共查询到20条相似文献,搜索用时 0 毫秒
1.
Valerie A. O'Brien Amy T. Moore Ginger R. Young Nicholas Komar William K. Reisen Charles R. Brown 《Proceedings. Biological sciences / The Royal Society》2011,278(1703):239-246
Determining the effect of an invasive species on enzootic pathogen dynamics is critical for understanding both human epidemics and wildlife epizootics. Theoretical models suggest that when a naive species enters an established host–parasite system, the new host may either reduce (‘dilute’) or increase (‘spillback’) pathogen transmission to native hosts. There are few empirical data to evaluate these possibilities, especially for animal pathogens. Buggy Creek virus (BCRV) is an arthropod-borne alphavirus that is enzootically transmitted by the swallow bug (Oeciacus vicarius) to colonially nesting cliff swallows (Petrochelidon pyrrhonota). In western Nebraska, introduced house sparrows (Passer domesticus) invaded cliff swallow colonies approximately 40 years ago and were exposed to BCRV. We evaluated how the addition of house sparrows to this host–parasite system affected the prevalence and amplification of a bird-associated BCRV lineage. The infection prevalence in house sparrows was eight times that of cliff swallows. Nestling house sparrows in mixed-species colonies were significantly less likely to be infected than sparrows in single-species colonies. Infected house sparrows circulated BCRV at higher viraemia titres than cliff swallows. BCRV detected in bug vectors at a site was positively associated with virus prevalence in house sparrows but not with virus prevalence in cliff swallows. The addition of a highly susceptible invasive host species has led to perennial BCRV epizootics at cliff swallow colony sites. The native cliff swallow host confers a dilution advantage to invasive sparrow hosts in mixed colonies, while at the same sites house sparrows may increase the likelihood that swallows become infected. 相似文献
2.
Predation by ants controls swallow bug (Hemiptera: Cimicidae: Oeciacus vicarius) infestations 下载免费PDF全文
Charles R. Brown Catherine E. Page Grant A. Robison Valerie A. O'Brien Warren Booth 《Journal of vector ecology》2015,40(1):152-157
The swallow bug (Oeciacus vicarius) is the only known vector for Buggy Creek virus (BCRV), an alphavirus that circulates in cliff swallows (Petrochelidon pyrrhonota) and house sparrows (Passer domesticus) in North America. We discovered ants (Crematogaster lineolata and Formica spp.) preying on swallow bugs at cliff swallow colonies in western Nebraska, U.S.A. Ants reduced the numbers of visible bugs on active swallow nests by 74‐90%, relative to nests in the same colony without ants. Ant predation on bugs had no effect on the reproductive success of cliff swallows inhabiting the nests where ants foraged. Ants represent an effective and presumably benign way of controlling swallow bugs at nests in some colonies. They may constitute an alternative to insecticide use at sites where ecologists wish to remove the effects of swallow bugs on cliff swallows or house sparrows. By reducing bug numbers, ant presence may also lessen BCRV transmission at the spatial foci (bird colony sites) where epizootics occur. The effect of ants on swallow bugs should be accounted for in studying variation among sites in vector abundance. 相似文献
3.
Brown CR Bomberger Brown M Padhi A Foster JE Moore AT Pfeffer M Komar N 《Molecular ecology》2008,17(9):2164-2173
Determining the degree of genetic variability and spatial structure of arthropod-borne viruses (arboviruses) may help in identifying where strains that potentially cause epidemics or epizootics occur. Genetic diversity in arboviruses is assumed to reflect relative mobility of their vertebrate hosts (and invertebrate vectors), with highly mobile hosts such as birds leading to genetic similarity of viruses over large areas. There are no empirical studies that have directly related host or vector movement to virus genetic diversity and spatial structure. Using the entire E2 glycoprotein-coding region of 377 Buggy Creek virus isolates taken from cimicid swallow bugs (Oeciacus vicarius), the principal invertebrate vector for this virus, we show that genetic diversity between sampling sites could be predicted by the extent of movement by transient cliff swallows (Petrochelidon pyrrhonota) between nesting colonies where the virus and vectors occur. Pairwise F(ST) values between colony sites declined significantly with increasing likelihood of a swallow moving between those sites per 2-day interval during the summer nesting season. Sites with more bird movement between them had virus more similar genetically than did pairs of sites with limited or no bird movement. For one virus lineage, Buggy Creek virus showed greater haplotype and nucleotide diversity at sites that had high probabilities of birds moving into or through them during the summer; these sites likely accumulated haplotypes by virtue of frequent virus introductions by birds. Cliff swallows probably move Buggy Creek virus by transporting infected bugs on their feet. The results provide the first empirical demonstration that genetic structure of an arbovirus is strongly associated with host/vector movement, and suggest caution in assuming that bird-dispersed arboviruses always have low genetic differentiation across different sites. 相似文献
4.
During natal dispersal, young animals leave their natal area and search for a new area to live. In species in which individuals inhabit different types of habitat, experience with a natal habitat may increase the probability that a disperser will select the same type of habitat post-dispersal (natal habitat preference induction or NHPI). Despite considerable interest in the ecological and the evolutionary implications of NHPI, we lack empirical evidence that it occurs in nature. Here we show that dispersing brush mice (Peromyscus boylii) are more likely to search and settle within their natal habitat type than expected based on habitat availability. These results document the occurrence of NHPI in nature and highlight the relevance of experience-generated habitat preferences for ecological and evolutionary processes. 相似文献
5.
The conservation of expression of appendage patterning genes, particularly Distal-less, has been shown in a wide taxonomic sampling of animals. However, the functional significance of this expression has been tested in only a few organisms. Here we report functional analyses of orthologues of the genes Distal-less, dachshund, and homothorax in the appendages of the milkweed bug Oncopeltus fasciatus (Hemiptera). This hemimetabolous insect has typical legs but highly derived mouthparts. Distal-less, dachshund, and homothorax are conserved in their individual expression patterns and functions in the legs of Oncopeltus, but their functions in other appendages are in some cases divergent. We find that specification of antennal identity does not require wild-type Distal-less activity in Oncopeltus as it does in Drosophila. Additionally, the mouthparts of Oncopeltus show novel patterns of gene expression and function, relative to other insects. Expression of Distal-less in the maxillary stylets of Oncopeltus does not seem necessary for proper development of this appendage, while dachshund and homothorax are crucial for formation of the mandibular and maxillary stylets. These data are used to evaluate hypotheses for the evolution of hemipteran mouthparts and the evolution of developmental mechanisms in insect appendages in general. 相似文献
6.
Cheun HI Cho SH Lee HI Shin EH Lee JS Kim TS Lee WJ 《The Korean journal of parasitology》2011,49(1):59-64
A survey of mosquitoes, including the vector status of Brugia malayi filariasis and their relative larval density, was conducted from 2002 to 2005 at several southern remote islands of Jeollanam-do (province), Gyeongsangnam-do, and Jeju-do, Korea, where filariasis was previously endemic. Overall, a total of 9 species belonging to 7 genera were collected. Ochlerotatus togoi (formerly known as Aedes togoi), Anopheles (Hyrcanus) group, and Culex pipiens were the predominant species captured at all areas. Oc. togoi larvae were most frequently collected at salinity levels <0.5% during June and July, with densities decreasing sharply during the rainy season in August. The most likely explanation for the eradication of filariasis in these areas is suggested to be an aggressive treatment program executed during the 1970s and the 1990s. However, high prevalence of the vector mosquitoes may constitute a potential risk for reemerging of brugian filariasis in these areas. 相似文献
7.
8.
9.
Dispersal of the nematode Steinernema carpocapsae (All strain), applied on the top or the bottom of soil columns, was tested in the presence or absence of two earthworm species, Lumbricus terrestris or Aporrectodea trapezoides. Nematode dispersal was estimated after a 2-week period with a bioassay against the greater wax moth, Galleria mellonella. Vertical dispersal of nematodes was increased in the presence of earthworms. When nematodes were placed on the surface of soil columns, significantly more nematodes dispersed to the lower half of the columns when either earthworm species was present than when earthworms were not present. When nematodes were placed on the bottom of soil columns, significantly more nematodes dispersed to the upper half of the columns when L. terrestris was present than when A. trapezoides was present or in the absence of earthworms. Because nematodes were found on the exterior and in the interior of earthworms, nematode dispersal may be enhanced by direct contact with the earthworms. 相似文献
10.
Robert A. Cheke Maria-Gloria Basá?ez Malorie Perry Michael T. White Rolf Garms Emmanuel Obuobie Poppy H. L. Lamberton Stephen Young Mike Y. Osei-Atweneboana Joseph Intsiful Mingwang Shen Daniel A. Boakye Michael D. Wilson 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2015,370(1665)
Development times of eggs, larvae and pupae of vectors of onchocerciasis (Simulium spp.) and of Onchocerca volvulus larvae within the adult females of the vectors decrease with increasing temperature. At and above 25°C, the parasite could reach its infective stage in less than 7 days when vectors could transmit after only two gonotrophic cycles. After incorporating exponential functions for vector development into a novel blackfly population model, it was predicted that fly numbers in Liberia and Ghana would peak at air temperatures of 29°C and 34°C, about 3°C and 7°C above current monthly averages, respectively; parous rates of forest flies (Liberia) would peak at 29°C and of savannah flies (Ghana) at 30°C. Small temperature increases (less than 2°C) might lead to changes in geographical distributions of different vector taxa. When the new model was linked to an existing framework for the population dynamics of onchocerciasis in humans and vectors, transmission rates and worm loads were projected to increase with temperature to at least 33°C. By contrast, analyses of field data on forest flies in Liberia and savannah flies in Ghana, in relation to regional climate change predictions, suggested, on the basis of simple regressions, that 13–41% decreases in fly numbers would be expected between the present and before 2040. Further research is needed to reconcile these conflicting conclusions. 相似文献
11.
12.
Phosphomannose isomerase (pmi) gene isolated from Escherichia coli allows transgenic plants carrying it to convert mannose-6- phosphate (from mannose), a carbon source that could not be naturally utilized by plants into fructose-6-phosphate which can be utilized by plants as a carbon source. This conversion ability provides energy source to allow the transformed cells to survive on the medium containing mannose. In this study, four transformation vectors carrying the pmi gene alone or in combination with the β-glucuronidase (gusA) gene were constructed and driven by either the maize ubiquitin (Ubi1) or the cauliflower mosaic virus (CaMV35S) promoter. Restriction digestion, PCR amplification and sequencing were carried out to ensure sequence integrity and orientation. Tobacco was used as a model system to study the effectiveness of the constructs and selection system. PMI11G and pMI3G, which carry gusA gene, were used to study the gene transient expression in tobacco. PMI3 construct, which only carries the pmi gene driven by CaMV35S promoter, was stably transformed into tobacco using biolistics after selection on 30 g 1(-1) mannose without sucrose. Transgenic plants were verified using PCR analysis. ABBREVIATIONS: PMI/pmi - Phosphomannose isomerase, Ubi1 - Maize ubiquitin promoter, CaMV35S - Cauliflower mosaic virus 35S promoter, gusA - β-glucuronidase GUS reporter gene. 相似文献
13.
Takuya Aikawa Hisashi Anbutsu Naruo Nikoh Taisei Kikuchi Fukashi Shibata Takema Fukatsu 《Proceedings. Biological sciences / The Royal Society》2009,276(1674):3791-3798
Monochamus alternatus is the longicorn beetle notorious as a vector of the pinewood nematode that causes the pine wilt disease. When two populations of M. alternatus were subjected to diagnostic polymerase chain reaction (PCR) detection of four Wolbachia genes, only the ftsZ gene was detected from one of the populations. The Wolbachia ftsZ gene persisted even after larvae were fed with a tetracycline-containing diet for six weeks. The inheritance of the ftsZ gene was not maternal but biparental, exhibiting a typical Mendelian pattern. The ftsZ gene titres in homozygotic ftsZ+ insects were nearly twice as high as those in heterozygotic ftsZ+ insects. Exhaustive PCR surveys revealed that 31 and 30 of 214 Wolbachia genes examined were detected from the two insect populations, respectively. Many of these Wolbachia genes contained stop codon(s) and/or frame shift(s). Fluorescent in situ hybridization confirmed the location of the Wolbachia genes on an autosome. On the basis of these results, we conclude that a large Wolbachia genomic region has been transferred to and located on an autosome of M. alternatus. The discovery of massive gene transfer from Wolbachia to M. alternatus would provide further insights into the evolution and fate of laterally transferred endosymbiont genes in multicellular host organisms. 相似文献
14.
Matthew H. Shirley Kent A. Vliet Amanda N. Carr James D. Austin 《Proceedings. Biological sciences / The Royal Society》2014,281(1776)
Accurate species delimitation is a central assumption of biology that, in groups such as the Crocodylia, is often hindered by highly conserved morphology and frequent introgression. In Africa, crocodilian systematics has been hampered by complex regional biogeography and confounded taxonomic history. We used rigorous molecular and morphological species delimitation methods to test the hypothesis that the slender-snouted crocodile (Mecistops cataphractus) is composed of multiple species corresponding to the Congolian and Guinean biogeographic zones. Speciation probability was assessed by using 11 mitochondrial and nuclear genes, and cranial morphology for over 100 specimens, representing the full geographical extent of the species distribution. Molecular Bayesian and phylogenetic species delimitation showed unanimous support for two Mecistops species isolated to the Upper Guinean and Congo (including Lower Guinean) biomes that were supported by 13 cranial characters capable of unambiguously diagnosing each species. Fossil-calibrated phylogenetic reconstruction estimated that the species split ± 6.5–7.5 Ma, which is congruent with intraspecies divergence within the sympatric crocodile genus Osteolaemus and the formation of the Cameroon Volcanic Line. Our results underscore the necessity of comprehensive phylogeographic analyses within currently recognized taxa to detect cryptic species within the Crocodylia. We recommend that the community of crocodilian researchers reconsider the conceptualization of crocodilian species especially in the light of the conservation ramifications for this economically and ecologically important group. 相似文献
15.
Lachezar A. Nikolov P. B. Tomlinson Sugumaran Manickam Peter K. Endress Elena M. Kramer Charles C. Davis 《Annals of botany》2014,114(2):233-242
Background and Aims
Species in the holoparasitic plant family Rafflesiaceae exhibit one of the most highly modified vegetative bodies in flowering plants. Apart from the flower shoot and associated bracts, the parasite is a mycelium-like endophyte living inside their grapevine hosts. This study provides a comprehensive treatment of the endophytic vegetative body for all three genera of Rafflesiaceae (Rafflesia, Rhizanthes and Sapria), and reports on the cytology and development of the endophyte, including its structural connection to the host, shedding light on the poorly understood nature of this symbiosis.Methods
Serial sectioning and staining with non-specific dyes, periodic–Schiff''s reagent and aniline blue were employed in order to characterize the structure of the endophyte across a phylogenetically diverse sampling.Key Results
A previously identified difference in the nuclear size between Rafflesiaceae endophytes and their hosts was used to investigate the morphology and development of the endophytic body. The endophytes generally comprise uniseriate filaments oriented radially within the host root. The emergence of the parasite from the host during floral development is arrested in some cases by an apparent host response, but otherwise vegetative growth does not appear to elicit suppression by the host.Conclusions
Rafflesiaceae produce greatly reduced and modified vegetative bodies even when compared with the other holoparasitic angiosperms once grouped with Rafflesiaceae, which possess some vegetative differentiation. Based on previous studies of seeds together with these findings, it is concluded that the endophyte probably develops directly from a proembryo, and not from an embryo proper. Similarly, the flowering shoot arises directly from the undifferentiated endophyte. These filaments produce a protocorm in which a shoot apex originates endogenously by formation of a secondary morphological surface. This degree of modification to the vegetative body is exceptional within angiosperms and warrants additional investigation. Furthermore, the study highlights a mechanical isolation mechanism by which the host may defend itself from the parasite. 相似文献16.
17.
18.
Chai JY Han ET Guk SM Shin EH Sohn WM Yong TS Eom KS Lee KH Jeong HG Ryang YS Hoang EH Phommasack B Insisiengmay B Lee SH Rim HJ 《The Korean journal of parasitology》2007,45(3):213-218
The prevalence of liver and intestinal fluke infections was surveyed on residents of Savannakhet Province, Laos. Fecal specimens were collected from a total of 981 residents in 4 Mekong riverside villages and examined by the Kato-Katz thick smear technique. The results revealed that the overall helminth egg positive rate was 84.2%, and the positive rate for small trematode eggs, including Opisthorchis viverrini, heterophyids, or lecithodendriids, was 67.1%. To obtain adult flukes, 38 small trematode egg positive cases were treated with a 20-30 mg/kg single dose of praziquantel and purged. Diarrheic stools were then collected from 29 people and searched for helminth parasites using stereomicroscopes. Mixed infections with O. viverrini and 6 kinds of intestinal flukes were found, namely, Haplorchis taichui, Haplorchis pumilio, Haplorchis yokogawai, Prosthodendrium molenkampi, Phaneropsolus bonnei, and echinostomes. The total number of flukes collected was 7,693 specimens (av. no. per treated person; 265.3). The most common species was O. viverrini, followed by H. taichui, P. molenkampi, echinostomes, H. pumilio, P. bonnei, and H. yokogawai. The results indicate that foodborne liver and intestinal fluke infections are prevalent among residents of Savannakhet Province, Laos. 相似文献
19.
Background
Several resistance traits, including the I2 resistance against tomato fusarium wilt, were mapped to the long arm of chromosome 11 of Solanum. However, the structure and evolution of this locus remain poorly understood.Results
Comparative analysis showed that the structure and evolutionary patterns of the I2 locus vary considerably between potato and tomato. The I2 homologues from different Solanaceae species usually do not have orthologous relationship, due to duplication, deletion and frequent sequence exchanges. At least 154 sequence exchanges were detected among 76 tomato I2 homologues, but sequence exchanges between I2 homologues in potato is less frequent. Previous study showed that I2 homologues in potato were targeted by miR482. However, our data showed that I2 homologues in tomato were targeted by miR6024 rather than miR482. Furthermore, miR6024 triggers phasiRNAs from I2 homologues in tomato. Sequence analysis showed that miR6024 was originated after the divergence of Solanaceae. We hypothesized that miR6024 and miR482 might have facilitated the expansion of the I2 family in Solanaceae species, since they can minimize their potential toxic effects by down-regulating their expression.Conclusions
The I2 locus represents a most divergent resistance gene cluster in Solanum. Its high divergence was partly due to frequent sequence exchanges between homologues. We propose that the successful expansion of I2 homologues in Solanum was at least partially attributed to miRNA mediated regulation.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-743) contains supplementary material, which is available to authorized users. 相似文献20.
Austin Burt 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2014,369(1645)
Mosquito-borne diseases are causing a substantial burden of mortality, morbidity and economic loss in many parts of the world, despite current control efforts, and new complementary approaches to controlling these diseases are needed. One promising class of new interventions under development involves the heritable modification of the mosquito by insertion of novel genes into the nucleus or of Wolbachia endosymbionts into the cytoplasm. Once released into a target population, these modifications can act to reduce one or more components of the mosquito population''s vectorial capacity (e.g. the number of female mosquitoes, their longevity or their ability to support development and transmission of the pathogen). Some of the modifications under development are designed to be self-limiting, in that they will tend to disappear over time in the absence of recurrent releases (and hence are similar to the sterile insect technique, SIT), whereas other modifications are designed to be self-sustaining, spreading through populations even after releases stop (and hence are similar to traditional biological control). Several successful field trials have now been performed with Aedes mosquitoes, and such trials are helping to define the appropriate developmental pathway for this new class of intervention. 相似文献