首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pathogenesis of nonalcoholic fatty liver disease (NAFLD) is not clear. In this study we aimed to identify proteins involved in NAFLD development in free fatty acids (FFA)‐induced hepatosteatotic cells and in human liver biopsies. Steatosis was induced by incubating a normal human hepatocyte‐derived cell line L‐02 with FFA. Differentially expressed proteins in the steatotic cells were analyzed by two‐dimensional gel electrophoresis‐based proteomics. Involvement of one of the up‐regulated proteins in steatosis was characterized using the RNA interference approach with the steatotic cells. Protein expression levels in liver biopsies of patients with NAFLD were assessed by immunohistochemistry. Proteomic analysis of L‐02 steatotic cells revealed the up‐regulation of ERp57, a condition not previously implicated in NAFLD. Knockdown of ERp57 expression with siRNA significantly reduced fat accumulation in the steatotic cells. ERp57 expression was detected in 16 out of 17 patient biopsies and correlated with inflammation grades or fibrosis stages, while in 5 normal biopsies ERp57 expression was not detectable in hepatocytes. In conclusion, ERp57 was up‐regulated in FFA‐induced steatotic hepatic cells and in NAFLD patient livers and demonstrated steatotic properties in cultured cells. Further investigations are warranted to verify the involvement of ERp57 in NAFLD development. J. Cell. Biochem. 110: 1447–1456, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Hepatocytes of a primary cell culture that are exposed to high glucose, insulin, and linoleic (LA) acid concentration respond with lipid accumulation, oxidative stress up to cell death. Such alterations are typically found in patients with non-alcoholic fatty liver disease (NAFLD). We used this cellular model to study the effect of an ethanolic Gynostemma pentaphyllum (GP) extract in NAFLD. When hepatocytes were cultured in the presence of high insulin, glucose, and LA concentration the extract completely protected the cells from cell death. In parallel, the extract prevented accumulation of triglycerides (TGs) and cholesterol as well as oxidative stress. Our data further demonstrate that GP stimulates the production of nitric oxide (NO) in hepatocytes and affects the molecular composition of the mitochondrial phospholipid cardiolipin (CL). We conclude that GP is able to protect hepatocytes from cell death, lipid accumulation, and oxidative stress caused by diabetic-like metabolism and lipotoxicity. Therefore, GP could be beneficial for patients with diabetes mellitus and NAFLD.  相似文献   

3.
Non‐alcoholic fatty liver disease (NAFLD), a lipid metabolism disorder characterized by the accumulation of intrahepatic fat, has emerged as a global public health problem. However, its underlying molecular mechanism remains unclear. We previously have found that miR‐149 was elevated in NAFLD induced by high‐fat diet mice model, whereas decreased by a 16‐week running programme. Here, we reported that miR‐149 was increased in HepG2 cells treated with long‐chain fatty acid (FFA). In addition, miR‐149 was able to promote lipogenesis in HepG2 cells in the absence of FFA treatment. Moreover, inhibition of miR‐149 was capable of inhibiting lipogenesis in HepG2 cells in the presence of FFA treatment. Meanwhile, fibroblast growth factor‐21 (FGF‐21) was identified as a target gene of miR‐149, which was demonstrated by the fact that miR‐149 could negatively regulate the protein expression level of FGF‐21, and FGF‐21 was also responsible for the effect of miR‐149 inhibitor in decreasing lipogenesis in HepG2 cells in the presence of FFA treatment. These data implicate that miR‐149 might be a novel therapeutic target for NAFLD.  相似文献   

4.
Nonalcoholic fatty liver disease (NAFLD) is a chronic hepatic disease associated with excessive accumulation of lipids in hepatocytes. As the disease progresses, oxidative stress plays a pivotal role in the development of hepatic lipid peroxidation. Cytochrome P450 1A1 (CYP1A1), a subtype of the cytochrome P450 family, has been shown to be a vital modulator in production of reactive oxygen species. However, the exact role of CYP1A1 in NAFLD is still unclear. The aim of this study was to investigate the effects of CYP1A1 on lipid peroxidation in oleic acid (OA)-treated human hepatoma cells (HepG2). We found that the expression of CYP1A1 is elevated in OA-stimulated HepG2 cells. The results of siRNA transfection analysis indicated that CYP1A1-siRNA inhibited the lipid peroxidation in OA-treated HepG2 cells. Additionally, compared with siRNA-transfected and benzo[a]pyrene (BaP)-OA-induced HepG2 cells, overexpression of CYP1A1 by BaP further accelerated the lipid peroxidation in OA-treated HepG2 cells. These observations reveal a regulatory role of CYP1A1 in liver lipid peroxidation and imply CYP1A1 as a potential therapeutic target.  相似文献   

5.
Reactive oxygen species(ROS) are produced during normal physiologic processes with the consumption of oxygen. While ROS play signaling roles, when they are produced in excess beyond normal antioxidative capacity this can cause pathogenic damage to cells. The majority of such oxidation occurs in polyunsaturated fatty acids and sulfhydryl group in proteins, resulting in lipid peroxidation and protein misfolding, respectively. The accumulation of misfolded proteins in the endoplasmic reticulum(ER) is enhanced under conditions of oxidative stress and results in ER stress, which, together, leads to the malfunction of cellular homeostasis. Multiple types of defensive machinery are activated in unfolded protein response under ER stress to resolve this unfavorable situation. ER stress triggers the malfunction of protein secretion and is associated with a variety of pathogenic conditions including defective insulin secretion from pancreatic β-cells and accelerated lipid droplet formation in hepatocytes. Herein we use nonalcoholic fatty liver disease(NAFLD) as an illustration of such pathological liver conditions that result from ER stress in association with oxidative stress. Protecting the ER by eliminating excessive ROS viathe administration of antioxidants or by enhancing lipidmetabolizing capacity via the activation of peroxisome proliferator-activated receptors represent promising therapeutics for NAFLD.  相似文献   

6.
7.
8.
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with insulin resistance, oxidative stress, and inflammation. Evidence indicates that chromium has a role in the regulation of glucose and lipid metabolism and may improve insulin sensitivity. In this study, we report that chromium supplementation has a beneficial effect against NAFLD. We found that KK/HlJ mice developed obesity and progressed to NAFLD after feeding with high-fat diet for 8 weeks. High-fat-fed KK/HlJ mice showed hepatocyte injury and hepatic triglyceride accumulation, which was accompanied by insulin resistance, oxidative stress, and inflammation. Chromium supplementation prevented progression of NAFLD and the beneficial effects were accompanied by reduction of hepatic triglyceride accumulation, elevation of hepatic lipid catabolic enzyme, improvement of glucose and lipid metabolism, suppression of inflammation as well as resolution of oxidative stress, probably through enhancement of insulin signaling. Our findings suggest that chromium could serve as a hepatoprotective agent against NAFLD.  相似文献   

9.
Excess hepatic lipid accumulation and oxidative stress contribute to nonalcoholic fatty liver disease (NAFLD). Thus, we hypothesized that the hypolipidemic and antioxidant activities of green tea extract (GTE) would attenuate events leading to NAFLD. Obese mice (ob/ob; 5 weeks old, n=38) and their lean littermates (n=12) were fed 0%, 0.5% or 1% GTE for 6 weeks. Then, hepatic steatosis, oxidative stress and inflammatory markers were measured. Obese mice, compared to lean controls, had greater hepatic lipids and serum alanine aminotransferase (ALT). GTE at 1% lowered (P<.05) hepatic lipids and ALT in obese mice. The GTE-mediated attenuation in hepatic steatosis was accompanied by decreased mRNA expression of adipose sterol regulatory element-binding protein-1c, fatty acid synthase, stearoyl CoA desaturase-1, and hormone-sensitive lipase and decreased serum nonesterified fatty acid concentrations. Immunohistochemical data indicated that steatotic livers from obese mice had extensive accumulation of tumor necrosis factor-α (TNF-α), whereas GTE at 1% decreased hepatic TNF-α protein and inhibited adipose TNF-α mRNA expression. Hepatic total glutathione, malondialdehyde and Mn- and Cu/Zn-superoxide dismutase activities in obese mice fed GTE were normalized to the levels of lean littermates. Also, GTE increased hepatic catalase and glutathione peroxidase activities, and these activities were inversely correlated with ALT and liver lipids. Collectively, GTE mitigated NAFLD and hepatic injury in ob/ob mice by decreasing the release of fatty acids from adipose and inhibiting hepatic lipid peroxidation as well as restoring antioxidant defenses and decreasing inflammatory responses. These findings suggest that GTE may be used as an effective dietary strategy to mitigate obesity-triggered NAFLD.  相似文献   

10.
Non‐alcoholic fatty liver disease (NAFLD) is associated with obesity and lifestyle, while exercise is beneficial for NAFLD. Dysregulated microRNAs (miRs) control the pathogenesis of NAFLD. However, whether exercise could prevent NAFLD via targeting microRNA is unknown. In this study, normal or high‐fat diet (HF) mice were either subjected to a 16‐week running program or kept sedentary. Exercise attenuated liver steatosis in HF mice. MicroRNA array and qRT‐PCR demonstrated that miR‐212 was overexpressed in HF liver, while reduced by exercise. Next, we investigated the role of miR‐212 in lipogenesis using HepG2 cells with/without long‐chain fatty acid treatment (±FFA). FFA increased miR‐212 in HepG2 cells. Moreover, miR‐212 promoted lipogenesis in HepG2 cells (±FFA). Fibroblast growth factor (FGF)‐21, a key regulator for lipid metabolism, was negatively regulated by miR‐212 at protein level in HepG2 cells. Meanwhile, FFA downregulated FGF‐21 both at mRNA and protein levels in HepG2 cells. Also, FGF‐21 protein level was reduced in HF liver, while reversed by exercise in vivo. Furthermore, siRNA‐FGF‐21 abolished the lipogenesis‐reducing effect of miR‐212 inhibitor in HepG2 cells (±FFA), validating FGF‐21 as a target gene of miR‐212. These data link the benefit of exercise and miR‐212 downregulation in preventing NAFLD via targeting FGF‐21.  相似文献   

11.
An excessive accumulation of fat in the liver leads to chronic liver injury such as non-alcoholic fatty liver disease (NAFLD), which is an important medical problem affecting many populations worldwide. Oxidative stress has been implicated in the pathogenesis of NAFLD, but the exact nature of active species and the underlying mechanisms have not been elucidated. It was previously found that the administration of free radical-generating azo compound to mice induced accumulation of fat droplet in the liver. The present study was performed aiming at elucidating the changes of lipid classes and fatty acid composition and also measuring the levels of lipid peroxidation products in the liver induced by azo compound administration to mouse. The effects of azo compound on the liver were compared with those induced by high fat diet, a well-established cause of NAFLD. Azo compounds given to mice either by intraperitoneal administration or by dissolving to drinking water induced triacylglycerol (TG) increase and concomitant phospholipid decrease in the liver, whose pattern was quite similar to that induced by high fat diet. Lipid peroxidation products such as hydroxyoctadecadienoic acid and hydroxyeicosatetraenoic acid were increased in the liver in association with the increase in TG. These results show that free radicals as well as high fat diet induce fatty liver by similar mechanisms, in which lipid peroxidation may be involved.  相似文献   

12.
《Free radical research》2013,47(11):869-880
Abstract

Non-alcoholic fatty liver disease (NAFLD) is now the most common liver disease affecting high proportion of the population worldwide. NAFLD encompasses a large spectrum of conditions ranging from fatty liver to non-alcoholic steatohepatitis (NASH), which can progress to cirrhosis and cancer. NAFLD is considered as a multifactorial disease in relation to the pathogenic mechanisms. Oxidative stress has been implicated in the pathogenesis of NAFLD and NASH and the involvement of reactive oxygen species (ROS) has been suggested. Many studies show the association between the levels of lipid oxidation products and disease state. However, often neither oxidative stress nor ROS has been characterized, despite oxidative stress is mediated by multiple active species by different mechanisms and the same lipid oxidation products are produced by different active species. Further, the effects of various antioxidants have been assessed in human and animal studies, but the effects of drugs are determined by the type of active species, suggesting the importance of characterizing the active species involved. This review article is focused on the role of free radicals and free radical-mediated lipid peroxidation in the pathogenesis of NAFLD and NASH, taking characteristic features of free radical-mediated oxidation into consideration. The detailed analysis of lipid oxidation products shows the involvement of free radicals in the pathogenesis of NAFLD and NASH. Potential beneficial effects of antioxidants such as vitamin E are discussed.  相似文献   

13.
Hepatic oxidative stress and lipid peroxidation are common features of several prevalent disease states, including alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD), a common component of the metabolic syndrome. These conditions are characterized in part by excessive accumulation of lipids within hepatocytes, which can lead to autocatalytic degradation of cellular lipids giving rise to electrophilic end products of lipid peroxidation. The pathobiology of reactive lipid aldehydes remains poorly understood. We therefore sought to investigate the effects of 4-hydroxynonenal (4-HNE) and 4-oxononenal (4-ONE) on the transport and secretion of very low-density lipoprotein using HepG2 cells as a model hepatocyte system. Physiologically relevant concentrations of 4-HNE and 4-ONE rapidly disrupted cellular microtubules in a concentration-dependent manner. Interestingly, 4-ONE reduced apolipoprotein B-100 (ApoB) secretion while 4-HNE did not significantly impair secretion. Both 4-HNE and 4-ONE formed adducts with ApoB protein, but 4-HNE adducts were detectable as mono-adducts, while 4-ONE adducts were present as protein–protein cross-links. These results demonstrate that reactive aldehydes generated by lipid peroxidation can differ in their biological effects, and that these differences can be mechanistically explained by the structures of the protein adducts formed.  相似文献   

14.
Excessive consumption of saturated fat leads to non-alcoholic fatty liver disease (NAFLD), which is attenuated by supplementation of n-3 polyunsaturated fatty acids (PUFAs). Endoplasmic reticulum (ER) stress is crucial in the development of NAFLD, but how high-saturated fat diet (HFD) causes ER stress and NAFLD remains unclear. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is involved in hepatic ER stress. We aimed to explore the roles of LOX-1 in HFD-induced ER stress. Male Sprague–Dawley rats were fed an HFD without or with supplementation of fish oil for 16 weeks. The effects of n-3 PUFAs on hepatic ER stress degrees and the expression levels of LOX-1 were examined. Then human L02 hepatoma cells were treated with palmitate or palmitate and DHA to determine the ER stress and LOX-1 expression levels in vitro. After that the expression of LOX-1 in L02 cells was either knocked-down or overexpressed to analyze the roles of LOX-1 in palmitate-induced ER stress. The feeding of HFD induced NAFLD development and ER stress in the liver, and LOX-1 expressing level, which were all reversed by fish oil supplementation. In vitro, DHA treatment reduced the expression of LOX-1, and palmitate-induced ER stress. SiRNA-mediated knock-down of LOX-1 inhibited palmitate-induced ER stress, whereas overexpression of LOX-1 dramatically induced ER stress in L02 cells.LOX-1 is critical for HFD-induced ER stress, and inhibition of its expression under the treatment of n-3 PUFAs could ameliorate HFD-induced NAFLD.  相似文献   

15.
Non-alcoholic fatty liver disease (NAFLD) is a common liver disorder worldwide and a risk factor for obesity and diabetes. Emerging evidence has shown that ferroptosis is involved in the progression of NAFLD. Zeaxanthin (ZEA) is a carotenoid found in human serum. It has been reported that ZEA can ameliorate obesity, prevent age-related macular degeneration, and protect against non-alcoholic steatohepatitis. However, no study has focused on the protective effects of ZEA against NAFLD. In this study, free fatty acid (FFA) induced HepG2 cells were used as a cell model for NAFLD. Our results suggest that ZEA exerts antioxidative and anti-inflammatory effects in FFA-induced HepG2 cells. Moreover, ZEA acted as a ferroptosis inhibitor, significantly reducing reactive oxygen species (ROS) generation and iron overload and improving mitochondrial dysfunction in FFA-induced HepG2 cells. In addition, ZEA downregulated the expression of p53 and modulated downstream targets, such as GPX4, SLC7A11, SAT1, and ALOX15, which contributed to the reduction in cellular lipid peroxidation. Our findings suggest that ZEA has the potential for NAFLD intervention.  相似文献   

16.
《Free radical research》2013,47(6):758-765
Abstract

An excessive accumulation of fat in the liver leads to chronic liver injury such as non-alcoholic fatty liver disease (NAFLD), which is an important medical problem affecting many populations worldwide. Oxidative stress has been implicated in the pathogenesis of NAFLD, but the exact nature of active species and the underlying mechanisms have not been elucidated. It was previously found that the administration of free radical-generating azo compound to mice induced accumulation of fat droplet in the liver. The present study was performed aiming at elucidating the changes of lipid classes and fatty acid composition and also measuring the levels of lipid peroxidation products in the liver induced by azo compound administration to mouse. The effects of azo compound on the liver were compared with those induced by high fat diet, a well-established cause of NAFLD. Azo compounds given to mice either by intraperitoneal administration or by dissolving to drinking water induced triacylglycerol (TG) increase and concomitant phospholipid decrease in the liver, whose pattern was quite similar to that induced by high fat diet. Lipid peroxidation products such as hydroxyoctadecadienoic acid and hydroxyeicosatetraenoic acid were increased in the liver in association with the increase in TG. These results show that free radicals as well as high fat diet induce fatty liver by similar mechanisms, in which lipid peroxidation may be involved.  相似文献   

17.
The incidence of obesity is now at epidemic proportions and has resulted in the emergence of nonalcoholic fatty liver disease (NAFLD) as a common metabolic disorder that can lead to liver injury and cirrhosis. Excess sucrose and long-chain saturated fatty acids in the diet may play a role in the development and progression of NAFLD. One factor linking sucrose and saturated fatty acids to liver damage is dysfunction of the endoplasmic reticulum (ER). Although there is currently no proven, effective therapy for NAFLD, the amino sulfonic acid taurine is protective against various metabolic disturbances, including alcohol-induced liver damage. The present study was undertaken to evaluate the therapeutic potential of taurine to serve as a preventative treatment for diet-induced NAFLD. We report that taurine significantly mitigated palmitate-mediated caspase-3 activity, cell death, ER stress, and oxidative stress in H4IIE liver cells and primary hepatocytes. In rats fed a high-sucrose diet, dietary taurine supplementation significantly reduced hepatic lipid accumulation, liver injury, inflammation, plasma triglycerides, and insulin levels. The high-sucrose diet resulted in an induction of multiple components of the unfolded protein response in the liver consistent with ER stress, which was ameliorated by taurine supplementation. Treatment of mice with the ER stress-inducing agent tunicamycin resulted in liver injury, unfolded protein response induction, and hepatic lipid accumulation that was significantly ameliorated by dietary supplementation with taurine. Our results indicate that dietary supplementation with taurine offers significant potential as a preventative treatment for NAFLD.  相似文献   

18.
Nonalcoholic fatty liver disease (NAFLD) currently affects 20%-30% of adults and 10% of children in industrialized countries, and its prevalence is increasing worldwide. Although NAFLD is a benign form of liver dysfunction, it can proceed to a more serious condition, nonalcoholic steatohepatitis (NASH), which may lead to liver cirrhosis and hepatocellular carcinoma. NAFLD is accompanied by obesity, metabolic syndrome and diabetes mellitus, and evidence suggests that fructose, a major caloric sweetener in the diet, plays a significant role in its pathogenesis. Inflammatory progression to NASH is proposed to occur by a two-hit process. The first "hit" is hepatic fat accumulation owing to increased hepatic de novo lipogenesis, inhibition of fatty acid beta oxidation, impaired triglyceride clearance and decreased very-low-density lipoprotein export. The mechanisms of the second "hit" are still largely unknown, but recent studies suggest several possibilities, including inflammation caused by oxidative stress associated with lipid peroxidation, cytokine activation, nitric oxide and reactive oxygen species, and endogenous toxins of fructose metabolites.  相似文献   

19.
Accumulation of saturated fatty acids in the liver can cause nonalcoholic fatty liver disease (NAFLD). This study investigated saturated fatty acid induction of endoplasmic reticulum (ER) stress and apoptosis in human liver cells and the underlying causal mechanism. Human liver L02 and HepG2 cell lines were exposed to the saturated fatty acid sodium palmitate. MTT assay was used for cell viability, flow cytometry and Hoechst 33258 staining for apoptosis, RT-PCR for mRNA expression, and Western blot for protein expression. Silence of PRK-like ER kinase (PERK) expression in liver cells was through transient transfection of PERK shRNA. Treatment of L02 and HepG2 cells with sodium palmitate reduced cell viability through induction of apoptosis. Sodium palmitate also induced ER stress in the cells, indicated by upregulation of PERK phosphorylation and expression of BiP, ATF4, and CHOP proteins. Sodium palmitate had little effect on activating XBP-1, a common target of the other two canonical sensors of ER stress, ATF6, and IRE1. Knockdown of PERK gene expression suppressed the PERK/ATF4/CHOP signaling pathway during sodium palmitate-induced ER stress and significantly inhibited sodium palmitate-induced apoptosis in L02 and HepG2 cells. Saturated fatty acid-induced ER stress and apoptosis in these human liver cells were enacted through the PERK/ATF4/CHOP signaling pathway. Future study is warranted to investigate the role of these proteins in mediating saturated fatty acid-induced NAFLD in animal models.  相似文献   

20.
Oxidized low density lipoprotein (OxLDL) is known to be cytotoxic towards different cell types of the arterial wall, leading to progression of an atherosclerotic plaque. We previously reported that OxLDL activates the tumor suppressor p53 in human fibroblasts [Biochem. Biophys. Res. Commun. 276 (2000) 718]. In the present work, we demonstrate that OxLDL increased intracellular levels of the kinase inhibitor p21(waf1) (p21) and of the tumor suppressor Rb. Concomitantly, level of the hypophosphorylated active form of Rb (HypoP-Rb) was also enhanced. Cycloheximide prevented the OxLDL-induced increase in p21, Rb, and HypoP-Rb, whereas okadaic acid had no effect. This increase was also prevented by the antioxidant vitamin E. In addition, the lipid extract of OxLDL, which includes the lipid peroxidation products, reproduced the action of the OxLDL particle itself. OxLDL and its lipid extract induced an oxidative stress, as assessed by the intracellular levels of reactive oxygen species and lipid peroxidation products. Finally, OxLDL induced a dose-dependent inhibition of DNA synthesis as assessed by thymidine incorporation. These results demonstrate that OxLDL or its lipid peroxidation products, by generation of an oxidative stress, enhances the expression of p21 and Rb genes, leading to an accumulation of the Hypo-P active form of the tumor suppressor Rb. This phenomenon is in accordance with the fact that p21 is a mediator of p53-dependent cell-cycle arrest in G1 and is most probably involved in the cytotoxicity of OxLDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号