首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The clinical success of targeted treatment of colorectal cancer (CRC) is often limited by resistance to anti-epidermal growth factor receptor (EGFR) therapy. The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB have recently emerged as anticancer targets, and we have previously shown increased BDNF levels in CRC tumor samples. Here we report the findings from in vitro experiments suggesting that BDNF/TrkB signaling can protect CRC cells from the antitumor effects of EGFR blockade. The anti-EGFR monoclonal antibody cetuximab reduced both cell proliferation and the mRNA expression of BDNF and TrkB in human HT-29 CRC cells. The inhibitory effect of cetuximab on cell proliferation and survival was counteracted by the addition of human recombinant BDNF. Finally, the Trk inhibitor K252a synergistically enhanced the effect of cetuximab on cell proliferation, and this effect was blocked by BDNF. These results provide the first evidence that increased BDNF/TrkB signaling might play a role in resistance to EGFR blockade. Moreover, it is possible that targeting TrkB could potentiate the anticancer effects of anti-EGFR therapy.  相似文献   

2.
An increasing amount of evidence demonstrated that the neurotrophic receptor tropomyosin-related kinase B (TrkB) plays a critical role in the development and progression of multiple types of cancer. However, its underlying mechanism in distant metastasis through the circulatory and lymphatic systems in colorectal cancer (CRC) is still unclear. Here we showed that downregulation of TrkB using short hairpin RNA obviously increased anoikis (detachment-induced apoptosis resulting from loss of cell–matrix interactions) sensitivity of CRC cells in vitro. Furthermore, using tail vein injection model, we confirmed that silencing TrkB significantly inhibited metastasis of CRC cells in vivo. Conversely, overexpression of TrkB obviously protected CRC cells from anoikis in vitro. Both loss- and gain-of-functional experiments indicated that TrkB could be a functional molecule in anti-anoikis of CRC cells. Mechanistically, we found that protein kinase B (PKB, also known as Akt) signaling pathway was a functional link in TrkB-induced anoikis suppression in CRC cells. Phosphorylation levels of Akt are closely related with the expression pattern of TrkB in CRC cells and inhibition of Akt activation robustly induces anoikis of CRC cells in vitro. In addition, our clinical investigation showed that high TrkB expression levels in CRC patients were associated with lymph node metastasis, distant metastasis and unfavourable prognosis. Thus, based on our results, this study suggests that an important function of TrkB is to protect CRC cells from anoikis in the circulatory and lymphatic systems, and that TrkB could be a promising candidate in CRC therapy, especially in the inhibition of cancer metastasis.  相似文献   

3.
Mechanisms governing the metastasis of endometrial carcinoma (EC) are poorly defined. Recent data support a role for the cell surface receptor tyrosine kinase TrkB in the progression of several human tumors. Here we present evidence for a direct role of TrkB in human EC. Immunohistochemical analysis revealed that TrkB and its secreted ligand, brain-derived neurotrophic factor (BDNF), are more highly expressed in EC than in normal endometrium. High TrkB levels correlated with lymph node metastasis (p<0.05) and lymphovascular space involvement (p<0.05) in EC. Depletion of TrkB by stable shRNA-mediated knockdown decreased the migratory and invasive capacity of cancer cell lines in vitro and resulted in anoikis in suspended cells. Conversely, exogenous expression of TrkB increased cell migration and invasion and promoted anoikis resistance in suspension culture. Furthermore, over-expression of TrkB or stimulation by BDNF resulted in altered the expression of molecular mediators of the epithelial-to-mesenchymal transition (EMT). RNA interference (RNAi)-mediated depletion of the downstream regulator, Twist, blocked TrkB-induced EMT-like transformation. The use of in vivo models revealed decreased peritoneal dissemination in TrkB-depleted EC cells. Additionally, TrkB-depleted EC cells underwent mesenchymal-to-epithelial transition and anoikis in vivo. Our data support a novel function for TrkB in promoting EMT and resistance to anoikis. Thus, TrkB may constitute a potential therapeutic target in human EC.  相似文献   

4.
Several studies have brought about increasing evidence to support the hypothesis that miRNAs play a pivotal role in multiple processes of carcinogenesis, including cell growth, apoptosis, differentiation, and metastasis. In this study, we investigated the potential role of miR-31 in colorectal cancer (CRC) aggressiveness and its underlying mechanisms. We found that miR-31 increased in CRC cells originated from metastatic foci and human primary CRC tissues with lymph node metastases. Furthermore, the high-level expression of miR-31 was significantly associated with a more aggressive and poor prognostic phenotype of patients with CRC (p < 0.05). The stable over-expression of miR-31 in CRC cells was sufficient to promote cell proliferation, invasion, and migration in vitro. It facilitated tumor growth and metastasis in vivo too. Further studies showed that miR-31 can directly bind to the 3’untranslated region (3’UTR) of SATB2 mRNA and subsequently repress both the mRNA and protein expressions of SATB2. Ectopic expression of SATB2 by transiently transfected with pCAG-SATB2 vector encoding the entire SATB2 coding sequence could reverse the effects of miR-31 on CRC tumorigenesis and progression. In addition, ectopic over-expression of miR-31 in CRC cells induced epithelial-mesenchymal transition (EMT). Our results illustrated that the up-regulation of miR-31 played an important role in CRC cell proliferation, invasion, and metastasis in vitro and in vivo through direct repressing SATB2, suggesting a potential application of miR-31 in prognosis prediction and therapeutic application in CRC.  相似文献   

5.
Peritoneal metastasis is one of the major patterns of unresectability in colorectal cancer (CRC) and a cause of death in advanced CRC. Identification of distinct gene expressions between primary CRC and peritoneal seeding metastasis is to predict the metastatic potential of primary human CRC. Three pairs of primary CRC (SNU-2335A, SNU-2404A, and SNU-2414A) and corresponding peritoneal seeding (SNU-2335D, SNU-2404B, and SNU-2414B) cell lines were established to determine the different gene expressions and resulting aberrated signaling pathways in peritoneal metastasis tumor using whole exome sequencing and microarray. Whole exome sequencing detected that mutation in CYP2A7 was exclusively shared in peritoneal seeding cell lines. Microarray identified that there were five upregulated genes (CNN3, SORBS1, BST2, EPSTI1, and KLHL5) and two downregulated genes (TRY6 and STYL5) in the peritoneal metastatic cell lines. CNN3 expression was highly augmented in both mRNA and protein levels in peritoneal metastasis cells. Knockdown of Calponin 3 resulted in augmented level of E-cadherin in peritoneal metastasis cells, and migration and invasiveness decreased accordingly. We suggest that CNN3 takes part in cell projection and movement, and the detection and distribution of CNN3 may render prognostic information for predicting peritoneal seeding metastasis from primary colorectal cancer.  相似文献   

6.
Colorectal cancer (CRC) is the most common digestive cancer in the Western world. Despite effective therapies, resistance and/or recurrence frequently occur. The present study investigated the impact of two survival pathways—neurotrophic factors (TrkB/BDNF) and autophagy—on cell fate and tumour evolution. In vitro studies were performed on two CRC cell lines, SW480 (primary tumour) and SW620 (lymph node invasion), which were also used for subcutaneous xenografts on a nude mouse model. In addition, the presence of neurotrophic factors (NTs) and autophagy markers were assessed in tissue samples representative of different stages. On the basis of our previous study (which demonstrated that TrkB overexpression is associated with prosurvival signaling in CRC cells), we pharmacologically inhibited NTs pathways with K252a. As expected, an inactivation of the PI3K/AKT pathway was observed and CRC cells initiated autophagy. Conversely, blocking the autophagic flux with chloroquine or with ATG5‐siRNA overactivated TrkB/BDNF signaling. In vitro, dual inhibition improved the effectiveness of single treatment by significantly reducing metabolic activity and enhancing apoptotic cell death. These findings were accentuated in vivo, in which dual inhibition induced a spectacular reduction in tumour volume following long‐term treatment (21 days for K252a and 12 days for CQ). Finally, significant amounts of phospho‐TrkB and LC3II were found in the patients’ tissues, highlighting their relevance in CRC tumour biology. Taken together, our results show that targeting NTs and autophagy pathways potentially constitutes a new therapeutic approach for CRC.  相似文献   

7.
8.
Human adenoid cystic carcinoma (ACC) is characterized by diffused invasion of the tumor into adjacent organs and early distant metastasis. Anoikis resistance and epithelial mesenchymal transition (EMT) are considered prerequisites for cancer cells to metastasize. Exploring the relationship between these processes and their underlying mechanism of action is a promising way to better understand ACC tumors. We initially established anoikis-resistant sublines of ACC cells; the variant cells revealed a mesenchymal phenotype through Slug-mediated EMT-like transformation and displayed enhanced metastatic potential both in vitro and in vivo. Suppression of EMT by knockdown of Slug significantly impaired anoikis resistance, migration, and invasion of the variant cells. With overexpression of Slug and Twist, we determined that induction of EMT in normal ACC cells could prevent anoikis, albeit partially. These findings strongly suggest that EMT is indispensable in anoikis resistance, at least in ACC cells. Furthermore, we found that the EGFR/PI3K/Akt pathway acts as the common regulator for EMT-like transformation and anoikis resistance, as confirmed by their specific inhibitors. Gefitinib and LY294003 restored the sensibilities of anoikis-resistant cells to anoikis and simultaneously impaired their metastatic potential. In addition, the results from our in vivo model of metastasis suggest that pretreatment with gefitinib promotes mouse survival by alleviating pulmonary metastasis. Most importantly, immunohistochemistry of human ACC specimens showed a correlation between the overexpression of Slug and EGFR staining. This study has demonstrated that Slug-mediated EMT-like transformation is required by human ACC cells to achieve anoikis resistance and their metastatic potential. Targeting the EGFR/PI3K/Akt pathway holds potential as a preventive strategy against distant metastasis of ACC.  相似文献   

9.
Metastasis is the main cause of mortality in patients with solid tumours. Identifying the exact molecules associated with CRC metastasis may be crucial to understand the process, which might also be translated to the diagnosis and treatment of CRC. In this study, we investigate the association of microRNA expression patterns with the lymph node metastasis of colorectal cancer. Among these candidate miRNAs, the expression of miRNA-145 was significantly related to lymph node metastasis of CRC. Both in vitro and in vivo study demonstrated that up-regulation of miR-145 could improve the ability of migration and invasion of colorectal cancer cell, while no effect on proliferation was observed. The mechanism of this promotion is associated with the stabilization of Hsp-27, a protein which plays an important role in the promotion of metastasis. These results may be crucial to understanding CRC metastasis and may be translated to the diagnosis and treatment of CRC.  相似文献   

10.
11.
Uterine leiomyosarcoma is an aggressive tumor typically found at advanced stages due to difficulties with early diagnosis. Because uterine leiomyosarcoma is resistant to conventional radiation and chemotherapy, the development of more potent medical therapeutics is anticipated. Using quantitative real-time RT-PCR and immunostaining, we found the expression of brain-derived neurotrophic factor (BDNF) and neurotropin-4/5, together with their receptor, tyrosine kinase B (TrkB), in different uterine sarcoma cell lines and primary tumor samples from uterine leiomyosarcoma patients. We noted that levels of BDNF were more abundant than those of neurotropin-4/5. Moreover, the expression of TrkB and its ligands was elevated in a multidrug-resistant cell line and samples obtained from patients with leiomyosarcoma. In cultured uterine sarcoma cells, inhibition of endogenous TrkB signaling by treatment with either the soluble TrkB ectodomain or the Trk receptor inhibitor, K252a, suppressed cell proliferation and increased apoptosis based on cell viability and proliferation, in situ terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end-labeling and caspase-3/7 assays, whereas an inactive plasma membrane nonpermeable K252b was ineffective. Correspondingly, treatment with exogenous BDNF increased cell proliferation. In in vivo studies in athymic nude mice bearing multidrug-resistant uterine sarcoma cell tumors, we demonstrate suppression of tumor growth by treatment with K252a, but not K252b, as reflected by decreased cell proliferation and increased levels of apoptosis and caspase-3/7 activities without obvious side effects. Our findings indicated that endogenous signaling of the TrkB pathway contributed to uterine sarcoma cell growth, and inhibition of TrkB signaling in these tumors could provide a novel medical therapy for patients with uterine sarcomas.  相似文献   

12.
Cell migration and invasion are key processes in the metastasis of cancer, and suppression of these steps is a promising strategy for cancer therapeutics. The aim of this study was to explore small molecules for treating colorectal cancer (CRC) and to investigate their anti‐metastatic mechanisms. In this study, six CRC cell lines were used. We showed that YH‐306 significantly inhibited the migration and invasion of CRC cells in a dose‐dependent manner. In addition, YH‐306 inhibited cell adhesion and protrusion formation of HCT116 and HT‐29 CRC cells. Moreover, YH‐306 potently suppressed uninhibited proliferation in all six CRC cell lines tested and induced cell apoptosis in four cell lines. Furthermore, YH‐306 inhibited CRC colonization in vitro and suppressed CRC growth in a xenograft mouse model, as well as hepatic/pulmonary metastasis in vivo. YH‐306 suppressed the activation of focal adhesion kinase (FAK), c‐Src, paxillin, and phosphatidylinositol 3‐kinases (PI3K), Rac1 and the expression of matrix metalloproteases (MMP) 2 and MMP9. Meanwhile, YH‐306 also inhibited actin‐related protein (Arp2/3) complex‐mediated actin polymerization. Taken together, YH‐306 is a candidate drug in preventing growth and metastasis of CRC by modulating FAK signalling pathway.  相似文献   

13.
L. Zhang  Y. Liu 《Theriogenology》2010,73(8):1096-1103
Brain-derived neurotrophic factor (BDNF) can promote developmental competence in mammalian oocytes during in vitro maturation, but the signal transduction pathways are not clear. In this study, we investigated (using western blots) the effects of BDNF on the phosphorylation of protein kinase B (PKB) and mitogen-activated protein kinase (MAPK) in mouse oocytes and cumulus cells cultured in vitro. Treatment with BDNF enhanced phosphorylation of PKB in oocytes at 2 h (P = 0.0006) and 3 h (P < 0.0001) of in vitro maturation, compared with control oocytes. However, the pan-specific tyrosine kinase (Trk) inhibitor K252a together with BDNF completely inhibited phosphorylation of PKB in the oocytes. Furthermore, BDNF increased phosphorylation of MAPK in oocytes at 16 h of in vitro maturation (P = 0.0041), but K252a together with BDNF did not reduce phosphorylation of MAPK in the oocytes. For cumulus cells, BDNF significantly prolonged the phosphorylation of PKB and MAPK and increased the total amounts of PKB and MAPK proteins after 16 h of in vitro maturation. However, BDNF did not affect apoptosis of the cumulus cells during oocyte maturation in vitro. In conclusion, the PKB pathway is likely to be one signaling cascade activated by BDNF in combination with the TrkB receptor, whereas the MAPK pathway is not involved. These findings may have relevance for BDNF-induced promotion of developmental capacity of in vitro-matured oocytes.  相似文献   

14.
Colorectal carcinoma (CRC) is one of the most common cancers with high metastatic potential, explaining why identifying new drug candidates that inhibit tumour metastasis is an urgent need. The aim of this study was to evaluate the biological activities of pectolinarigenin (PEC, a natural flavonoid present in Cirsium chanroenicum) in CRC in vitro and in vivo and to determine its underlying mechanism of action. Here, we observed that treatment with PEC could inhibit cell viability and induce apoptosis in cancer cells in a concentration- and time-dependent manner. The occurrence of apoptosis was associated with activation of caspase-3 and Bax and decreased expression of Bcl-2. In addition, PEC markedly impaired CRC cell migration and invasion by downregulating the expression of matrix metalloproteinase (MMP-9) and phosphorylated-Stat3Tyr705. Moreover, our studies showed that PEC inhibited abdominal metastasis models of murine colorectal cancer. In addition, histological and immunohistochemical analyses revealed a decrease in Ki67-positive cells, MMP9-positive cells and p-Stat3Tyr705 cells upon treatment with PEC compared to control samples. Furthermore, PEC reduced the number of myeloid-derived suppressor cells (MDSCs) in the blood and tumours, which was accompanied by the increased infiltration of CD8+T cells in the blood. Taken together, our findings suggested that PEC could be used as a natural drug to inhibit CRC metastasis.  相似文献   

15.
Dysregulated Notch signaling has a critical role in the tumorigenesis. Jagged1, a Notch ligand, is overexpressed in various human cancers. Recent studies revealed the involvement of Jagged1 in colorectal cancer (CRC) development. These basic studies provide a promising potential for inhibition of the Notch pathway for the treatment of CRC. Herein, we aimed to investigate the consequences of targeting Jagged1 using shRNA on CRC both in vitro and in vivo to test their potential to inhibit this key element for CRC treatment. We found that downregulation of Jagged1 with lentiviral Jagged1-shRNA resulted in decreased colon cancer cell viability in vitro, most likely mediated through reduced cell proliferation. Importantly, Jagged1 knockdown induced G0/G1 phase cell cycle arrest, with reduced Cyclin D1, Cyclin E and c-Myc expression. Silencing of Jagged1 reduced the migration and invasive capacity of the colon cancer cells in vitro. Furthermore, colon cancer cells with knockdown of Jagged1 had much slower growth rate than control cells in a xenograft mouse model in vivo, with a marked downregulation of cell proliferation markers (PCNA, Ki-67, and c-Myc) and metastasis markers (MMP-2 and MMP-9). These findings rationalize a mechanistic approach to CRC treatment based on Jagged1-targeted therapeutic development.  相似文献   

16.
BDNF and its specialized receptor TrkB are expressed in the developing lateral line system of zebrafish, but their role in this organ is unknown. To tackle this problem in vivo, we used transgenic animals expressing fluorescent markers in different cell types of the lateral line and combined a BDNF gain-of-function approach by BDNF mRNA overexpression and by soaking embryos in a solution of BDNF, with a loss-of-function approach by injecting the antisence ntrk2b-morpholino and treating embryos with the specific Trk inhibitor K252a. Subsequent analysis demonstrated that the BDNF-TrkB axis regulates migration of the lateral line primordium. In particular, BDNF-TrkB influences the expression level of components of chemokine signaling including Cxcr4b, and the generation of progenitors of mechanoreceptors, at the level of expression of Atoh1a-Atp2b1a.  相似文献   

17.
An abundance of microfibril-associated glycoprotein 3-like (MFAP3L) significantly correlates with distant metastasis in colorectal cancer (CRC), although the mechanism has yet to be explained. In this study, we observed that MFAP3L knock-down resulted in reduced CRC cell invasion and hepatic metastasis. We evaluated the cellular location and biochemical functions of MFAP3L and found that this protein was primarily localized in the nucleus of CRC cells and acted as a protein kinase. When EGFR translocated into the nucleus upon stimulation with EGF, MFAP3L was phosphorylated at Tyr287 within its SH2 motif, and the activated form of MFAP3L phosphorylated ERK2 at Thr185 and Tyr187. Moreover, the metastatic behavior of CRC cells in vitro and in vivo could be partially explained by activation of the nuclear ERK pathway through MFAP3L phosphorylation. Hence, we experimentally demonstrated for the first time that MFAP3L likely participates in the nuclear signaling of EGFR and ERK2 and acts as a novel nuclear kinase that impacts CRC metastasis.  相似文献   

18.
19.
《Phytomedicine》2014,21(10):1178-1188
Tenuifoliside A (TFSA) is a bioactive oligosaccharide ester component of Polygala tenuifolia Wild, a traditional Chinese medicine which was used to manage mental disorders effectively. The neuroprotective and anti-apoptotic effects of TFSA have been demonstrated in our previous studies. The present work was designed to study the molecular mechanism of TFSA on promoting the viability of rat glioma cells C6. We exposed C6 cells to TFSA (or combined with ERK, PI3K and TrkB inhibitors) to examine the effects of TFSA on the cell viability and the expression and phosphorylation of key proteins in the ERK and PI3K signaling pathway. TFSA increased levels of phospho-ERK and phospho-Akt, enhanced release of BDNF, which were blocked by ERK and PI3K inhibitors, respectively (U0126 and LY294002). Moreover, the TFSA caused the enhanced phosphorylation of cyclic AMP response element binding protein (CREB) at Ser133 site, the effect was revoked by U0126, LY294002 and K252a. Furthermore, when C6 cells were pretreated with K252a, a TrkB antagonist, known to significantly inhibit the activity of brain-derived neurotrophic factor (BDNF), blocked the levels of phospho-ERK, phospho-Akt and phosphor-CREB. Taking these results together, we suggested the neuroprotection of TFSA might be mediated through BDNF/TrkB-ERK/PI3K-CREB signaling pathway in C6 glioma cells.  相似文献   

20.
BackgroundPristimerin, a natural quinonemethid triterpenoid found in different spp. of Celastraceae and Hippocrateaceae families, has been reported to exhibit potent antitumor activities against colorectal cancer (CRC). However, the mechanisms underlying pristimerin-induced apoptosis in CRC is not clear.PurposeThis study aimed to investigate the mechanisms of pristimerin-induced apoptosis against CRC in vitro and in vivo.MethodsCell viability and cell apoptosis analyses were conducted to assess the effects of pristimerin on CRC. Western blotting was performed to detect the expression of proteins affected by pristimerin in vitro and in vivo. HCT116 colon cancer xenografts and APCmin/+ mouse models were used to evaluate the anti-CRC effect of pristimerin in vivo.ResultsOur data showed that pristimerin induced apoptosis by regulating proapoptotic proteins of which Noxa showed higher expression. Pristimerin triggered reactive oxygen species (ROS)-mediated endoplasmic reticulum (ER) stress signaling activation. Pristimerin significantly elevated the expression of ER stress-related proteins, resulting in activation of the IRE1α and c-Jun N-terminal kinase (JNK) signal pathway through the formation of the IRE1α-TRAF2-ASK1 complex. Pristimerin exhibited apoptosis-inducing activities in HCT116 colon cancer xenografts and APCmin/+ mice.ConclusionBoth in vitro and in vivo data demonstrated that pristimerin induced Noxa expression and apoptosis through activation of the ROS/ER stress/JNK axis in CRC. Thus, pristimerin may be a promising antitumor agent for CRC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号