首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudouridine (Ψ), the isomer of uridine, is commonly found at various positions of noncoding RNAs of all organisms. Ψ residues are formed by a number of single- or multisite specific Ψ synthases, which generally act as stand-alone proteins. In addition, in Eukarya and Archaea, specific ribonucleoprotein complexes, each containing a distinct box H/ACA guide RNA and four core proteins, can produce Ψ at many sites of different cellular RNAs. Cbf5 is the core Ψ synthase in these complexes. Using Haloferax volcanii as an archaeal model organism, we show that, contrary to eukaryotes, the Cbf5 homolog (HVO_2493) is not essential in this archaeon. The Cbf5-deleted strain of H. volcanii completely lacks Ψ at positions 1940, 1942, 2605, and 2591 (Escherichia coli positions 1915, 1917, 2572, and 2586) of its 23S rRNA, and contains reduced steady-state levels of some box H/ACA RNAs. Archaeal Cbf5 is known to have tRNA Ψ55 synthase activity in vitro but we could not confirm this activity in vivo in H. volcanii. Conversely, the Pus10 (previously PsuX) homolog (HVO_1979), which can produce tRNA Ψ55, as well as Ψ54 in vitro, is shown here to be essential in H. volcanii, whereas the corresponding tRNA Ψ55 synthases, Pus4 and TruB, are not essential in yeast and E. coli, respectively. Finally, we demonstrate that HVO_1852, the TruA/Pus3 homolog, is responsible for the pseudouridylation of position 39 in H. volcanii tRNAs and that the corresponding gene is not essential.  相似文献   

2.
3.
Wu G  Xiao M  Yang C  Yu YT 《The EMBO journal》2011,30(1):79-89
All pseudouridines identified in RNA are considered constitutive modifications. Here, we demonstrate that pseudouridylation of Saccharomyces cerevisiae U2 snRNA can be conditionally induced. While only Ψ35, Ψ42 and Ψ44 are detected in U2 under normal conditions, nutrient deprivation leads to additional pseudouridylation at positions 56 and 93. Pseudouridylation at position 56 can also be induced by heat shock. Detailed analyses have shown that Pus7p, a single polypeptide pseudouridylase known to modify U2 at position 35 and tRNA at position 13, catalyses Ψ56 formation, and that snR81 RNP, a box H/ACA RNP known to modify U2 snRNA at position 42 and 25S rRNA at position 1051, catalyses Ψ93 formation. Using mutagenesis, we have demonstrated that the inducibility can be attributed to the imperfect substrate sequences. By introducing Ψ93 into log-phase cells, we further show that Ψ93 has a role in pre-mRNA splicing. Our results thus demonstrate for the first time that pseudouridylation of RNA can be induced at sites of imperfect sequences, and that Pus7p and snR81 RNP can catalyse both constitutive and inducible pseudouridylation.  相似文献   

4.
Pseudouridine (Ψ) is the most abundant internal modification identified in RNA, and yet little is understood of its effects on downstream reactions. Yeast U2 snRNA contains three conserved Ψs (Ψ35, Ψ42, and Ψ44) in the branch site recognition region (BSRR), which base pairs with the pre‐mRNA branch site during splicing. Here, we show that blocks to pseudouridylation at these positions reduce the efficiency of pre‐mRNA splicing, leading to growth‐deficient phenotypes. Restoration of pseudouridylation at these positions using designer snoRNAs results in near complete rescue of splicing and cell growth. These Ψs interact genetically with Prp5, an RNA‐dependent ATPase involved in monitoring the U2 BSRR‐branch site base‐pairing interaction. Biochemical analysis indicates that Prp5 has reduced affinity for U2 snRNA that lacks Ψ42 and Ψ44 and that Prp5 ATPase activity is reduced when stimulated by U2 lacking Ψ42 or Ψ44 relative to wild type, resulting in inefficient spliceosome assembly. Furthermore, in vivo DMS probing analysis reveals that pseudouridylated U2, compared to U2 lacking Ψ42 and Ψ44, adopts a slightly different structure in the branch site recognition region. Taken together, our results indicate that the Ψs in U2 snRNA contribute to pre‐mRNA splicing by directly altering the binding/ATPase activity of Prp5.  相似文献   

5.
A stop or nonsense codon is an in-frame triplet within a messenger RNA that signals the termination of translation. One common feature shared among all three nonsense codons (UAA, UAG, and UGA) is a uridine present at the first codon position. It has been recently shown that the conversion of this uridine into pseudouridine (Ψ) suppresses translation termination, both in vitro and in vivo. Furthermore, decoding of the pseudouridylated nonsense codons is accompanied by the incorporation of two specific amino acids in a nonsense codon-dependent fashion. Ψ differs from uridine by a single N1H group at the C5 position; how Ψ suppresses termination and, more importantly, enables selective decoding is poorly understood. Here, we provide molecular rationales for how pseudouridylated stop codons are selectively decoded. Our analysis applies crystal structures of ribosomes in varying states of translation to consider weakened interaction of Ψ with release factor; thermodynamic and geometric considerations of the codon-anticodon base pairs to rank and to eliminate mRNA-tRNA pairs; the mechanism of fidelity check of the codon-anticodon pairing by the ribosome to evaluate noncanonical codon-anticodon base pairs and the role of water. We also consider certain tRNA modifications that interfere with the Ψ-coordinated water in the major groove of the codon-anticodon mini-helix. Our analysis of nonsense codons enables prediction of potential decoding properties for Ψ-modified sense codons, such as decoding ΨUU potentially as Cys and Tyr. Our results provide molecular rationale for the remarkable dynamics of ribosome decoding and insights on possible reprogramming of the genetic code using mRNA modifications.  相似文献   

6.
Emerging evidence demonstrates that competing endogenous RNA (ceRNA) hypothesis has played a role in molecular biological mechanisms of cancer occurrence and development. But the effect of ceRNA network in bladder cancer (BC), especially lncRNA‐miRNA‐mRNA regulatory network of BC, was not completely expounded. By means of The Cancer Genome Atlas (TCGA) database, we compared the expression of RNA sequencing (RNA‐Seq) data between 19 normal bladder tissue and 414 primary bladder tumours. Then, weighted gene co‐expression network analysis (WGCNA) was conducted to analyse the correlation between two sets of genes with traits. Interactions between miRNAs, lncRNAs and target mRNAs were predicted by MiRcode, miRDB, starBase, miRTarBase and TargetScan. Next, by univariate Cox regression and LASSO regression analysis, the 86 mRNAs obtained by prediction were used to construct a prognostic model which contained 4 mRNAs (ACTC1 + FAM129A + OSBPL10 + EPHA2). Then, by the 4 mRNAs in the prognostic model, a ceRNA regulatory network with 48 lncRNAs, 14 miRNAs and 4 mRNAs was constructed. To sum up, the ceRNA network can further explore gene regulation and predict the prognosis of BC patients.  相似文献   

7.
8.
9.
How pseudouridylation (Ψ), the most common and evolutionarily conserved modification of rRNA, regulates ribosome activity is poorly understood. Medically, Ψ is important because the rRNA Ψ synthase, DKC1, is mutated in X-linked dyskeratosis congenita (X-DC) and Hoyeraal-Hreidarsson (HH) syndrome. Here, we characterize ribosomes isolated from?a yeast strain in which Cbf5p, the yeast homolog of DKC1, is catalytically impaired through a D95A mutation (cbf5-D95A). Ribosomes from cbf5-D95A cells display decreased affinities for tRNA binding to the A and P sites as well as the cricket paralysis virus internal ribosome entry site (IRES), which interacts with both the P and the E sites of the ribosome. This biochemical impairment in ribosome activity manifests as decreased translational fidelity and IRES-dependent translational initiation, which are also evident in mouse and human cells deficient for DKC1 activity. These findings uncover specific roles for Ψ modification in ribosome-ligand interactions that are conserved in yeast, mouse, and humans.  相似文献   

10.
11.
本文提出了一种基于卷积神经网络和循环神经网络的深度学习模型,通过分析基因组序列数据,识别人基因组中环形RNA剪接位点.首先,根据预处理后的核苷酸序列,设计了2种网络深度、8种卷积核大小和3种长短期记忆(long short term memory,LSTM)参数,共8组16个模型;其次,进一步针对池化层进行均值池化和最大池化的测试,并加入GC含量提高模型的预测能力;最后,对已经实验验证过的人类精浆中环形RNA进行了预测.结果表明,卷积核尺寸为32×4、深度为1、LSTM参数为32的模型识别率最高,在训练集上为0.9824,在测试数据集上准确率为0.95,并且在实验验证数据上的正确识别率为83%.该模型在人的环形RNA剪接位点识别方面具有较好的性能.  相似文献   

12.
Huang C  Wu G  Yu YT 《Nature protocols》2012,7(4):789-800
Isomerization from uridine to pseudouridine (pseudouridylation) is largely catalyzed by a family of small ribonucleoproteins called box H/ACA RNPs, each of which contains one unique small RNA-the box H/ACA RNA. The specificity of the pseudouridylation reaction is determined by the base-pairing interactions between the guide sequence of the box H/ACA RNA and the target sequence within an RNA substrate. Thus, by creating a new box H/ACA RNA harboring an artificial guide sequence that base-pairs with the substrate sequence, one can site-specifically introduce pseudouridines into virtually any RNA (e.g., mRNA, ribosomal RNA, small nuclear RNA, telomerase RNA and so on). Pseudouridylation changes the properties of a uridine residue and is likely to alter the role of its corresponding RNA in certain cellular processes, thereby enabling basic research into the effects of RNA modifications. Here we take a TRM4 reporter gene (also known as NCL1) as an example, and we present a protocol for designing a box H/ACA RNA to site-specifically pseudouridylate TRM4 mRNA. Disease-related mutation can result in early termination of translation by creating a premature termination codon (PTC); however, pseudouridylation at the PTC can suppress this translation termination (nonsense suppression). Thus, the experimental procedures described in this protocol may provide a novel way to treat PTC-related diseases. This protocol takes 10-13 d to complete.  相似文献   

13.
14.
S M Cheng  S C Mohr 《Biopolymers》1975,14(3):663-674
Circular dichroism spectroscopy has been used to investigate the influence of DNA molecular size, base composition, and the presence of intercalating agents upon the Ψ transition of DNA brought about by high concentrations of poly(ethylene oxide) and salt (Lerman (1971) Proc. Natl. Acad. Sci. (U.S.) 68 , 1886–1890). A molecular weight of 0.15–3.0 × 106 daltons yields maximum formation of Ψ-DNA. Both the amplitude of the large negative CD band at 265 nm—a chief characteristic of the Ψ state—and the thermal stability of Ψ-DNA increase linearly with increasing mole fraction of guanine plus cytosine in the DNA sample. Either ethidium or proflavine, at concentrations where approximately one dye is bound per 5–10 nucleotide residues, can prevent the transition completely. Striking similarities between the Ψ-DNA produced by poly(ethylene oxide) + salt and the complexes formed between DNA and lysine-rich histone f1 suggest the presence of similar nucleic acid–nucleic acid interactions in both types of condensed phase.  相似文献   

15.
The packaging signal (Ψ) and Rev-responsive element (RRE) enable unspliced HIV-1 RNAs' export from the nucleus and packaging into virions. For some retroviruses, engrafting Ψ onto a heterologous RNA is sufficient to direct encapsidation. In contrast, HIV-1 RNA packaging requires 5′ leader Ψ elements plus poorly defined additional features. We previously defined minimal 5′ leader sequences competitive with intact Ψ for HIV-1 packaging, and here examined the potential roles of additional downstream elements. The findings confirmed that together, HIV-1 5′ leader Ψ sequences plus a nuclear export element are sufficient to specify packaging. However, RNAs trafficked using a heterologous export element did not compete well with RNAs using HIV-1's RRE. Furthermore, some RNA additions to well-packaged minimal vectors rendered them packaging-defective. These defects were rescued by extending gag sequences in their native context. To understand these packaging defects' causes, in vitro dimerization properties of RNAs containing minimal packaging elements were compared to RNAs with sequence extensions that were or were not compatible with packaging. In vitro dimerization was found to correlate with packaging phenotypes, suggesting that HIV-1 evolved to prevent 5′ leader residues' base pairing with downstream residues and misfolding of the packaging signal. Our findings explain why gag sequences have been implicated in packaging and show that RRE's packaging contributions appear more specific than nuclear export alone. Paired with recent work showing that sequences upstream of Ψ can dictate RNA folds, the current work explains how genetic context of minimal packaging elements contributes to HIV-1 RNA fate determination.  相似文献   

16.
Pseudouridine (Ψ) synthases function in the formation of Ψ, the most abundant of the modified RNA residues. All Ψ synthases in E. coli are classified into one of five families according to their sequences. Among them, members of the RluA Ψ synthase family catalyze certain Ψ formations in ribosomal RNA. RluA family members are required for ribosomal assembly and bacterial growth. None of the RluA in multicellular organisms has been studied. In the Drosophila peripheral nervous system, multiple dendritic (MD) neurons are recognized by their dendritic arbors. MD neurons can also be identified by using the enhancer trap line E7-2-36, which expresses the lacZ gene in MD neurons. Here, we show that the P-element of E7-2-36 inserts into the Drosophila RluA-1 gene. RluA-1 is homologous to E. coli RluA family members and is evolutionarily conserved in multicellular organisms. In situ hybridization and immunocytochemistry revealed that RluA-1 is expressed in MD neurons. We investigated the RluA-1 enhancer responsible for MD expression and found that the membrane-tethered green fluorescent protein driven by RluA-1-GAL4 was expressed in the dendritic arbors of MD neurons, confirming that RluA-1 is indeed expressed in MD neurons. Thus, the expression of RluA-1 is spatially controlled during development.  相似文献   

17.
Computational antisense oligo prediction with a neural network model   总被引:5,自引:0,他引:5  
MOTIVATION: The expression of a gene can be selectively inhibited by antisense oligonucleotides (AOs) targeting the mRNA. However, if the target site in the mRNA is picked randomly, typically 20% or less of the AOs are effective inhibitors in vivo. The sequence properties that make an AO effective are not well understood, thus many AOs need to be tested to find good inhibitors, which is time consuming and costly. So far computational models have been based exclusively on RNA structure prediction or motif searches while ignoring information from other aspects of AO design into the model. RESULTS: We present a computational model for AO prediction based on a neural network approach using a broad range of input parameters. Collecting sequence and efficacy data from AO scanning experiments in the literature generated a database of 490 AO molecules. Using a set of derived parameters based on AO sequence properties we trained a neural network model. The best model, an ensemble of 10 networks, gave an overall correlation coefficient of 0.30 (p=10(-8)). This model can predict effective AOs (>50% inhibition of gene expression) with a success rate of 92%. Using these thresholds the model predicts on average 12 effective AOs per 1000 base pairs, making it a stringent yet practical method for AO prediction.  相似文献   

18.
19.
One of the key issues in the theoretical prediction of RNA folding is the prediction of loop structure from the sequence. RNA loop free energies are dependent on the loop sequence content. However, most current models account only for the loop length-dependence. The previously developed “Vfold” model (a coarse-grained RNA folding model) provides an effective method to generate the complete ensemble of coarse-grained RNA loop and junction conformations. However, due to the lack of sequence-dependent scoring parameters, the method is unable to identify the native and near-native structures from the sequence. In this study, using a previously developed iterative method for extracting the knowledge-based potential parameters from the known structures, we derive a set of dinucleotide-based statistical potentials for RNA loops and junctions. A unique advantage of the approach is its ability to go beyond the the (known) native structures by accounting for the full free energy landscape, including all the nonnative folds. The benchmark tests indicate that for given loop/junction sequences, the statistical potentials enable successful predictions for the coarse-grained 3D structures from the complete conformational ensemble generated by the Vfold model. The predicted coarse-grained structures can provide useful initial folds for further detailed structural refinement.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号