首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fusarium virguliforme causes sudden death syndrome (SDS) of soybean, a disease of serious concern throughout most of the soybean producing regions of the world. Despite the global importance, little is known about the pathogenesis mechanisms of F. virguliforme. Thus, we applied Next-Generation DNA Sequencing to reveal the draft F. virguliforme genome sequence and identified putative pathogenicity genes to facilitate discovering the mechanisms used by the pathogen to cause this disease.

Methodology/Principal Findings

We have generated the draft genome sequence of F. virguliforme by conducting whole-genome shotgun sequencing on a 454 GS-FLX Titanium sequencer. Initially, single-end reads of a 400-bp shotgun library were assembled using the PCAP program. Paired end sequences from 3 and 20 Kb DNA fragments and approximately 100 Kb inserts of 1,400 BAC clones were used to generate the assembled genome. The assembled genome sequence was 51 Mb. The N50 scaffold number was 11 with an N50 Scaffold length of 1,263 Kb. The AUGUSTUS gene prediction program predicted 14,845 putative genes, which were annotated with Pfam and GO databases. Gene distributions were uniform in all but one of the major scaffolds. Phylogenic analyses revealed that F. virguliforme was closely related to the pea pathogen, Nectria haematococca. Of the 14,845 F. virguliforme genes, 11,043 were conserved among five Fusarium species: F. virguliforme, F. graminearum, F. verticillioides, F. oxysporum and N. haematococca; and 1,332 F. virguliforme-specific genes, which may include pathogenicity genes. Additionally, searches for candidate F. virguliforme pathogenicity genes using gene sequences of the pathogen-host interaction database identified 358 genes.

Conclusions

The F. virguliforme genome sequence and putative pathogenicity genes presented here will facilitate identification of pathogenicity mechanisms involved in SDS development. Together, these resources will expedite our efforts towards discovering pathogenicity mechanisms in F. virguliforme. This will ultimately lead to improvement of SDS resistance in soybean.  相似文献   

2.
基因组分析与小麦抗病育种   总被引:6,自引:0,他引:6  
系统总结了南京农业大学细胞遗传研究所近 2 0多年来利用基因组分析方法培育从簇毛麦 (Haynaldiavil losaSch .)、大赖草 (LeymusracemosusLam .)、鹅观草 (RoegneriakamojiC .Koch)和纤毛鹅观草 (R .ciliaris (Trin .)Nevs ki)导入白粉病和赤霉病抗性的小麦种质的研究进展。利用染色体C_分带、基因组原位杂交、分子标记 (特别是RFLP)等技术与非整倍体分析相结合对所创制的种质进行了系统分析与鉴定。还对所培育的小麦种质在育种实践和理论研究中的潜在价值及相关问题进行了讨论  相似文献   

3.
系统总结了南京农业大学细胞遗传研究所近20多年来利用基因组分析方法培育从簇毛麦(Haynaldia villosa Sch.)、大赖草(Leymus racemosus Lam.)、鹅观草(Roegneria kamoji C. Koch)和纤毛鹅观草(R. ciliaris (Trin.) Nevski)导入白粉病和赤霉病抗性的小麦种质的研究进展.利用染色体C-分带、基因组原位杂交、分子标记(特别是RFLP)等技术与非整倍体分析相结合对所创制的种质进行了系统分析与鉴定.还对所培育的小麦种质在育种实践和理论研究中的潜在价值及相关问题进行了讨论.  相似文献   

4.
[目的]克隆、表达小麦蓝矮病(WBD)植原体胸苷酸激酶基因(tmk),并分析酶活性,进一步研究胸苷酸激酶在植原体感染宿主及繁殖过程中的功能和作用机理,更好地防治植原体病害.[方法]PCR方法扩增tmk基因并进行序列分析,连接pET30a( )表达载体后原核表达,经Ni-NTA柱层析纯化后进行酶催化活性分析.[结果]首次从小麦蓝矮病(WBD)植原体基因组中分离出胸苷酸激酶基因(tmk),该基因包含tmk-1和tmk-2两种,大小分别为630 bp和624 bp,其编码的氨基酸序列均包含3个与结合NTP/NMP相关的保守功能区.表达的融合蛋白TMK-1活性极低,酶活仅16.4 U/mg,而 TMK-2酶活高达112.41 U/mg,且其最适催化条件为32℃、pH 7.3、1.5 mmol/L Mg2 和 1 mmol/L ATP.[结论]分析了胸苷酸激酶活性中心的一级结构序列及其催化活性随条件变化而改变的性质,为深入研究小麦蓝矮病植原体胸苷酸激酶在侵染寄主及其在宿主体内增殖的转录性质奠定基础.  相似文献   

5.
Human adenovirus type 55 (HAdV-B55) is an acute respiratory disease (ARD) pathogen first completely characterized in China (2006). This is a unique Trojan horse microbe with the virus neutralization attribute of a renal pathogen and the cell tropism and clinical attributes of a respiratory pathogen, bypassing herd immunity. It appeared to be an uncommon pathogen, with earlier putative, sporadic occurrences in Spain (1969) and Turkey (2004); these isolates were incompletely characterized using only two epitopes. Reported here is the genome of a second recent isolate (China, 2011), indicating that it may occur more frequently. The availability of this HAdV-B55 genome provides a foundation for studying adenovirus molecular evolution, the dynamics of epidemics, and patterns of pathogen emergence and re-emergence. These data facilitate studies to predict genome recombination between adenoviruses, as well as sequence divergence rates and hotspots, all of which are important for vaccine development and because HAdVs are used for epitope and/or gene delivery vectors.  相似文献   

6.
我国浙江、江苏、四川等省发生的小麦土传病毒病,由禾谷多粘菌(Polymyxa graminis)传播,只感染小麦,感病植株幼叶表现为退绿到黄化的条斑,老叶表现为花叶和坏死。我们提纯各地分离物研究表明,病毒粒子呈线状,直径13~14nm,长度为200~1800nm,其中350~850nm的比例较高。病毒外壳由二种分子量分别约为30kd和27kd的结构蛋白组成。病毒粒子周围能均匀地“修饰”小麦梭条斑花叶病毒(WSSMV)抗血清和小麦黄花叶病毒(WYMV)抗血清,反应均很强烈。鉴于上述特性,认为本病害是由小麦棱条斑花叶病毒(WSSMV)引起的。  相似文献   

7.
Phytoplasmas are a group of bacteria that are associated with hundreds of plant diseases. Due to their economical importance and the difficulties involved in the experimental study of these obligate pathogens, genome sequencing and comparative analysis have been utilized as powerful tools to understand phytoplasma biology. To date four complete phytoplasma genome sequences have been published. However, these four strains represent limited phylogenetic diversity. In this study, we report the shotgun sequencing and evolutionary analysis of a peanut witches''-broom (PnWB) phytoplasma genome. The availability of this genome provides the first representative of the 16SrII group and substantially improves the taxon sampling to investigate genome evolution. The draft genome assembly contains 13 chromosomal contigs with a total size of 562,473 bp, covering ∼90% of the chromosome. Additionally, a complete plasmid sequence is included. Comparisons among the five available phytoplasma genomes reveal the differentiations in gene content and metabolic capacity. Notably, phylogenetic inferences of the potential mobile units (PMUs) in these genomes indicate that horizontal transfer may have occurred between divergent phytoplasma lineages. Because many effectors are associated with PMUs, the horizontal transfer of these transposon-like elements can contribute to the adaptation and diversification of these pathogens. In summary, the findings from this study highlight the importance of improving taxon sampling when investigating genome evolution. Moreover, the currently available sequences are inadequate to fully characterize the pan-genome of phytoplasmas. Future genome sequencing efforts to expand phylogenetic diversity are essential in improving our understanding of phytoplasma evolution.  相似文献   

8.
Finegoldia magna (formerly Peptostreptococcus magnus), a memberof the Gram-positive anaerobic cocci (GPAC), is a commensalbacterium colonizing human skin and mucous membranes. Moreover,it is also recognized as an opportunistic pathogen responsiblefor various infectious diseases. Here, we report the completegenome sequence of F. magna ATCC 29328. The genome consistsof a 1 797 577 bp circular chromosome and an 189 163bp plasmid (pPEP1). The metabolic maps constructed based onthe genome information confirmed that most F. magna strainscannot ferment most sugars, except fructose, and have variousaminopeptidase activities. Three homologs of albumin-bindingprotein, a known virulence factor useful for antiphagocytosis,are encoded on the chromosome, and one albumin-binding proteinhomolog is encoded on the plasmid. A unique feature of the genomeis that F. magna encodes many sortase genes, of which substratesmay be involved in bacterial pathogenesis, such as antiphagocytosisand adherence to the host cell. The plasmid pPEP1 encodes sevensortase and seven substrate genes, whereas the chromosome encodesfour sortase and 19 substrate genes. These plasmid-encoded sortasesmay play important roles in the pathogenesis of F. magna byenriching the variety of cell wall anchored surface proteins.  相似文献   

9.
RNA expression profiling of obligately parasitic plant microbes is hampered by the requisite interaction of host and parasite. This can be especially problematic in the case of powdery mildews, such as Erysiphe necator (syn. Uncinula necator ), which grow superficially but tightly adhere to the plant epidermis. We developed and refined a simple and efficient technique in which nail polish was used to remove conidia, appressoria, hyphae, conidiophores, and developing ascocarps of E. necator from grapevine ( Vitis vinifera ) leaves and showed that RNA isolated after removal was not contaminated with V. vinifera RNA. This approach can be applied to expression analyses throughout fungal development and could be extended to other epiphytic pathogens and saprophytes.  相似文献   

10.
《Journal of bacteriology》2009,191(14):4534-4545
Azotobacter vinelandii is a soil bacterium related to the Pseudomonas genus that fixes nitrogen under aerobic conditions while simultaneously protecting nitrogenase from oxygen damage. In response to carbon availability, this organism undergoes a simple differentiation process to form cysts that are resistant to drought and other physical and chemical agents. Here we report the complete genome sequence of A. vinelandii DJ, which has a single circular genome of 5,365,318 bp. In order to reconcile an obligate aerobic lifestyle with exquisitely oxygen-sensitive processes, A. vinelandii is specialized in terms of its complement of respiratory proteins. It is able to produce alginate, a polymer that further protects the organism from excess exogenous oxygen, and it has multiple duplications of alginate modification genes, which may alter alginate composition in response to oxygen availability. The genome analysis identified the chromosomal locations of the genes coding for the three known oxygen-sensitive nitrogenases, as well as genes coding for other oxygen-sensitive enzymes, such as carbon monoxide dehydrogenase and formate dehydrogenase. These findings offer new prospects for the wider application of A. vinelandii as a host for the production and characterization of oxygen-sensitive proteins.Azotobacter vinelandii is a free-living nitrogen-fixing bacterium of the gammaproteobacteria. It is found in soils worldwide, with features of nitrogen and energy metabolism relevant to agriculture (41, 42). This organism has been studied for more than 100 years by numerous scientists throughout the world. Prior to Joshua Lederberg''s discovery of sexuality in Escherichia coli (47), A. vinelandii was the experimental organism of choice for many investigators during the emergence of biochemistry as a dominant discipline within the life sciences. Examples include the classical Lineweaver-Burk kinetic parameters, developed using enzymes from A. vinelandii (51), and the isolation by Severo Ochoa of polynucleotide phosphorylase from A. vinelandii, which was used in studies that contributed to the elucidation of the genetic code (62).A. vinelandii is able to adapt its metabolism to diverse sources of nutrients. If no carbon source is present, A. vinelandii will undergo a differentiation process to form cysts that are resistant to desiccation and other chemical and physical challenges (74). While the process of encystment has been known for many years and studied at the physiological and morphological levels, there is little knowledge about the unique biosynthetic pathways that are involved and how they are regulated. Previous work has implicated the alternative sigma factors AlgU and RpoS in the differentiation process (13, 57, 64). Alginate polymers with different monomer compositions are an important structural component of the cyst, and at the end of exponential growth, A. vinelandii cells accumulate poly-beta-hydroxybutyrate (PHB) as a reserve carbon and energy source (81). The physiology of PHB formation has been well studied in a variety of different systems, and the PHB biosynthetic operon has been described (67, 77). A. vinelandii can also produce copolymers of hydroxybutyrate and hydroxyvalerate, known to improve the flexibility and stretch of bioplastics (63).A. vinelandii has long served as a model for biochemical and genetic studies of biological nitrogen fixation, the conversion of N2 into NH3 by a nitrogenase enzyme. The best-studied nitrogenase consists of two oxygen-sensitive metalloproteins that, in the case of the molybdenum nitrogenase, are denominated the Fe protein and the MoFe protein. A. vinelandii is unusual in that it is one of the few bacteria that contain three nitrogenases with different subunit and metal cofactor compositions, namely, the molybdenum nitrogenase, the vanadium nitrogenase, and the iron-only nitrogenase. Expression of these nitrogenases is differentially regulated by metal availability from the medium (27).Here we present the complete genome sequence of A. vinelandii DJ and discuss what the genome has revealed about the organism''s ability to protect oxygen-sensitive processes. A. vinelandii has been cited as having one of the highest respiratory rates of any known bacterium (10). Diazotrophic growth under aerobic conditions is possible because A. vinelandii can adjust oxygen consumption rates to help maintain low levels of cytoplasmic oxygen, which is otherwise detrimental not only to nitrogenase but also to other oxygen-sensitive enzymes expressed by A. vinelandii. This phenomenon is called respiratory protection. In this work, we identify unique features of the A. vinelandii genome that help to explain the coexistence of oxygen-sensitive reactions and strict aerobic metabolism. The genome sequence and annotation allowed identification of the genes involved in respiration, including key players in respiratory protection. In addition, we have identified unexpected gene clusters encoding a carbon monoxide dehydrogenase (CODH), a formate dehydrogenase (FDH), and a second hydrogenase, all of which are also oxygen-sensitive enzymes.  相似文献   

11.
12.
Symptomatic tomato plants exhibiting big bud, proliferation and small leaves of lateral shoots, purplish top leaves, phyllody, enlarged pistils, hypertrophic calyxes and small and polygonal fruit were collected in Yunnan Province of China. Pleomorphic phytoplasma‐like bodies were observed in the phloem sieve tube elements of symptomatic plants by transmission electron microscopy. The presence of phytoplasma in collected samples was further analysed and identified by PCR and virtual computer‐simulated restriction fragment length polymorphism (virtual RFLP). A 1.2 kb product was amplified by PCR with universal primers R16F2n/R16R2. Sequence comparisons revealed that the tested strains shared 99% 16S rRNA gene sequence similarity with members of ‘Candidatus Phytoplasma aurantifolia’ (16SrII group). Phylogenetic and virtual RFLP analysis of the 16S rRNA gene sequences confirmed that the phytoplasma is a member of the 16SrII group. This is the first report of 16SrII group phytoplasma infecting tomato in China.  相似文献   

13.
14.
15.
A novel isolate of infectious bursal disease virus (IBDV) was designated GX-NN-L. The GX-NN-L IBDV was a very virulent infectious bursal disease virus (vvIBDV) isolated from broiler flocks in Guangxi province, China, in 2011. The GX-NN-L IBDV caused high mortality, immunosuppression, low weight gain, and bursal atrophy in commercial broilers. Here, we report the complete genome sequence of the GX-NN-L IBDV, a reassortment strain with segments A and B derived from very virulent strains and attenuated IBDV, respectively. These findings from this study provide additional insights into the genetic exchange between attenuated and very virulent strains of IBDV and continuous monitoring of the spread of the virus in chicken.  相似文献   

16.
Tilletia indica is a smut fungus that incites Karnal bunt in wheat. It has been considered as quarantine pest in more than 70 countries. Despite its quarantine significance, there is meager knowledge regarding the molecular mechanisms of disease pathogenesis. Moreover, various disease management strategies have proven futile. Development of effective disease management strategy requires identification of pathogenicity / virulence factors. With this aim, the present study was conducted to compare the secretomes of T. indica isolates, that is, highly (TiK) and low (TiP) virulent isolates. About 120 and 95 protein spots were detected reproducibly in TiK and TiP secretome gel images. Nineteen protein spots, which were consistently observed as upregulated/differential in the secretome of TiK isolate, were selected for their identification by MALDI‐TOF/TOF. Identified proteins exhibited homology with fungal proteins playing important role in fungal adhesion, penetration, invasion, protection against host‐derived reactive oxygen species, production of virulence factors, cellular signaling, and degradation of host cell wall proteins and antifungal proteins. These results were complemented with T. indica genome sequence leading to identification of candidate pathogenicity / virulence factors homologs that were further subjected to sequence‐ and structure‐based functional annotation. Thus, present study reports the first comparative secretome analysis of T. indica for identification of pathogenicity / virulence factors. This would provide insights into pathogenic mechanisms of T. indica and aid in devising effective disease management strategies.  相似文献   

17.
18.
Management and preservation of genomic diversity in dog breeds is a major objective for maintaining health. The present study was undertaken to characterise genomic diversity in Bullmastiff dogs using both genealogical and molecular analysis. Genealogical analysis of diversity was conducted using a database consisting of 16,378 Bullmastiff pedigrees from year 1980 to 2013. Additionally, a total of 188 Bullmastiff dogs were genotyped using the 170,000 SNP Illumina CanineHD Beadchip. Genealogical parameters revealed a mean inbreeding coefficient of 0.047; 142 total founders (f); an effective number of founders (fe) of 79; an effective number of ancestors (fa) of 62; and an effective population size of the reference population of 41. Genetic diversity and the degree of genome-wide homogeneity within the breed were also investigated using molecular data. Multiple-locus heterozygosity (MLH) was equal to 0.206; runs of homozygosity (ROH) as proportion of the genome, averaged 16.44%; effective population size was 29.1, with an average inbreeding coefficient of 0.035, all estimated using SNP Data. Fine-scale population structure was analysed using NETVIEW, a population analysis pipeline. Visualisation of the high definition network captured relationships among individuals within and between subpopulations. Effects of unequal founder use, and ancestral inbreeding and selection, were evident. While current levels of Bullmastiff heterozygosity, inbreeding and homozygosity are not unusual, a relatively small effective population size indicates that a breeding strategy to reduce the inbreeding rate may be beneficial.  相似文献   

19.
Mycobacterium avium complex (MAC) infection causes disseminated disease in immunocompromised hosts, such as human immunodeficiency virus (HIV)-positive patients, and pulmonary disease in persons without systemic immunosuppression, which has been increasing in many countries. In Japan, the incidence of pulmonary MAC disease caused by M. avium is about 7 times higher than that caused by M. intracellulare. To explore the bacterial factors that affect the pathological state of MAC disease caused by M. avium, we determined the complete genome sequence of the previously unreported M. avium subsp. hominissuis strain TH135 isolated from a HIV-negative patient with pulmonary MAC disease and compared it with the known genomic sequence of M. avium strain 104 derived from an acquired immunodeficiency syndrome patient with MAC disease. The genome of strain TH135 consists of a 4,951,217-bp circular chromosome with 4,636 coding sequences. Comparative analysis revealed that 4,012 genes are shared between the two strains, and strains TH135 and 104 have 624 and 1,108 unique genes, respectively. Many strain-specific regions including virulence-associated genes were found in genomes of both strains, and except for some regions, the G+C content in the specific regions was low compared with the mean G+C content of the corresponding chromosome. Screening of clinical isolates for genes located in the strain-specific regions revealed that the detection rates of strain TH135-specific genes were relatively high in specimens isolated from pulmonary MAC disease patients, while, those of strain 104-specific genes were relatively high in those from HIV-positive patients. Collectively, M. avium strains that cause pulmonary and disseminated disease possess genetically distinct features, and it suggests that the acquisition of specific genes during strain evolution has played an important role in the pathological manifestations of MAC disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号