首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Prostate cancer is the most common cancer among men beyond 50 years old, and ranked the second in mortality. The level of Prostate-specific antigen (PSA) in serum has been a routine biomarker for clinical assessment of the cancer development, which is detected mostly by antibody-based immunoassays. The proteolytic activity of PSA also has important functions. Here a genetically encoded biosensor based on fluorescence resonance energy transfer (FRET) technology was developed to measure PSA activity. In vitro assay showed that the biosensor containing a substrate peptide ‘RLSSYYSGAG’ had 400% FRET change in response to 1 µg/ml PSA within 90 min, and could detect PSA activity at 25 ng/ml. PSA didn’t show enzymatic activity toward the biosensor in serum solution, likely reflecting the existence of other inhibitory factors besides Zn2+. By expressing the biosensor on cell plasma membrane, the FRET responses were significant, but couldn’t distinguish well the cultured prostate cancer cells from non-prostate cancer cells under microscopy imaging, indicating insufficient speci- ficity to PSA. The biosensor with the previously known ‘HSSKLQ’ substrate showed little response to PSA in solution. In summary, we developed a genetically encoded FRET biosensor to detect PSA activity, which may serve as a useful tool for relevant applications, such as screening PSA activation substrates or inhibitors; the purified biosensor protein can also be an alternative choice for measuring PSA activity besides currently commercialized Mu-HSSKLQ-AMC substrate from chemical synthesis.  相似文献   

2.
A novel, genetically encoded, ratiometric pH probe (RaVC) was constructed to image and measure intracellular pH in living hyphae of Aspergillus niger. RaVC is a chimeric protein based on the pH-sensitive probe pHluorin, which was partially codon optimized for expression in Aspergillus. Intracellular pH imaging and measurement was performed by simultaneous, dual-excitation confocal ratio imaging. The mean cytoplasmic pH measured was 7.4 to 7.7 based on calibrating RaVC in situ within nigericin-treated hyphae. Pronounced, longitudinal cytoplasmic pH gradients were not observed in the apical 20 μm of actively growing hyphae at the periphery of 18-h-old colonies. The cytoplasmic pH remained unchanged after prolonged growth in buffered medium with pH values between 2.5 or 9.5. Sudden changes in external pH significantly changed cytoplasmic pH by <1.3 pH units, but it returned to its original value within 20 min following treatment. The weak acid and antifungal food preservative sorbic acid caused prolonged, concentration-dependent intracellular acidification. The inhibition of ATPases with N-ethylmaleimide, dicychlohexylcarbodimide, or sodium azide caused the cytoplasmic pH to decrease by <1 pH unit. Treatment with the protonophore carbonyl cyanide m-chlorophenylhydrazone or cyanide p-(trifluoromethoxy) phenylhydrazone reduced the cytoplasmic pH by <1 pH unit. In older hyphae from 32-h-old cultures, RaVC became sequestered within large vacuoles, which were shown to have pH values between 6.2 and 6.5. Overall, our study demonstrates that RaVC is an excellent probe for visualizing and quantifying intracellular pH in living fungal hyphae.Cytoplasmic pH is a physiological parameter that is tightly regulated by a complex interaction of H+ transport, H+-consuming and -producing reactions, and H+ buffering (10, 38). Maintaining pH within a physiological range is very important for protein stability, enzyme and ion channel activity, and many other processes that are required for cell growth, development, and survival (38). It has been proposed that intracellular pH serves as a mechanism by which cells coordinate the regulation of various processes that lack any other common regulating factors and may provide a link between the metabolic state and physiological responses (10).The most reliable measurements of cytoplasmic pH in filamentous fungi in single living hyphae have indicated a pH of ∼7.6. These measurements have been obtained using the ratiometric imaging of a dextran-conjugated, pH-sensitive dye injected into the cytoplasm to avoid sequestration into organelles (34). Changes in external pH were found to cause only small transient changes in the cytoplasmic pH, indicating that hyphae have a tightly regulated intracellular pH homeostatic mechanism. Rigorous quantitative analyses of cytoplasmic pH in growing hyphae and tip-growing plant cells have found no evidence for the existence of pronounced, tip-focused cytoplasmic pH gradients or for such gradients being required for the regulation of tip growth (4, 13, 34). These results contradicted previous reports of cytoplasmic pH gradients in hyphae (2, 25, 40, 41). Changes in cytoplasmic pH have been implicated in regulating protein synthesis, enzyme activities, and fermentation productivity in filamentous fungi (24) and cell cycle progression in fission yeast (26).The recent sequencing and analysis of the genome of the filamentous fungus Aspergillus niger has revealed a complex machinery for H+ transport that will play important roles in pH homeostasis and signaling (35). Key components of this machinery are five plasma membrane P-type H+-ATPases; one vacuolar V-type H+-ATPase; one mitochondrial membrane F0F1-ATP synthase; five K+, Na+/H+ antiporters; and six Ca+/H+ antiporters (5).Previous methods of measuring intracellular pH in filamentous fungi commonly have been fraught with problems. Loading hyphae with dextran-conjugated pH dyes or using pH-sensitive microelectrodes requires cells to be physically impaled with micropipettes or microelectrodes (42) and is technically demanding to perform without harming the cells under study (12, 33). Intracellular pH measurements with free pH-sensitive dyes often suffer from problems associated with dye loading and dye sequestration within organelles (21, 33). There are also reports on the use of radiolabeled membrane-permeable acids (3) and 31P nuclear magnetic resonance (NMR) for intracellular pH measurement (18, 19, 20) in fungi. However, both of these methods require extensive sample manipulation and do not allow the imaging of intracellular pH in single living cells. Ideal probes for imaging and measuring intracellular pH in single living cells should possess several key properties. These include having a high selectivity for H+ over other ions present; allowing the accurate quantification of intracellular pH; providing high temporal and spatial resolution; not interfering with normal physiological activities or cellular responses; exhibiting low cell toxicity; having a high signal-to-noise ratio; and having the possibility of being targeted to specific organelles.A novel approach for noninvasive intracellular pH measurements has been the development of a recombinant pH-sensitive probe based on mutated green fluorescent protein (GFP) (6, 17, 29, 43). Miesenbock et al. (29) introduced a ratiometric pH probe of this type, which they named pHluorin. Problems normally encountered with single-wavelength dyes are reduced by using ratiometric probes. These problems include distinguishing between differences in intracellular pH and variations in dye brightness due to a variable intracellular dye concentration, dye photobleaching, or dye leakage from cells (33). Thus, pHluorin is very suitable as a noninvasive probe in living cells for imaging and measuring intracellular pH (26, 29, 43), but its use with filamentous fungi has not been reported previously.The aims of this study were to (i) develop an improved version of the pHluorin probe (which we call RaVC) for intracellular pH imaging in filamentous fungi; (ii) obtain measurements of cytoplasmic pH in hyphae of A. niger expressing RaVC by using confocal ratio imaging; (iii) confirm or disprove that a pronounced, tip-focused, cytoplasmic pH gradient is absent in growing hyphae of A. niger; and (iv) assess the effects of changing the external pH, and of treating hyphae with known pH modulators, on intracellular pH homeostasis in A. niger.  相似文献   

3.
Inorganic phosphate (Pi) has central roles in metabolism, cell signaling and energy conversion. The distribution of Pi to each cell and cellular compartment of an animal must be tightly coordinated with its dietary supply and with the varied metabolic demands of individual cells. An analytical method for monitoring Pi dynamics with spatial and temporal resolution is therefore needed to gain a comprehensive understanding of mechanisms governing the transport and recycling of this essential nutrient. Here we demonstrate the utility of a genetically encoded FRET-based Pi sensor to assess cellular Pi levels in the nematode Caenorhabditis elegans. The sensor was expressed in different cells and tissues of the animal, including head neurons, tail neurons, pharyngeal muscle, and the intestine. Cytosolic Pi concentrations were monitored using ratiometric imaging. Injection of phosphate buffer into intestinal cells confirmed that the sensor was responsive to changes in Pi concentration in vivo. Live Pi imaging revealed cell-specific and developmental stage-specific differences in cytosolic Pi concentrations. In addition, cellular Pi levels were perturbed by food deprivation and by exposure to the respiratory inhibitor cyanide. These results suggest that Pi concentration is a sensitive indicator of metabolic status. Moreover, we propose that live Pi imaging in C. elegans is a powerful approach to discern mechanisms that govern Pi distribution in individual cells and throughout an animal.  相似文献   

4.
The majority of biotechnologically relevant metabolites do not impart a conspicuous phenotype to the producing cell. Consequently, the analysis of microbial metabolite production is still dominated by bulk techniques, which may obscure significant variation at the single-cell level. In this study, we have applied the recently developed Lrp-biosensor for monitoring of amino acid production in single cells of gradually engineered L-valine producing Corynebacterium glutamicum strains based on the pyruvate dehydrogenase complex-deficient (PDHC) strain C. glutamicum ΔaceE. Online monitoring of the sensor output (eYFP fluorescence) during batch cultivation proved the sensor''s suitability for visualizing different production levels. In the following, we conducted live cell imaging studies on C. glutamicum sensor strains using microfluidic chip devices. As expected, the sensor output was higher in microcolonies of high-yield producers in comparison to the basic strain C. glutamicum ΔaceE. Microfluidic cultivation in minimal medium revealed a typical Gaussian distribution of single cell fluorescence during the production phase. Remarkably, low amounts of complex nutrients completely changed the observed phenotypic pattern of all strains, resulting in a phenotypic split of the population. Whereas some cells stopped growing and initiated L-valine production, others continued to grow or showed a delayed transition to production. Depending on the cultivation conditions, a considerable fraction of non-fluorescent cells was observed, suggesting a loss of metabolic activity. These studies demonstrate that genetically encoded biosensors are a valuable tool for monitoring single cell productivity and to study the phenotypic pattern of microbial production strains.  相似文献   

5.
Filament bundles (rods) of cofilin and actin (1:1) form in neurites of stressed neurons where they inhibit synaptic function. Live-cell imaging of rod formation is hampered by the fact that overexpression of a chimera of wild type cofilin with a fluorescent protein causes formation of spontaneous and persistent rods, which is exacerbated by the photostress of imaging. The study of rod induction in living cells calls for a rod reporter that does not cause spontaneous rods. From a study in which single cofilin surface residues were mutated, we identified a mutant, cofilinR21Q, which when fused with monomeric Red Fluorescent Protein (mRFP) and expressed several fold above endogenous cofilin, does not induce spontaneous rods even during the photostress of imaging. CofilinR21Q-mRFP only incorporates into rods when they form from endogenous proteins in stressed cells. In neurons, cofilinR21Q-mRFP reports on rods formed from endogenous cofilin and induced by all modes tested thus far. Rods have a half-life of 30–60 min upon removal of the inducer. Vesicle transport in neurites is arrested upon treatments that form rods and recovers as rods disappear. CofilinR21Q-mRFP is a genetically encoded rod reporter that is useful in live cell imaging studies of induced rod formation, including rod dynamics, and kinetics of rod elimination.  相似文献   

6.
7.
We report the development of a genetically encodable and ratiometic pH probe named "pHlash" that utilizes Bioluminescence Resonance Energy Transfer (BRET) rather than fluorescence excitation. The pHlash sensor-composed of a donor luciferase that is genetically fused to a Venus fluorophore-exhibits pH dependence of its spectral emission in vitro. When expressed in either yeast or mammalian cells, pHlash reports basal pH and cytosolic acidification in vivo. Its spectral ratio response is H(+) specific; neither Ca(++), Mg(++), Na(+), nor K(+) changes the spectral form of its luminescence emission. Moreover, it can be used to image pH in single cells. This is the first BRET-based sensor of H(+) ions, and it should allow the approximation of pH in cytosolic and organellar compartments in applications where current pH probes are inadequate.  相似文献   

8.
A Role for Cdc42 in Macrophage Chemotaxis   总被引:26,自引:0,他引:26       下载免费PDF全文
Three members of the Rho family, Cdc42, Rac, and Rho are known to regulate the organization of actin-based cytoskeletal structures. In Bac1.2F5 macrophages, we have shown that Rho regulates cell contraction, whereas Rac and Cdc42 regulate the formation of lamellipodia and filopodia, respectively. We have now tested the roles of Cdc42, Rac, and Rho in colony stimulating factor-1 (CSF-1)–induced macrophage migration and chemotaxis using the Dunn chemotaxis chamber. Microinjection of constitutively activated RhoA, Rac1, or Cdc42 inhibited cell migration, presumably because the cells were unable to polarize significantly in response to CSF-1. Both Rho and Rac were required for CSF-1–induced migration, since migration speed was reduced to background levels in cells injected with C3 transferase, an inhibitor of Rho, or with the dominant-negative Rac mutant, N17Rac1. In contrast, cells injected with the dominant-negative Cdc42 mutant, N17Cdc42, were able to migrate but did not polarize in the direction of the gradient, and chemotaxis towards CSF-1 was abolished.

We conclude that Rho and Rac are required for the process of cell migration, whereas Cdc42 is required for cells to respond to a gradient of CSF-1 but is not essential for cell locomotion.

  相似文献   

9.
SPECs, small binding proteins for Cdc42   总被引:1,自引:0,他引:1  
The Rho GTPase, Cdc42, regulates a wide variety of cellular activities including actin polymerization, focal complex assembly, and kinase signaling. We have identified a new family of very small Cdc42-binding proteins, designated SPECs (for Small Protein Effector of Cdc42), that modulates these regulatory activities. The two human members, SPEC1 and SPEC2, encode proteins of 79 and 84 amino acids, respectively. Both contain a conserved N-terminal region and a centrally located CRIB (Cdc42/Rac Interactive Binding) domain. Using a yeast two-hybrid system, we found that both SPECs interact strongly with Cdc42, weakly with Rac1, and not at all with RhoA. Transfection analysis revealed that SPEC1 inhibited Cdc42-induced c-Jun N-terminal kinase (JNK) activation in COS1 cells in a manner that required an intact CRIB domain. Immunofluorescence experiments in NIH-3T3 fibroblasts demonstrated that both SPEC1 and SPEC2 showed a cortical localization and induced the formation of cell surface membrane blebs, which was not dependent on Cdc42 activity. Cotransfection experiments demonstrated that SPEC1 altered Cdc42-induced cell shape changes both in COS1 cells and in NIH-3T3 fibroblasts and that this alteration required an intact CRIB domain. These results suggest that SPECs act as novel scaffold molecules to coordinate and/or mediate Cdc42 signaling activities.  相似文献   

10.
11.
The Rho family of GTPases plays key roles in the regulation of cell motility and morphogenesis. They also regulate protein kinase cascades, gene expression, and cell cycle progression. This multiplicity of roles requires that the Rho GTPases interact with a wide variety of downstream effector proteins. An understanding of their functions at a molecular level therefore requires the identification of the entire set of such effectors. Towards this end, we performed a two-hybrid screen using the TC10 GTPase as bait and identified a family of putative effector proteins related to MSE55, a murine stromal and epithelial cell protein of 55 kDa. We have named this family the Borg (binder of Rho GTPases) proteins. Complete open reading frames have been obtained for Borg1 through Borg3. We renamed MSE55 as Borg5. Borg1, Borg2, Borg4, and Borg5 bind both TC10 and Cdc42 in a GTP-dependent manner. Surprisingly, Borg3 bound only to Cdc42. An intact CRIB (Cdc42, Rac interactive binding) domain was required for binding. No interaction of the Borgs with Rac1 or RhoA was detectable. Three-hemagglutinin epitope (HA(3))-tagged Borg3 protein was mostly cytosolic when expressed ectopically in NIH 3T3 cells, with some accumulation in membrane ruffles. The phenotype induced by Borg3 was reminiscent of that caused by an inhibition of Rho function and was reversed by overexpression of Rho. Surprisingly, it was independent of the ability to bind Cdc42. Borg3 also inhibited Jun kinase activity by a mechanism that was independent of Cdc42 binding. HA(3)-Borg3 expression caused substantial delays in the spreading of cells on fibronectin surfaces after replating, and the spread cells lacked stress fibers. We propose that the Borg proteins function as negative regulators of Rho GTPase signaling.  相似文献   

12.
Candida albicans, the most common human fungal pathogen, is particularly problematic for immunocompromised individuals. The reversible transition of this fungal pathogen to a filamentous form that invades host tissue is important for its virulence. Although different signaling pathways such as a mitogen-activated protein kinase and a protein kinase A cascade are critical for this morphological transition, the function of polarity establishment proteins in this process has not been determined. We examined the role of four different polarity establishment proteins in C. albicans invasive growth and virulence by using strains in which one copy of each gene was deleted and the other copy expressed behind the regulatable promoter MET3. Strikingly, mutants with ectopic expression of either the Rho G-protein Cdc42 or its exchange factor Cdc24 are unable to form invasive hyphal filaments and germ tubes in response to serum or elevated temperature and yet grow normally as a budding yeast. Furthermore, these mutants are avirulent in a mouse model for systemic infection. This function of the Cdc42 GTPase module is not simply a general feature of polarity establishment proteins. Mutants with ectopic expression of the SH3 domain containing protein Bem1 or the Ras-like G-protein Bud1 can grow in an invasive fashion and are virulent in mice, albeit with reduced efficiency. These results indicate that a specific regulation of Cdc24/Cdc42 activity is required for invasive hyphal growth and suggest that these proteins are required for pathogenicity of C. albicans.  相似文献   

13.

Background

Cytomegalovirus (CMV) is the most common infectious cause of mental disability in newborns in developed countries. There is an urgent need to establish an early detection and high-throughput screening method for CMV infection using portable detection devices.

Methods

An antibody analysis method is reported for the detection and identification of CMV antibodies in serum using a biosensor based on high spatial resolution imaging ellipsometry (BIE). CMV antigen (CMV-3A) was immobilized on silicon wafers and used to capture CMV antibodies in serum. An antibody against human immunoglobulin G (anti-IgG) was used to confirm the IgG antibody against CMV captured by the CMV-3A.

Results

Our results show that this assay is rapid and specific for the identification of IgG antibody against CMV. Further, patient serum was quantitatively assessed using the standard curve method, and the quantitative results were in agreement with the enzyme-linked immunosorbent assay. The CMV antibody detection sensitivity of BIE reached 0.01 IU/mL.

Conclusions

This novel biosensor may be a valuable diagnostic tool for analysis of IgG antibody against CMV during CMV infection screening.  相似文献   

14.
Elliot-Smith AE  Mott HR  Lowe PN  Laue ED  Owen D 《Biochemistry》2005,44(37):12373-12383
Cdc42 and Rac are highly homologous members of the Rho family of small G proteins that interact with several downstream effector proteins thereby causing cytoskeletal rearrangements, cell proliferation, and differentiation. While some effectors, such as the tyrosine kinase, ACK, and the scaffold protein, WASP, are unique to Cdc42, others, such as the serine-threonine kinase, PAK, are shared with Rac. Previous mutagenesis studies identified Val42 and Leu174 as residues that selectively affect binding of Cdc42 to ACK and WASP but not to PAK. However, it is unclear whether these discriminatory residues are sufficient determinants of specificity. In this study we sought to introduce "gain-of function" mutations into Rac to allow it to bind to ACK and WASP, thereby revealing all specificity determinants. Thirteen mutations were made changing Rac residues to those in Cdc42. Equilibrium binding constants of all mutant Rac proteins to ACK, WASP, and PAK were measured. A combination of seven mutations (S41A, A42V, N43T, D47G, N52T, W56F, and R174L) was determined to be necessary to change the binding affinity of Rac for ACK from negligible (K(d) < 1 microM) to a comparable affinity to Cdc42 (K(d) 25 nM). These mutations are not confined to interface residues. We interpret these data to indicate the importance of the structure of regions of the protein distinct from the contact residues. None of these mutant Rac proteins bound WASP with a similar affinity to Cdc42. Hence, residues as yet unidentified, outside the interface, must be necessary for binding WASP.  相似文献   

15.
The Rho subfamily of GTPases has been shown to regulate cellular morphology. We report the discovery of a new member of the Rho family, named RhoL, which is equally similar to Rac, Rho, and Cdc42. Expression of a dominant-negative RhoL transgene in the Drosophila ovary caused nurse cells to collapse and fuse together. Mutant forms of Cdc42 mimicked this effect. Expression of constitutively active RhoL led to nurse cell subcortical actin breakdown and disruption of nurse cell- follicle cell contacts, followed by germ cell apoptosis. In contrast, Rac activity was specifically required for migration of a subset of follicle cells called border cells. All three activities were necessary for normal transfer of nurse cell cytoplasm to the oocyte. These results suggest that Rho protein activities have cell type-specific effects on morphogenesis.  相似文献   

16.
以PCR方法从人脑cDNA基因文库扩增Rac1、Cdc42 cDNA全序列及其效应蛋白基因Pak1、N-WASP的GTP酶联结区域(GBD)序列,从dsRed1-N1质粒扩增红色荧光蛋白dsRed1cDNA全序列.将cDNA序列依次定向克隆至pECFP-N1质粒载体,获得基于FRET原理,包含dsRed1,Pak1或N-WASP的GBD,Rac1或Cdc42,ECFP编码序列的单分子探针.在dsRed1的C末端加入一段CAAM法尼基化基序,构建包含EGFP,Pak1的GBD,Rac1或Cdc42,dsRed1-CAAM的质膜特异表达的单分子探针.采用这两种探针,可用于监测活细胞中诱导激活的Rac1、Cdc42信号转导通路的3D时空图像,检测待测蛋白分子的GEF或GAP活性.  相似文献   

17.
Theophylline is a potent bronchodilator with a narrow therapeutic index. A simple fluorescent biosensor that detects clinically relevant theophylline concentrations has been developed using the well-characterized theophylline binding RNA aptamer. Hybridization of the RNA aptamer to a fluorescently labeled DNA strand (FL-DNA) yields a fluorescent RNA:DNA hybrid that is sensitive to theophylline. The biosensor retains the remarkable selectivity of the RNA aptamer for theophylline over caffeine and is sensitive to 0–2 μM theophylline, well below the clinically relevant concentration (5–20 mg/L or ~10–50 μM). Adding a dabcyl quenching dye to the 3′-terminus of the fluorescently labeled DNA strand yielded a dual-labeled DNA strand (FL-DNA-Q) and increased the dynamic range of this simple biosensor from 1.5-fold to 4-fold.  相似文献   

18.
A蛋白定向固定抗体用于椭偏光学生物传感器免疫检测   总被引:9,自引:0,他引:9  
椭偏光学生物传感器是在椭偏光学显微成像技术的基础上发展的一项生物传感技术。它能够直接观测固体表面上的生物分子面密度,毋需任何标记辅助,适合发展成为一种无标记免疫检测技术。研究了在硅片表面上通过A蛋白定向固定抗体分子用于椭偏光学生物传感器免疫检测的可能性。实验结果表明,通过A蛋白固定抗体得到的抗体膜层的均一性和固定量的重复性能够保证椭偏光学生物传感器免疫检测结果的质量。通过A蛋白定向固定的抗体的抗原结合位点趋向一致,显著提高了抗体与抗原结合的能力。此外,通过蛋白A固定的免疫球蛋白G分子能够结合更多的多克隆抗体分子说明通过A蛋白固定的蛋白质分子能够较好地保持其空间构象。  相似文献   

19.
20.
Invadosomes are actin-based structures involved in extracellular-matrix degradation. Invadosomes, either known as podosomes or invadopodia, are found in an increasing number of cell types. Moreover, their overall organization and molecular composition may vary from one cell type to the other. Some are constitutive such as podosomes in hematopoietic cells whereas others are inducible. However, they share the same feature, their ability to interact and to degrade the extracellular matrix. Based on the literature and our own experiments, the aim of this study was to establish a minimal molecular definition of active invadosomes. We first highlighted that Cdc42 is the key RhoGTPase involved in invadosome formation in all described models. Using different cellular models, such as NIH-3T3, HeLa, and endothelial cells, we demonstrated that overexpression of an active form of Cdc42 is sufficient to form invadosome actin cores. Therefore, active Cdc42 must be considered not only as an inducer of filopodia, but also as an inducer of invadosomes. Depending on the expression level of Tks5, these Cdc42-dependent actin cores were endowed or not with a proteolytic activity. In fact, Tks5 overexpression rescued this activity in Tks5 low expressing cells. We thus described the adaptor protein Tks5 as a major actor of the invadosome degradation function. Surprisingly, we found that Src kinases are not always required for invadosome formation and function. These data suggest that even if Src family members are the principal kinases involved in the majority of invadosomes, it cannot be considered as a common element for all invadosome structures. We thus define a minimal and universal molecular signature of invadosome that includes Cdc42 activity and Tks5 presence in order to drive the actin machinery and the proteolytic activity of these invasive structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号