首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The boost protein expression has been done successfully by simple co-expression with a late embryogenesis abundant (LEA)-like peptide in Escherichia coli. Frequently, overexpression of a recombinant protein fails to provide an adequate yield. In the study, we developed a simple and efficient system for overexpressing transgenic proteins in bacteria by co-expression with an LEA-like peptide. The design of this peptide was based on part of the primary structure of an LEA protein that is known hydrophilic protein to suppress aggregation of other protein molecules. In our system, the expression of the target protein was increased remarkably by co-expression with an LEA-like peptide consisting of only 11 amino acid residues. This could provide a practical method for producing recombinant proteins efficiently.  相似文献   

2.
3.
Chaperone-usher (CU) fimbriae are adhesive surface organelles common to many Gram-negative bacteria. Escherichia coli genomes contain a large variety of characterised and putative CU fimbrial operons, however, the classification and annotation of individual loci remains problematic. Here we describe a classification model based on usher phylogeny and genomic locus position to categorise the CU fimbrial types of E. coli. Using the BLASTp algorithm, an iterative usher protein search was performed to identify CU fimbrial operons from 35 E. coli (and one Escherichia fergusonnii) genomes representing different pathogenic and phylogenic lineages, as well as 132 Escherichia spp. plasmids. A total of 458 CU fimbrial operons were identified, which represent 38 distinct fimbrial types based on genomic locus position and usher phylogeny. The majority of fimbrial operon types occupied a specific locus position on the E. coli chromosome; exceptions were associated with mobile genetic elements. A group of core-associated E. coli CU fimbriae were defined and include the Type 1, Yad, Yeh, Yfc, Mat, F9 and Ybg fimbriae. These genes were present as intact or disrupted operons at the same genetic locus in almost all genomes examined. Evaluation of the distribution and prevalence of CU fimbrial types among different pathogenic and phylogenic groups provides an overview of group specific fimbrial profiles and insight into the ancestry and evolution of CU fimbriae in E. coli.  相似文献   

4.
Large-scale proteomic analyses in Escherichia coli have documented the composition and physical relationships of multiprotein complexes, but not their functional organization into biological pathways and processes. Conversely, genetic interaction (GI) screens can provide insights into the biological role(s) of individual gene and higher order associations. Combining the information from both approaches should elucidate how complexes and pathways intersect functionally at a systems level. However, such integrative analysis has been hindered due to the lack of relevant GI data. Here we present a systematic, unbiased, and quantitative synthetic genetic array screen in E. coli describing the genetic dependencies and functional cross-talk among over 600,000 digenic mutant combinations. Combining this epistasis information with putative functional modules derived from previous proteomic data and genomic context-based methods revealed unexpected associations, including new components required for the biogenesis of iron-sulphur and ribosome integrity, and the interplay between molecular chaperones and proteases. We find that functionally-linked genes co-conserved among γ-proteobacteria are far more likely to have correlated GI profiles than genes with divergent patterns of evolution. Overall, examining bacterial GIs in the context of protein complexes provides avenues for a deeper mechanistic understanding of core microbial systems.  相似文献   

5.

Background

Cytoplasmic pH homeostasis in Escherichia coli includes numerous mechanisms involving pH-dependent catabolism and ion fluxes. An important contributor is transmembrane K+ flux, but the actual basis of K+ compensation for pH stress remains unclear. Osmoprotection could mediate the pH protection afforded by K+ and other osmolytes.

Methods and Principal Findings

The cytoplasmic pH of E. coli K-12 strains was measured by GFPmut3 fluorimetry. The wild-type strain Frag1 was exposed to rapid external acidification by HCl addition. Recovery of cytoplasmic pH was enhanced equally by supplementation with NaCl, KCl, proline, or sucrose. A triple mutant strain TK2420 defective for the Kdp, Trk and Kup K+ uptake systems requires exogenous K+ for steady-state pH homeostasis and for recovery from sudden acid shift. The K+ requirement however was partly compensated by supplementation with NaCl, choline chloride, proline, or sucrose. Thus, the K+ requirement was mediated in part by osmolarity, possibly by relieving osmotic stress which interacts with pH stress. The rapid addition of KCl to strain TK2420 suspended at external pH 5.6 caused a transient decrease in cytoplasmic pH, followed by slow recovery to an elevated steady-state pH. In the presence of 150 mM KCl, however, rapid addition of another 150 mM KCl caused a transient increase in cytoplasmic pH. These transient effects may arise from secondary K+ fluxes occurring through other transport processes in the TK2420 strain.

Conclusions

Diverse osmolytes including NaCl, KCl, proline, or sucrose contribute to cytoplasmic pH homeostasis in E. coli, and increase the recovery from rapid acid shift. Osmolytes other than K+ restore partial pH homeostasis in a strain deleted for K+ transport.  相似文献   

6.
Bacteria can survive antibiotic treatment without acquiring heritable antibiotic resistance. We investigated persistence to the fluoroquinolone ciprofloxacin in Escherichia coli. Our data show that a majority of persisters to ciprofloxacin were formed upon exposure to the antibiotic, in a manner dependent on the SOS gene network. These findings reveal an active and inducible mechanism of persister formation mediated by the SOS response, challenging the prevailing view that persisters are pre-existing and formed purely by stochastic means. SOS-induced persistence is a novel mechanism by which cells can counteract DNA damage and promote survival to fluoroquinolones. This unique survival mechanism may be an important factor influencing the outcome of antibiotic therapy in vivo.  相似文献   

7.

Background

Production of proteins as therapeutic agents, research reagents and molecular tools frequently depends on expression in heterologous hosts. Synthetic genes are increasingly used for protein production because sequence information is easier to obtain than the corresponding physical DNA. Protein-coding sequences are commonly re-designed to enhance expression, but there are no experimentally supported design principles.

Principal Findings

To identify sequence features that affect protein expression we synthesized and expressed in E. coli two sets of 40 genes encoding two commercially valuable proteins, a DNA polymerase and a single chain antibody. Genes differing only in synonymous codon usage expressed protein at levels ranging from undetectable to 30% of cellular protein. Using partial least squares regression we tested the correlation of protein production levels with parameters that have been reported to affect expression. We found that the amount of protein produced in E. coli was strongly dependent on the codons used to encode a subset of amino acids. Favorable codons were predominantly those read by tRNAs that are most highly charged during amino acid starvation, not codons that are most abundant in highly expressed E. coli proteins. Finally we confirmed the validity of our models by designing, synthesizing and testing new genes using codon biases predicted to perform well.

Conclusion

The systematic analysis of gene design parameters shown in this study has allowed us to identify codon usage within a gene as a critical determinant of achievable protein expression levels in E. coli. We propose a biochemical basis for this, as well as design algorithms to ensure high protein production from synthetic genes. Replication of this methodology should allow similar design algorithms to be empirically derived for any expression system.  相似文献   

8.
Urinary tract infections are a major source of morbidity for women and the elderly, with Uropathogenic Escherichia coli (UPEC) being the most prevalent causative pathogen. Studies in recent years have defined a key anti-inflammatory role for Interleukin-10 (IL-10) in urinary tract infection mediated by UPEC and other uropathogens. We investigated the nature of the IL-10-producing interactions between UPEC and host cells by utilising a novel co-culture model that incorporated lymphocytes, mononuclear and uroepithelial cells in histotypic proportions. This co-culture model demonstrated synergistic IL-10 production effects between monocytes and uroepithelial cells following infection with UPEC. Membrane inserts were used to separate the monocyte and uroepithelial cell types during infection and revealed two synergistic IL-10 production effects based on contact-dependent and soluble interactions. Analysis of a comprehensive set of immunologically relevant biomarkers in monocyte-uroepithelial cell co-cultures highlighted that multiple cytokine, chemokine and signalling factors were also produced in a synergistic or antagonistic fashion. These results demonstrate that IL-10 responses to UPEC occur via multiple interactions between several cells types, implying a complex role for infection-related IL-10 during UTI. Development and application of the co-culture model described in this study is thus useful to define the degree of contact dependency of biomarker production to UPEC, and highlights the relevance of histotypic co-cultures in studying complex host-pathogen interactions.  相似文献   

9.
10.
11.
12.
13.
Ensemble Modeling (EM) is a recently developed method for metabolic modeling, particularly for utilizing the effect of enzyme tuning data on the production of a specific compound to refine the model. This approach is used here to investigate the production of aromatic products in Escherichia coli. Instead of using dynamic metabolite data to fit a model, the EM approach uses phenotypic data (effects of enzyme overexpression or knockouts on the steady state production rate) to screen possible models. These data are routinely generated during strain design. An ensemble of models is constructed that all reach the same steady state and are based on the same mechanistic framework at the elementary reaction level. The behavior of the models spans the kinetics allowable by thermodynamics. Then by using existing data from the literature for the overexpression of genes coding for transketolase (Tkt), transaldolase (Tal), and phosphoenolpyruvate synthase (Pps) to screen the ensemble, we arrive at a set of models that properly describes the known enzyme overexpression phenotypes. This subset of models becomes more predictive as additional data are used to refine the models. The final ensemble of models demonstrates the characteristic of the cell that Tkt is the first rate controlling step, and correctly predicts that only after Tkt is overexpressed does an increase in Pps increase the production rate of aromatics. This work demonstrates that EM is able to capture the result of enzyme overexpression on aromatic producing bacteria by successfully utilizing routinely generated enzyme tuning data to guide model learning.  相似文献   

14.

Background

Hydrogen production by fermenting bacteria such as Escherichia coli offers a potential source of hydrogen biofuel. Because H2 production involves consumption of 2H+, hydrogenase expression is likely to involve pH response and regulation. Hydrogenase consumption of protons in E. coli has been implicated in acid resistance, the ability to survive exposure to acid levels (pH 2–2.5) that are three pH units lower than the pH limit of growth (pH 5–6). Enhanced survival in acid enables a larger infective inoculum to pass through the stomach and colonize the intestine. Most acid resistance mechanisms have been defined using aerobic cultures, but the use of anaerobic cultures will reveal novel acid resistance mechanisms.

Methods and Principal Findings

We analyzed the pH regulation of bacterial hydrogenases in live cultures of E. coli K-12 W3110. During anaerobic growth in the range of pH 5 to 6.5, E. coli expresses three hydrogenase isoenzymes that reversibly oxidize H2 to 2H+. Anoxic conditions were used to determine which of the hydrogenase complexes contribute to acid resistance, measured as the survival of cultures grown at pH 5.5 without aeration and exposed for 2 hours at pH 2 or at pH 2.5. Survival of all strains in extreme acid was significantly lower in low oxygen than for aerated cultures. Deletion of hyc (Hyd-3) decreased anoxic acid survival 3-fold at pH 2.5, and 20-fold at pH 2, but had no effect on acid survival with aeration. Deletion of hyb (Hyd-2) did not significantly affect acid survival. The pH-dependence of H2 production and consumption was tested using a H2-specific Clark-type electrode. Hyd-3-dependent H2 production was increased 70-fold from pH 6.5 to 5.5, whereas Hyd-2-dependent H2 consumption was maximal at alkaline pH. H2 production, was unaffected by a shift in external or internal pH. H2 production was associated with hycE expression levels as a function of external pH.

Conclusions

Anaerobic growing cultures of E. coli generate H2 via Hyd-3 at low external pH, and consume H2 via Hyd-2 at high external pH. Hyd-3 proton conversion to H2 is required for acid resistance in anaerobic cultures of E. coli.  相似文献   

15.
Universal genetic codes are degenerated with 61 codons specifying 20 amino acids, thus creating synonymous codons for a single amino acid. Synonymous codons have been shown to affect protein properties in a given organism. To address this issue and explore how Escherichia coli selects its “codon-preferred” DNA template(s) for synthesis of proteins with required properties, we have designed synonymous codon libraries based on an antibody (scFv) sequence and carried out bacterial expression and screening for variants with altered properties. As a result, 342 codon variants have been identified, differing significantly in protein solubility and functionality while retaining the identical original amino acid sequence. The soluble expression level varied from completely insoluble aggregates to a soluble yield of ∼2.5 mg/liter, whereas the antigen-binding activity changed from no binding at all to a binding affinity of > 10−8 m. Not only does our work demonstrate the involvement of genetic codes in regulating protein synthesis and folding but it also provides a novel screening strategy for producing improved proteins without the need to substitute amino acids.  相似文献   

16.
Toxin-antitoxin systems are ubiquitous in nature and present on the chromosomes of both bacteria and archaea. MazEF is a type II toxin-antitoxin system present on the chromosome of Escherichia coli and other bacteria. Whether MazEF is involved in programmed cell death or reversible growth inhibition and bacterial persistence is a matter of debate. In the present work the role of MazF in bacterial physiology was studied by using an inactive, active-site mutant of MazF, E24A, to activate WT MazF expression from its own promoter. The ectopic expression of E24A MazF in a strain containing WT mazEF resulted in reversible growth arrest. Normal growth resumed on inhibiting the expression of E24A MazF. MazF-mediated growth arrest resulted in an increase in survival of bacterial cells during antibiotic stress. This was studied by activation of mazEF either by overexpression of an inactive, active-site mutant or pre-exposure to a sublethal dose of antibiotic. The MazF-mediated persistence phenotype was found to be independent of RecA and dependent on the presence of the ClpP and Lon proteases. This study confirms the role of MazEF in reversible growth inhibition and persistence.  相似文献   

17.
In this study, we compared basic expression approaches for the efficient expression of bioactive recombinant human interleukin-6 (IL6), as an example for a difficult-to-express protein. We tested these approaches in a laboratory scale in order to pioneer the commercial production of this protein in Escherichia coli (E. coli). Among the various strategies, which were tested under Research and Development (R&D) conditions, aggregation-prone IL6 was solubilized most effectively by co-expressing cytoplasmic chaperones. Expression of a Glutathion-S-Transferase (GST) fusion protein was not efficient to increase IL6 solubility. Alteration of the cultivation temperature significantly increased the solubility in both cases, whereas reduced concentrations of IPTG to induce expression of the T7lac-promotor only had a positive effect on chaperone-assisted expression. The biological activity was comparable to that of commercial IL6. Targeting the expressed protein to an oxidizing environment was not effective in the generation of soluble IL6. Taken together, the presence of chaperones and a lowered cultivation temperature seem effective to isolate large quantities of soluble IL6. This approach led to in vivo soluble, functional protein fractions and reduces purification and refolding requirements caused by downstream purification procedures. The final yield of soluble recombinant protein averaged approximately 2.6 mg IL6/liter of cell culture. These findings might be beneficial for the development of the large-scale production of IL6 under the conditions of current good manufacturing practice (cGMP).  相似文献   

18.
Escherichia coli serves as an excellent model for the study of fundamental cellular processes such as metabolism, signalling and gene expression. Understanding the function and organization of proteins within these processes is an important step towards a ‘systems’ view of E. coli. Integrating experimental and computational interaction data, we present a reliable network of 3,989 functional interactions between 1,941 E. coli proteins (∼45% of its proteome). These were combined with a recently generated set of 3,888 high-quality physical interactions between 918 proteins and clustered to reveal 316 discrete modules. In addition to known protein complexes (e.g., RNA and DNA polymerases), we identified modules that represent biochemical pathways (e.g., nitrate regulation and cell wall biosynthesis) as well as batteries of functionally and evolutionarily related processes. To aid the interpretation of modular relationships, several case examples are presented, including both well characterized and novel biochemical systems. Together these data provide a global view of the modular organization of the E. coli proteome and yield unique insights into structural and evolutionary relationships in bacterial networks.  相似文献   

19.
20.
Diacylglycerol acyltransferase (DGAT) is the rate-limiting enzyme in triacylglycerol biosynthesis in eukaryotic organisms. Triacylglycerols are important energy-storage oils in plants such as peanuts, soybeans and rape. In this study, Arachis hypogaea type 2 DGAT (AhDGAT2) genes were cloned from the peanut cultivar ‘Luhua 14’ using a homologous gene sequence method and rapid amplification of cDNA ends. To understand the role of AhDGAT2 in triacylglycerol biosynthesis, two AhDGAT2 nucleotide sequences that differed by three amino acids were expressed as glutathione S-transferase (GST) fusion proteins in Escherichia coli Rosetta (DE3). Following IPTG induction, the isozymes (AhDGAT2a and AhDGAT2b) were expressed as 64.5 kDa GST fusion proteins. Both AhDGAT2a and AhDGAT2b occurred in the host cell cytoplasm and inclusion bodies, with larger amounts in the inclusion bodies. Overexpression of AhDGATs depressed the host cell growth rates relative to non-transformed cells, but cells harboring empty-vector, AhDGAT2a–GST, or AhDGAT2b–GST exhibited no obvious growth rate differences. Interestingly, induction of AhDGAT2a–GST and AhDGAT2b–GST proteins increased the sizes of the host cells by 2.4–2.5 times that of the controls (post-IPTG induction). The total fatty acid (FA) levels of the AhDGAT2a–GST and AhDGAT2a–GST transformants, as well as levels of C12:0, C14:0, C16:0, C16:1, C18:1n9c and C18:3n3 FAs, increased markedly, whereas C15:0 and C21:0 levels were lower than in non-transformed cells or those containing empty-vectors. In addition, the levels of some FAs differed between the two transformant strains, indicating that the two isozymes might have different functions in peanuts. This is the first time that a full-length recombinant peanut DGAT2 has been produced in a bacterial expression system and the first analysis of its effects on the content and composition of fatty acids in E. coli. Our results indicate that AhDGAT2 is a strong candidate gene for efficient FA production in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号