首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
李红  谢卡斌 《生物工程学报》2017,33(10):1700-1711
在过去的4年中,CRISPR/Cas9基因组编辑技术成为生命科学领域的革命性工具,为植物学基础研究和农作物遗传改良提供了高效、快速而又廉价的遗传操作工具。利用CRISPR/Cas9系统可以实现精准的knock-out和knock-in等遗传操作,也可用于靶向激活或抑制基因的表达。在CRISPR/Cas9被广泛地用于基因组编辑的同时,它的编辑能力、效率和精确度也在不断地改进和完善,特别是CRISPR/Cpf1系统的发掘和单碱基编辑技术的创建,使CRISPR系统正逐步成为一个理想的遗传工程技术平台。此外,利用CRISPR/Cas9技术改良的农作物品种也已经涌现,这必将推动精准基因组编辑技术在农作物遗传改良中的应用和发展。  相似文献   

2.
杨帆  李寅 《生物工程学报》2017,33(3):361-371
CRISPR/Cas系统几乎存在于所有的细菌和古菌中,是用来抵御外来病毒和噬菌体入侵的获得性免疫防御机制。2012年起CRISPR/Cas9被改造为基因编辑工具,并衍生出一系列高效、便捷的基因编辑工具,迅速在基础理论、基因诊断和临床治疗等研究领域中得到广泛应用。然而,CRISPR/Cas9也存在细胞毒性、脱靶效应和基因插入困难等一些亟待解决的问题,在一定程度上限制了CRISPR/Cas9的应用。Cpf1是2015年报道的一种新型CRISPR效应蛋白,具有许多与Cas9不同的特性,有利于克服CRISPR/Cas9应用中的一些限制。本文综述了近两年来对CRISPR/Cpf1的研究进展和应用,并对其应用前景和发展方向进行了展望。  相似文献   

3.
CRISPR/Cas9 and Cas12a (Cpf1) nucleases are two of the most powerful genome editing tools in plants. In this work, we compared their activities by targeting maize glossy2 gene coding region that has overlapping sequences recognized by both nucleases. We introduced constructs carrying SpCas9‐guide RNA (gRNA) and LbCas12a‐CRISPR RNA (crRNA) into maize inbred B104 embryos using Agrobacterium‐mediated transformation. On‐target mutation analysis showed that 90%–100% of the Cas9‐edited T0 plants carried indel mutations and 63%–77% of them were homozygous or biallelic mutants. In contrast, 0%–60% of Cas12a‐edited T0 plants had on‐target mutations. We then conducted CIRCLE‐seq analysis to identify genome‐wide potential off‐target sites for Cas9. A total of 18 and 67 potential off‐targets were identified for the two gRNAs, respectively, with an average of five mismatches compared to the target sites. Sequencing analysis of a selected subset of the off‐target sites revealed no detectable level of mutations in the T1 plants, which constitutively express Cas9 nuclease and gRNAs. In conclusion, our results suggest that the CRISPR/Cas9 system used in this study is highly efficient and specific for genome editing in maize, while CRISPR/Cas12a needs further optimization for improved editing efficiency.  相似文献   

4.
5.
CRISPR‐Cpf1 is a newly identified CRISPR‐Cas system, and Cpf1 was recently engineered as a molecular tool for targeted genome editing in mammalian cells. To test whether the engineered CRISPR‐Cpf1 system could induce the production of rice mutants, we selected two genome targets in the OsPDS and OsBEL genes. Our results show that both targets could be efficiently mutated in transgenic rice plants using CRISPR‐Cpf1. We found that pre‐crRNAs with a full‐length direct repeat sequence exhibited considerably increased efficiencies compared with mature crRNAs. In addition, the specificity and transmission of the mutation were investigated, and the behaviours of crRNA‐Cpf1‐induced plant targeted genome mutagenesis were assessed. Taken together, our results indicate that CRISPR‐Cpf1 expression via stable transformation can efficiently generate specific and heritable targeted mutations in rice and thereby constitutes a novel and important approach to specific and precise plant genome editing.  相似文献   

6.
7.
The CRISPR/Cas9 system and related RNA‐guided endonucleases can introduce double‐strand breaks (DSBs) at specific sites in the genome, allowing the generation of targeted mutations in one or more genes as well as more complex genomic rearrangements. Modifications of the canonical CRISPR/Cas9 system from Streptococcus pyogenes and the introduction of related systems from other bacteria have increased the diversity of genomic sites that can be targeted, providing greater control over the resolution of DSBs, the targeting efficiency (frequency of on‐target mutations), the targeting accuracy (likelihood of off‐target mutations) and the type of mutations that are induced. Although much is now known about the principles of CRISPR/Cas9 genome editing, the likelihood of different outcomes is species‐dependent and there have been few comparative studies looking at the basis of such diversity. Here we critically analyse the activity of CRISPR/Cas9 and related systems in different plant species and compare the outcomes in animals and microbes to draw broad conclusions about the design principles required for effective genome editing in different organisms. These principles will be important for the commercial development of crops, farm animals, animal disease models and novel microbial strains using CRISPR/Cas9 and other genome‐editing tools.  相似文献   

8.
9.
10.
11.
12.
The advent of genome editing techniques based on the clustered regularly interspersed short palindromic repeats (CRISPR)–Cas9 system has revolutionized research in the biological sciences. CRISPR is quickly becoming an indispensible experimental tool for researchers using genetic model organisms, including the nematode Caenorhabditis elegans. Here, we provide an overview of CRISPR-based strategies for genome editing in C. elegans. We focus on practical considerations for successful genome editing, including a discussion of which strategies are best suited to producing different kinds of targeted genome modifications.  相似文献   

13.
Genome editing technologies are powerful tools for studying gene function and for crop improvement. The technologies rely on engineered endonucleases to generate double stranded breaks (DSBs) at target loci. The DSBs are repaired through the error-prone non-homologous end joining (NHEJ) and homology-directed repair (HDR) pathways in cells, resulting in mutations and sequence replacement, respectively. In the widely used CRISPR/Cas9 system, the endonuclease Cas9 is targeted by a CRISPR small RNA to DNA sequence of interest. In this review, we describe the four available types of genome editing tools, ZFN, TALEN, CRISPR/Cas9 and CRISPR/Cpf1, and show their applications in functional genomics research and precision molecular breeding of crops.  相似文献   

14.
CRISPR/Cas9系统是继锌指核酸内切酶、类转录激活因子效应物核酸酶之后的第三代基因组定点编辑工具,因其具有特异性切割双链DNA的能力,被广泛应用于基因编辑、生物传感等领域。Cas12a(Cpf1)、Cas13a(C2c2)等蛋白"附属切割"活性的发现,拓展了CRISPR/Cas系统在生物传感中的应用。近年来,研究人员开发出一系列快速、超敏、高特异性的生物传感系统用于分子检测,如SHERLOCK,DETECTR等。本文主要综述了基于CRISPR/Cas系统的生物传感策略的研究进展,并展望了其未来发展的方向。  相似文献   

15.
随着能源和环境问题的日益突出,化学品以及燃料的合成方式正逐渐由传统的化学法合成转变为以细菌为基础的生物炼制过程,其中最关键问题是需要开发出合适的基因工程工具用于构建相应的产品生产菌株。成簇的规律间隔短回文重复序列(Clusteredregularlyinterspacedshortpalindromic repeats,CRISPR)/CRISPR相关蛋白(CRISPR-associated proteins,Cas)系统是一种存在于细菌和古细菌中的免疫系统,能够用于抵御病毒和外源质粒的入侵,近年来被开发成为一种高效、便捷、精确的基因编辑工具,显示出巨大的应用潜力。本文立足于CRISPR/Cas系统的原理与最新分类,结合实例综述了CRISPR/Cas基因编辑系统在原核微生物细胞工厂构建中的建立与优化策略,以及主要的应用方向,并探讨该系统所面临的主要问题并提出了一些可行的解决方案。  相似文献   

16.
Clustered regularly interspaced short palindromic repeats‐associated protein 9 (CRISPR‐Cas9) is a revolutionary technology that enables efficient genomic modification in many organisms. Currently, the wide use of Streptococcus pyogenes Cas9 (SpCas9) primarily recognizes sites harbouring a canonical NGG protospacer adjacent motif (PAM). The newly developed VQR (D1135V/R1335Q/T1337R) variant of Cas9 has been shown to cleave sites containing NGA PAM in rice, which greatly expanded the range of genome editing. However, the low editing efficiency of the VQR variant remains, which limits its wide application in genome editing. In this study, by modifying the single guide RNA (sgRNA) structure and strong endogenous promoters, we significantly increased the editing efficiency of the VQR variant. The modified CRISPR‐Cas9‐VQR system provides a robust toolbox for multiplex genome editing at sites containing noncanonical NGA PAM.  相似文献   

17.
CRISPR/Cas9 has been widely used for genome editing in many organisms, including important crops like wheat. Despite the tractability in designing CRISPR/Cas9, efficacy in the application of this powerful genome editing tool also depends on DNA delivery methods. In wheat, the biolistics based transformation is the most used method for delivery of the CRISPR/Cas9 complex. Due to the high frequency of gene silencing associated with co‐transferred plasmid backbone and low edit rate in wheat, a large T0 transgenic plant population are required for recovery of desired mutations, which poses a bottleneck for many genome editing projects. Here, we report an Agrobacterium‐delivered CRISPR/Cas9 system in wheat, which includes a wheat codon optimized Cas9 driven by a maize ubiquitin gene promoter and a guide RNA cassette driven by wheat U6 promoters in a single binary vector. Using this CRISPR/Cas9 system, we have developed 68 edit mutants for four grain‐regulatory genes, TaCKX2‐1, TaGLW7, TaGW2, and TaGW8, in T0, T1, and T2 generation plants at an average edit rate of 10% without detecting off‐target mutations in the most Cas9‐active plants. Homozygous mutations can be recovered from a large population in a single generation. Different from most plant species, deletions over 10 bp are the dominant mutation types in wheat. Plants homozygous of 1160‐bp deletion in TaCKX2‐D1 significantly increased grain number per spikelet. In conclusion, our Agrobacterium‐delivered CRISPR/Cas9 system provides an alternative option for wheat genome editing, which requires a small number of transformation events because CRISPR/Cas9 remains active for novel mutations through generations.  相似文献   

18.
Plant trait engineering requires efficient targeted genome-editing technologies. Clustered regularly interspaced palindromic repeats (CRISPRs)/ CRISPR associated (Cas) type II system is used for targeted genome-editing applications across eukaryotic species including plants. Delivery of genome engineering reagents and recovery of mutants remain challenging tasks for in planta applications. Recently, we reported the development of Tobacco rattle virus (TRV)-mediated genome editing in Nicotiana benthamiana. TRV infects the growing points and possesses small genome size; which facilitate cloning, multiplexing, and agroinfections. Here, we report on the persistent activity and specificity of the TRV-mediated CRISPR/Cas9 system for targeted modification of the Nicotiana benthamiana genome. Our data reveal the persistence of the TRV- mediated Cas9 activity for up to 30 d post-agroinefection. Further, our data indicate that TRV-mediated genome editing exhibited no off-target activities at potential off-targets indicating the precision of the system for plant genome engineering. Taken together, our data establish the feasibility and exciting possibilities of using virus-mediated CRISPR/Cas9 for targeted engineering of plant genomes.  相似文献   

19.
20.
《遗传学报》2021,48(8):661-670
The ability to precisely inactivate or modify genes in model organisms helps us understand the mysteries of life. Clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(Cas9), a revolutionary technology that could generate targeted mutants, has facilitated notable advances in plant science. Genome editing with CRISPR/Cas9 has gained great popularity and enabled several technical breakthroughs. Herein, we briefly introduce the CRISPR/Cas9, with a focus on the latest breakthroughs in precise genome editing(e.g., base editing and prime editing), and we summarize various platforms that developed to increase the editing efficiency, expand the targeting scope, and improve the specificity of base editing in plants. In addition, we emphasize the recent applications of these technologies to plants. Finally, we predict that CRISPR/Cas9 and CRISPR/Cas9-based genome editing will continue to revolutionize plant science and provide technical support for sustainable agricultural development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号