Saccharomyces cerevisiae.

Results

To investigate specific features of growth and protein secretion, we have sequenced the 9.4 Mb genome of the type strain DSMZ 70382 and analyzed the secretome and the sugar transporters. The computationally predicted secretome consists of 88 ORFs. When grown on glucose, only 20 proteins were actually secreted at detectable levels. These data highlight one major feature of P. pastoris, namely the low contamination of heterologous proteins with host cell protein, when applying glucose based expression systems. Putative sugar transporters were identified and compared to those of related yeast species. The genome comprises 2 homologs to S. cerevisiae low affinity transporters and 2 to high affinity transporters of other Crabtree negative yeasts. Contrary to other yeasts, P. pastoris possesses 4 H+/glycerol transporters.

Conclusion

This work highlights significant advantages of using the P. pastoris system with glucose based expression and fermentation strategies. As only few proteins and no proteases are actually secreted on glucose, it becomes evident that cell lysis is the relevant cause of proteolytic degradation of secreted proteins. The endowment with hexose transporters, dominantly of the high affinity type, limits glucose uptake rates and thus overflow metabolism as observed in S. cerevisiae. The presence of 4 genes for glycerol transporters explains the high specific growth rates on this substrate and underlines the suitability of a glycerol/glucose based fermentation strategy. Furthermore, we present an open access web based genome browser http://www.pichiagenome.org.  相似文献   

15.
The medaka fish α-amylase was expressed and purified. The expression systems were constructed using methylotrophic yeast Pichia pastoris, and the recombinant proteins were secreted into the culture medium. Purified recombinant α-amylase exhibited starch hydrolysis activity. The optimal pH, denaturation temperature, and KM and Vmax values were determined; chloride ions were essential for enzyme activity. The purified protein was also crystallized and examined by X-ray crystallography. The structure has the (α/β)8 barrel fold, as do other known α-amylases, and the overall structure is very similar to the structure of vertebrate (human and pig) α-amylases. A novel expression plasmid was developed. Using this plasmid, high-throughput construction of an expression system by homologous recombination in P. pastoris cells, previously reported for membrane proteins, was successfully applied to the secretory protein.  相似文献   

16.
Yeast expression systems have been successfully used for over 20 years for the production of recombinant proteins. With the growing interest in recombinant protein expression for various uses, yeast expression systems, such as the popular Pichia pastoris, are becoming increasingly important. Although P. pastoris has been successfully used in the production of many secreted and intracellular recombinant proteins, there is still room for improvement of this expression system. In particular, secretion of recombinant proteins is still one of the main reasons for using P. pastoris. Therefore, endoplasmic reticulum protein folding, correct glycosylation, vesicular transport to the plasma membrane, gene dosage, secretion signal sequences, and secretome studies are important considerations for improved recombinant protein production.  相似文献   

17.
Glycosylphosphatidylinositol (GPI)-anchored glycoproteins have various intrinsic functions in yeasts and different uses in vitro. In the present study, the genome of Pichia pastoris GS115 was screened for potential GPI-modified cell wall proteins. Fifty putative GPI-anchored proteins were selected on the basis of (i) the presence of a C-terminal GPI attachment signal sequence, (ii) the presence of an N-terminal signal sequence for secretion, and (iii) the absence of transmembrane domains in mature protein. The predicted GPI-anchored proteins were fused to an alpha-factor secretion signal as a substitute for their own N-terminal signal peptides and tagged with the chimeric reporters FLAG tag and mature Candida antarctica lipase B (CALB). The expression of fusion proteins on the cell surface of P. pastoris GS115 was determined by whole-cell flow cytometry and immunoblotting analysis of the cell wall extracts obtained by β-1,3-glucanase digestion. CALB displayed on the cell surface of P. pastoris GS115 with the predicted GPI-anchored proteins was examined on the basis of potential hydrolysis of p-nitrophenyl butyrate. Finally, 13 proteins were confirmed to be GPI-modified cell wall proteins in P. pastoris GS115, which can be used to display heterologous proteins on the yeast cell surface.  相似文献   

18.
《Process Biochemistry》2014,49(10):1718-1722
Serratia proteamaculans metalloprotease (SPP) was successfully secreted by a heterologous ABC protein exporter, the Pseudomonas fluorescens TliDEF, in recombinant host strains. Escherichia coli and P. fluorescens cells containing the SPP-encoding gene showed the extracellular protease activity only when the TliDEF-encoding gene cluster was coexpressed. Recombinant P. fluorescens produced an approximately 34.8-fold higher amount of extracellular SPP than did E. coli. The use of a more nutrient-rich medium and controlled dissolved oxygen conditions was effective in increasing SPP secretion in P. fluorescens batch fermentation (an 8.7-fold increase from 41.8 U/mL to 365.2 U/mL). Therefore, SPP, which could not be secreted without an ABC protein exporter, was produced in large quantities by applying the heterologous TliDEF exporter in P. fluorescens. The results also suggest that the use of the ABC protein exporter in P. fluorescens could be an efficient production platform for an industrially promising type I secretion pathway-dependent enzyme.  相似文献   

19.
The lipase r27RCL from Rhizopus chinensis CCTCC M201021 was heterologously expressed in Pichia pastoris GS115 by simultaneous co-expression with two secretion factors ERO1p and PDI involved in the endoplasmic reticulum (ER). Compared to the expression of the lipase alone (12,500 U/ml), co-expression with these two proteins resulted in the production of larger total quantities of enzymes. The largest increase was seen when the combined ERO1p/PDI system was co-expressed, resulting in approximately 30 % higher enzyme yields (16,200 U/ml) than in the absence of co-expressed secretion factors. The extracellular protein concentration of the recombinant strain Co XY RCL-5 reached 9.39 g/l in the 7-l fermentor. Simultaneously, the fermentation time was also shortened by about 8 h compared to that of the control. The substrate-specific consumption rate (Qs) and the product-specific production rate (Qp) were both investigated in this research. In conclusion, the space–time yield was improved by co-expression with ERO1p and PDI. This is a potential strategy for high level expression of other heterologous proteins in P. pastoris.  相似文献   

20.
The Sphingopyxis sp. 113P3 gene oph, encoding oxidized polyvinyl alcohol hydrolase (OPH), was optimized with the preferred codons of Pichia pastoris and ligated into the pPIC9K vector behind the α-factor signal sequence. The vector was then transfected into P. pastoris GS115 and genomic integration was confirmed. Large-scale production of recombinant protein was performed by induction with 14.4 g/L methanol at 22 °C in a 3-L bioreactor. The maximal OPH activity obtained was 68.4 U/mL, which is the highest activity reported. The optimal pH and temperature of recombinant OPH were 8.0 and 45 °C, respectively. OPH activity was stable over a pH range of 5.0–8.5, and at a maximal temperature of 45 °C. The K cat /K m of recombinant OPH was 598 mM?1 s?1, which was 4.27-fold higher than that of recombinant OPH derived from Escherichia coli. The improved catalytic efficiency of OPH expressed in recombinant P. pastoris makes it favorable for industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号