首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malignant melanoma has increased incidence worldwide and causes most skin cancer-related deaths. A few cell surface antigens that can be targets of antitumor immunotherapy have been characterized in melanoma. This is an expanding field because of the ineffectiveness of conventional cancer therapy for the metastatic form of melanoma. In the present work, antimelanoma monoclonal antibodies (mAbs) were raised against B16F10 cells (subclone Nex4, grown in murine serum), with novel specificities and antitumor effects in vitro and in vivo. MAb A4 (IgG2ak) recognizes a surface antigen on B16F10-Nex2 cells identified as protocadherin β13. It is cytotoxic in vitro and in vivo to B16F10-Nex2 cells as well as in vitro to human melanoma cell lines. MAb A4M (IgM) strongly reacted with nuclei of permeabilized murine tumor cells, recognizing histone 1. Although it is not cytotoxic in vitro, similarly with mAb A4, mAb A4M significantly reduced the number of lung nodules in mice challenged intravenously with B16F10-Nex2 cells. The VH CDR3 peptide from mAb A4 and VL CDR1 and CDR2 from mAb A4M showed significant cytotoxic activities in vitro, leading tumor cells to apoptosis. A cyclic peptide representing A4 CDR H3 competed with mAb A4 for binding to melanoma cells. MAb A4M CDRs L1 and L2 in addition to the antitumor effect also inhibited angiogenesis of human umbilical vein endothelial cells in vitro. As shown in the present work, mAbs A4 and A4M and selected CDR peptides are strong candidates to be developed as drugs for antitumor therapy for invasive melanoma.  相似文献   

2.
Lumican, a small leucine rich proteoglycan, inhibits MMP-14 activity and melanoma cell migration in vitro and in vivo. Snail triggers epithelial-mesenchymal transitions endowing epithelial cells with migratory and invasive properties during tumor progression. The aim of this work was to investigate lumican effects on MMP-14 activity and migration of Snail overexpressing B16F1 (Snail-B16F1) melanoma cells and HT-29 colon adenocarcinoma cells. Lumican inhibits the Snail induced MMP-14 activity in B16F1 but not in HT-29 cells. In Snail-B16F1 cells, lumican inhibits migration, growth, and melanoma primary tumor development. A lumican-based strategy targeting Snail-induced MMP-14 activity might be useful for melanoma treatment.

Highlights

Snail stimulates MMP-14 activity in Snail overexpressing B16F1 melanoma cells but not in HT29 cells; Lumican inhibits the Snail-induced MMP-14 activity in Snail-B16F1 cells; Lumican inhibits the migration and growth of Snail-B16F1 cells in vitro; Lumican inhibits melanoma primary tumor growth of Snail-B16F1 cells in vivo.  相似文献   

3.
Metastasis is major cause of malignant cancer-associated mortality. Fucoxanthin has effect on various pharmacological activities including anti-cancer activity. However, the inhibitory effect of fucoxanthin on cancer metastasis remains unclear. Here, we show that fucoxanthin isolated from brown alga Saccharina japonica has anti-metastatic activity. To check anti-metastatic properties of fucoxanthin, in vitro models including assays for invasion, migration, actin fiber organization and cancer cell–endothelial cell interaction were used. Fucoxanthin inhibited the expression and secretion of MMP-9 which plays a critical role in tumor invasion and migration, and also suppressed invasion of highly metastatic B16-F10 melanoma cells as evidenced by transwell invasion assay. In addition, fucoxanthin diminished the expressions of the cell surface glycoprotein CD44 and CXC chemokine receptor-4 (CXCR4) which play roles in migration, invasion and cancer–endothelial cell adhesion. Fucoxanthin markedly suppressed cell migration in wound healing assay and inhibited actin fiber formation. The adhesion of B16-F10 melanoma cells to the endothelial cells was significantly inhibited by fucoxanthin. Moreover, in experimental lung metastasis in vivo assay, fucoxanthin resulted in significant reduction of tumor nodules. Taken together, we demonstrate, for the first time, that fucoxanthin suppresses metastasis of highly metastatic B16-F10 melanoma cells in vitro and in vivo.  相似文献   

4.
In order to search for a new therapy that would maximize the effect of interleukin-2 (IL-2) in evoking antitumor immunity in vivo, the therapeutic effect of a combination of mitomycin-C(MMC)-treated tumor cells and recombinant IL-2 was examined for its induction of antitumor activity against established melanoma metastasis. In C57BL/6 mice intravenously (i. v.) injected with B16 melanoma cells on day 0, the combined treatment with an intraperitoneal (i. p.) injection of MMC-treated melanoma cells on day 6 and 2500 U rIL-2 (twice daily) on days 7 and 8 markedly reduced the number of pulmonary metastases. This antitumor activity was more effective than that in untreated controls and mice that were injected with MMC-treated melanoma cells alone or rIL-2 alone. When the i. p. injection of MMC-treated tumor cells was replaced by other syngeneic tumor cells, antitumor activity against metastatic melanoma was not induced. The antitumor activity induced by this treatment increased in parallel with an increase in the dose of rIL-2 injected. In contrast, an i. p. injection of soluble tumor-specific antigens alone could induce only a marginal level of antitumor activity, and this activity was not augmented by subsequent i. p. injections of rIL-2. In vivo treatment with anti-CD8 monoclonal antibody (mAb), but not with anti-CD4 mAb or anti-asialo-GM1 antibody, abrogated the antitumor activity induced by this combined therapy. This suggests that the antitumor effect was dependent on CD8+ T cells. Lung-infiltrating lymphocytes from mice that had been i. v. injected with melanoma cells 11 days before and were treated with this combined therapy, showed melanoma-specific cytolytic activity. This combined therapy also showed significant antitumor activity against subcutaneously inoculated melanoma cells. These results demonstrate that the combined therapy of an i. p. injection of MMC-treated tumor cells and subsequent and consecutive i. p. administration of rIL-2 increases antitumor activity against established metastatic melanoma by generating tumor-specific CD8+ CTL in vivo.  相似文献   

5.
XPO1/CRM1 is a key nuclear exporter protein that mediates translocation of numerous cellular regulatory proteins. We investigated whether XPO1 is a potential therapeutic target in melanoma using novel selective inhibitors of nuclear export (SINE). In vitro effects of SINE on cell growth and apoptosis were measured by MTS assay and flow cytometry [Annexin V/propidium iodide (PI)], respectively in human metastatic melanoma cell lines. Immunoblot analysis was used to measure nuclear localization of key cellular proteins. The in vivo activity of oral SINE was evaluated in NOD/SCID mice bearing A375 or CHL-1 human melanoma xenografts. SINE compounds induced cytostatic and pro-apoptotic effects in both BRAF wild type and mutant (V600E) cell lines at nanomolar concentrations. The cytostatic and pro-apoptotic effects of XPO1 inhibition were associated with nuclear accumulation of TP53, and CDKN1A induction in the A375 cell line with wild type TP53, while pMAPK accumulated in the nucleus regardless of TP53 status. The orally bioavailable KPT-276 and KPT-330 compounds significantly inhibited growth of A375 (p<0.0001) and CHL-1 (p = 0.0087) human melanoma cell lines in vivo at well tolerated doses. Inhibition of XPO1 using SINE represents a potential therapeutic approach for melanoma across cells with diverse molecular phenotypes by promoting growth inhibition and apoptosis.  相似文献   

6.
Apoptosis inhibitor 5 (API5) has recently been identified as a tumor metastasis-regulating gene in cervical cancer cells. However, the precise mechanism of action for API5 is poorly understood. Here, we show that API5 increases the metastatic capacity of cervical cancer cells in vitro and in vivo via up-regulation of MMP-9. Interestingly, API5-mediated metastasis was strongly dependent on the Erk signaling pathway. Conversely, knock-down of API5 via siRNA technology decreased the level of phospho-Erk, the activity of the MMPs, in vitro invasion, and in vivo pulmonary metastasis. Moreover, the Erk-mediated metastatic action was abolished by the mutation of leucine into arginine within the heptad leucine repeat region, which affects protein-protein interactions. Thus, API5 increases the metastatic capacity of tumor cells by up-regulating MMP levels via activation of the Erk signaling pathway. [BMB Reports 2015; 48(6): 330-335]  相似文献   

7.
Some Vinca alkaloids (eg, vinblastine, vincristine) have been widely used as antitumor drugs for a long time. Unfortunately, vindoline, a main alkaloid component of Catharanthus roseus (L.) G. Don, itself, has no antitumor activity. In our novel research program, we have prepared and identified new vindoline derivatives with moderate cytostatic activity. Here, we describe the effect of conjugation of vindoline derivative with oligoarginine (tetra‐, hexa‐, or octapeptides) cell‐penetrating peptides on the cytostatic activity in vitro and in vivo. Br‐Vindoline‐(l )‐Trp‐OH attached to the N‐terminus of octaarginine was the most effective compound in vitro on HL‐60 cell line. Analysis of the in vitro activity of two isomer conjugates (Br‐vindoline‐(l )‐Trp‐Arg8 and Br‐vindoline‐(d )‐Trp‐Arg8 suggests the covalent attachment of the vindoline derivatives to octaarginine increased the antitumor activity significantly against P388 and C26 tumour cells in vitro. The cytostatic effect was dependent on the presence and configuration of Trp in the conjugate as well as on the cell line studied. The configuration of Trp notably influenced the activity on C26 and P388 cells: conjugate with (l )‐Trp was more active than conjugate with the (d )‐isomer. In contrast, conjugates had very similar effect on both the HL‐60 and MDA‐MB‐231 cells. In preliminary experiments, conjugate Br‐vindoline‐(l )‐Trp‐Arg8 exhibited some inhibitory effect on the tumor growth in P388 mouse leukemia tumor‐bearing mice. Our results indicate that the conjugation of modified vindoline could result in an effective compound even with in vivo antitumor activity.  相似文献   

8.

Background

Cysteamine, an anti-oxidant aminothiol, is the treatment of choice for nephropathic cystinosis, a rare lysosomal storage disease. Cysteamine is a chemo-sensitization and radioprotection agent and its antitumor effects have been investigated in various tumor cell lines and chemical induced carcinogenesis. Here, we investigated whether cysteamine has anti-tumor and anti-metastatic effects in transplantable human pancreatic cancer, an aggressive metastatic disease.

Methodology/Principal Findings

Cysteamine''s anti-invasion effects were studied by matrigel invasion and cell migration assays in 10 pancreatic cancer cell lines. To study mechanism of action, we examined cell viability and matrix metalloproteinases (MMPs) activity in the cysteamine-treated cells. We also examined cysteamine''s anti-metastasis effect in two orthotopic murine models of human pancreatic cancer by measuring peritoneal metastasis and survival of animals. Cysteamine inhibited both migration and invasion of all ten pancreatic cancer cell lines at concentrations (<25 mM) that caused no toxicity to cells. It significantly decreased MMPs activity (IC 50 38–460 µM) and zymographic gelatinase activity in a dose dependent manner in vitro and in vivo; while mRNA and protein levels of MMP-9, MMP-12 and MMP-14 were slightly increased using the highest cysteamine concentration. In vivo, cysteamine significantly decreased metastasis in two established pancreatic tumor models, although it did not affect the size of primary tumors. Additionally, cysteamine prolonged survival of mice in a dose-dependent manner without causing any toxicity. Similar to the in vitro results, MMP activity was significantly decreased in animal tumors treated with cysteamine. Cysteamine had no clinical or preclinical adverse effects in the host even at the highest dose.

Conclusions/Significance

Our results suggest that cysteamine, an agent with a proven safety profile, may be useful for inhibition of metastasis and prolonging the survival of a host with pancreatic cancer.  相似文献   

9.
Song C  Li G 《Cytotherapy》2011,13(5):549-561
Background aimsBone marrow-derived mesenchymal stromal cells (BMSC) have been shown to migrate to injury, ischemia and tumor microenvironments. The mechanisms by which mesenchymal stromal cells (MSC) migrate across endothelium and home to the target tissues are not yet fully understood.MethodsWe used rat BMSC to investigate the molecular mechanisms involved in their tropism to tumors in vitro and in vivo.ResultsBMSC were shown to migrate toward four different tumor cells in vitro, and home to both subcutaneous and lung metastatic prostate tumor models in vivo. Gene expression profiles of MSC exposed to conditioned medium (CM) of various tumor cells were compared and revealed that matrix metalloproteinase-2 (MMP-2) expression in BMSC was downregulated after 24 h exposure to tumor CM. Chemokine (C–X–C motif) Receptor 4 (CXCR4) upregulation was also found in BMSC after 24 h exposure to tumor CM. Exposure to tumor cell CM enhanced migration of BMSC toward tumor cells. Stromal Cell-Derived Factor (SDF-1) inhibitor AMD3100 and MMP-2 inhibitor partly abolished the BMSC migration toward tumor cells in vitro.ConclusionsThese results suggest that the CXCR4 and MMP-2 are involved in the multistep migration processes of BMSC tropism to tumors.  相似文献   

10.
Metastases are thought to arise from cancer stem cells and their tumor initiating abilities are required for the establishment of metastases. Nevertheless, in metastatic melanoma, the nature of cancer stem cells is under debate and their contribution to metastasis formation remains unknown. Using an experimental metastasis model, we discovered that high levels of the WNT receptor, FZD7, correlated with enhanced metastatic potentials of melanoma cell lines. Knocking down of FZD7 in a panel of four melanoma cell lines led to a significant reduction in lung metastases in animal models, arguing that FZD7 plays a causal role during metastasis formation. Notably, limiting dilution analyses revealed that FZD7 is essential for the tumor initiation of melanoma cells and FZD7 knockdown impeded the early expansion of metastatic melanoma cells shortly after seeding, in accordance with the view that tumor initiating ability of cancer cells is required for metastasis formation. FZD7 activated JNK in melanoma cell lines in vitro and the expression of a dominant negative JNK suppressed metastasis formation in vivo, suggesting that FZD7 may promote metastatic growth of melanoma cells via activation of JNK. Taken together, our findings uncovered a signaling pathway that regulates the tumor initiation of melanoma cells and contributes to metastasis formation in melanoma.  相似文献   

11.
BackgroundReversibility of aberrant methylation via pharmacological means is an attractive target for therapies through epigenetic reprogramming. To establish that pharmacologic reversal of methylation could result in functional inhibition of angiogenesis, we undertook in vitro and in vivo studies of thrombospondin-1 (TSP1), a known inhibitor of angiogenesis. TSP1 is methylated in several malignancies, and can inhibit angiogenesis in melanoma xenografts. We analyzed effects of 5-Aza-deoxycytidine (5-Aza-dC) on melanoma cells in vitro to confirm reversal of promoter hypermethylation and restoration of TSP1 expression. We then investigated the effects of TSP1 expression on new blood vessel formation and tumor growth in vivo. Finally, to determine potential for clinical translation, the methylation status of TSP1 promoter regions of nevi and melanoma tissues was investigated.Results5-Aza-dC reduced DNA (cytosine-5)-methyltransferase 1 (DNMT1) protein, reversed promoter hypermethylation, and restored TSP1 expression in five melanoma cell lines, while having no effect on TSP1 protein levels in normal human melanocytes. In in vivo neovascularization studies, mice were implanted with melanoma cells (A375) either untreated or treated with 5Aza-dC. Vessels at tumor sites were counted by an observer blinded to treatments and the number of tumor vessels was significantly decreased at pretreated tumor sites. This difference occurred before a significant difference in tumor volumes was seen, yet in further studies the average tumor volume in mice treated in vivo with 5-Aza-dC was decreased by 55% compared to untreated controls. Knockdown of TSP1 expression with shRNA enhanced tumor-induced angiogenesis by 68%. Analyses of promoter methylation status of TSP1 in tumors derived from untreated and treated mice identified 67% of tumors from untreated and 17% of tumors from treated mice with partial methylation consistent with the methylation specific PCR analysis of A375 cells. Examination of methylation patterns in the promoter of TSP1 and comparison of aberrantly methylated TSP1 in melanoma with non-malignant nevi identified a significantly higher frequency of promoter methylation in tumor samples from melanoma patients.ConclusionsPharmacological reversal of methylation silenced TSP1 had functional biological consequences in enhancing angiogenesis inhibition and inducing antitumor effects to decrease murine melanoma growth. Angiogenesis inhibition is an additional mechanism by which epigenetic modulators can have antitumor effects.  相似文献   

12.
Lumican, a small leucine-rich proteoglycan of the extracellular matrix, presents potent anti-tumor properties. Previous works from our group showed that lumican inhibited melanoma cell migration and tumor growth in vitro and in vivo. Melanoma cells adhered to lumican, resulting in a remodeling of their actin cytoskeleton and preventing their migration. In addition, we identified a sequence of 17 amino acids within the lumican core protein, named lumcorin, which was able to inhibit cell chemotaxis and reproduce anti-migratory effect of lumican in vitro. The aim of the present study was to characterize the anti-tumor mechanism of action of lumcorin. Lumcorin significantly decreased the growth in monolayer and in soft agar of two melanoma cell lines – mice B16F1 and human SK-MEL-28 cells – in comparison to controls. Addition of lumcorin to serum free medium significantly inhibited spontaneous motility of these two melanoma cell lines. To characterize the mechanisms involved in the inhibition of cell migration by lumcorin, the status of the phosphorylation/dephosphorylation of proteins was examined. Inhibition of focal adhesion kinase phosphorylation was observed in presence of lumcorin. Since cancer cells have been shown to migrate and to invade by mechanisms that involve matrix metalloproteinases (MMPs), the expression and activity of MMPs were analyzed. Lumcorin induced an accumulation of an intermediate form of MMP-14 (~59kDa), and inhibited MMP-14 activity. Additionally, we identified a short, 10 amino acids peptide within lumcorin sequence, which was able to reproduce its anti-tumor effect on melanoma cells. This peptide may have potential pharmacological applications.  相似文献   

13.
The in vitro syntheses of IgM and IgG anti-tetanus toxoid antibody by human peripheral blood leukocytes were compared prior to and at various intervals following in vivo booster immunization with soluble tetanus toxoid. Prior to booster immunization, the in vitro synthesis of IgG anti-tetanus toxoid antibody by combinations of B cells and irradiated T lymphocytes was negligible following pokeweed mitogen stimulation. Within 2 weeks after booster immunization, the quantity of IgG anti-tetanus toxoid antibody synthesized in vitro increased 5- to 20-fold. There was no comparable increase in total IgG synthesis. In contrast to the synthesis of IgG antibody, in vitro synthesis of IgM anti-tetanus toxoid antibody occurred prior to booster immunization and did not increase significantly following booster immunization. This dichotomy in anti-tetanus antibody production was further demonstrated in an individual with common variable hypogammaglobulinemia whose lymphocytes synthesized normal quantities of total IgG, IgM, and IgM anti-tetanus toxoid antibody in vitro, but failed to synthesize IgG anti-tetanus antibody following in vivo booster immunization.  相似文献   

14.
The our previous study synthesized the chrysin-chromene-spirooxindole hybrids 3, and further found compound 3e had good antitumor activity against A549 cells in vitro through multi-target co-regulation of the p53 signalling pathway to inhibit the proliferation of A549 cells. This study was designed to evaluate the antitumor effects of compound 3e on Lewis lung carcinoma of C57BL/6 mice in vivo. Compound 3e significantly inhibited the growth of transplanted tumors in C57BL/6 mice and induced the apoptosis of tumor cells. Further studies showed that compound 3e activates and expands the anti-cancer activity of p53 by inhibiting the expression of MDM2, Akt and 5-Lox proteins, accordingly promotes the expressions Bax and inhibit the Bcl-2 protein, the release of Cyt c as well, which resulted in the activation of apoptotic pathway in tumor cells eventually. Moreover, Compound 3e inhibited tumor metastasis by down-regulating VEGF, ICAM-1 and MMP-2 protein expression and angiogenesis. These results suggested that compound 3e exerts an effective antitumor activity in vivo through activating the p53 signaling pathway, which could be exploited as a promising candidate for the development of new anti-tumour drugs.  相似文献   

15.
Inbred C57BL/6 (B6) mice which had received an inoculation of allogeneic spleen cells showed remarkable antitumor activity against syngeneic tumor challenge with B16 melanoma cells 3 days after the allogeneic cell inoculation. This antitumor activity was not specific to the inoculated alloantigen, since the challenging B16 cells are syngeneic to B6 mice and since it was induced by BALB/c spleen cells as well as C3H/He spleen cells. The antitumor activity was sensitive to an in vivo treatment with anti-asialo GM1 (AGM1) antiserum or anti-Thy.1 monoclonal antibody (mAb) just before the tumor challenge and was resistant to an in vivo treatment with anti-CD8 (Ly. 2) mAb. These results suggest that AGM1+Thy.1+CD8– activated natural killer (NK) cells were generated by alloantigen inoculation and took an important part in the antitumor effect of the alloantigen inoculation.  相似文献   

16.
While targeted therapy brought a new era in the treatment of BRAF mutant melanoma, therapeutic options for non-BRAF mutant cases are still limited. In order to explore the antitumor activity of prenylation inhibition we investigated the response to zoledronic acid treatment in thirteen human melanoma cell lines with known BRAF, NRAS and PTEN mutational status. Effect of zoledronic acid on proliferation, clonogenic potential, apoptosis and migration of melanoma cells as well as the activation of downstream elements of the RAS/RAF pathway were investigated in vitro with SRB, TUNEL and PARP cleavage assays and videomicroscopy and immunoblot measurements, respectively. Subcutaneous and spleen-to-liver colonization xenograft mouse models were used to evaluate the influence of zoledronic acid treatment on primary and disseminated tumor growth of melanoma cells in vivo. Zoledronic acid more efficiently decreased short-term in vitro viability in NRAS mutant cells when compared to BRAF mutant and BRAF/NRAS wild-type cells. In line with this finding, following treatment decreased activation of ribosomal protein S6 was found in NRAS mutant cells. Zoledronic acid demonstrated no significant synergism in cell viability inhibition or apoptosis induction with cisplatin or DTIC treatment in vitro. Importantly, zoledronic acid could inhibit clonogenic growth in the majority of melanoma cell lines except in the three BRAF mutant but PTEN wild-type melanoma lines. A similar pattern was observed in apoptosis induction experiments. In vivo zoledronic acid did not inhibit the subcutaneous growth or spleen-to-liver colonization of melanoma cells. Altogether our data demonstrates that prenylation inhibition may be a novel therapeutic approach in NRAS mutant melanoma. Nevertheless, we also demonstrated that therapeutic sensitivity might be influenced by the PTEN status of BRAF mutant melanoma cells. However, further investigations are needed to identify drugs that have appropriate pharmacological properties to efficiently target prenylation in melanoma cells.  相似文献   

17.
Sine oculis homeobox homolog 1 (SIX1) has been supposed to be correlated with the metastasis and poor prognosis of several malignancies. However, the effect of SIX1 on the metastatic phenotype of tumor cells and the underlying mechanisms were still unclear to date. Here we report that SIX1 can promote α5β1-mediated metastatic capability of cervical cancer cells. SIX1 promoted the expression of α5β1 integrin to enhance the adhesion capacity of tumor cells in vitro and tumor cell arrest in circulation in vivo. Moreover, higher expression of SIX1 in tumor cells resulted in the increased production of active MMP-2 and MMP-9, up-regulation of anti-apoptotic genes (BCL-XL and BCL2) and down-regulation of pro-apoptotic genes (BIM and BAX), thus promoting the invasive migration and anoikis-resistance of tumor cells. Importantly, blocking α5β1 abrogated the regulatory effect of SIX1 on the expression of these genes, and also abolished the promotional effect of SIX1 on invasive capability of tumor cells. Furthermore, knock-down of α5 could abolish the promoting effect of SIX1 on the development of metastatic lesions in both experimental and spontaneous metastasis model. Therefore, by up-regulating α5β1 expression, SIX1 not only promoted the adhesion capacity, but also augmented ECM-α5β1-mediated regulation of gene expression to enhance the metastatic potential of cervical cancer cells. These results suggest that SIX1/α5β1 might be considered as valuable marker for metastatic potential of cervical cancer cells, or a therapeutic target in cervical cancer treatment.  相似文献   

18.
Lactaptin, a human milk-derived protein, induces apoptosis in cultured tumor cells. We designed a recombinant analog of lactaptin (RL2) and tested its antitumor activity. The sensitivity of hepatocarcinoma A-1 (HA-1), Lewis lung carcinoma, and Ehrlich carcinoma to RL2 were tested to determine the most reliable in vitro animal model. HA-1 cells, which had the highest sensitivity to RL2, were transplanted into A/Sn mice to investigate RL2 antitumor activity in vivo. Investigation of the molecular effects of RL2 shows that RL2 induces apoptotic transformation of HA-1 cells in vitro: phosphatidylserine translocation from inner side of the lipid bilayer to the outer one and dissipation of the mitochondrial membrane potential. Repetitive injections of RL2 (5–50 mg/kg) for 3–5 days effectively inhibited ascites and solid tumor transplant growth when administered intravenously or intraperitoneally, without obvious side effects. The solid tumor inhibitory effect of RL2 (5 i.v. injections, cumulative dose 125 mg/kg) was comparable with that of cyclophosphamide at a therapeutic dose (5 i.v. injections, cumulative dose 150 mg/kg). In combination therapy with cyclophosphamide, RL2 had an additive antitumor effect for ascites-producing tumors. Histomorphometric analysis indicated a three-fold reduction of spontaneous metastases in the liver of RL2-treated mice with solid tumor transplants in comparison with control animals. Repeated RL2 treatment substantially prolonged the lifespan of mice with intravenously injected tumor cells. Recombinant analog of lactaptin effectively induced apoptosis of tumor cells in vitro and suppressed the growth of sensitive tumors and metastases in vivo.  相似文献   

19.
The stromal cells associated with tumors such as melanoma are significant determinants of tumor growth and metastasis. Using membrane-bound prostaglandin E synthase 1 (mPges1−/−) mice, we show that prostaglandin E2 (PGE2) production by host tissues is critical for B16 melanoma growth, angiogenesis, and metastasis to both bone and soft tissues. Concomitant studies in vitro showed that PGE2 production by fibroblasts is regulated by direct interaction with B16 cells. Autocrine activity of PGE2 further regulates the production of angiogenic factors by fibroblasts, which are key to the vascularization of both primary and metastatic tumor growth. Similarly, cell-cell interactions between B16 cells and host osteoblasts modulate mPGES-1 activity and PGE2 production by the osteoblasts. PGE2, in turn, acts to stimulate receptor activator of NF-κB ligand expression, leading to osteoclast differentiation and bone erosion. Using eicosanoid receptor antagonists, we show that PGE2 acts on osteoblasts and fibroblasts in the tumor microenvironment through the EP4 receptor. Metastatic tumor growth and vascularization in soft tissues was abrogated by an EP4 receptor antagonist. EP4-null Ptger4−/− mice do not support B16 melanoma growth. In vitro, an EP4 receptor antagonist modulated PGE2 effects on fibroblast production of angiogenic factors. Our data show that B16 melanoma cells directly influence host stromal cells to generate PGE2 signals governing neoangiogenesis and metastatic growth in bone via osteoclast erosive activity as well as angiogenesis in soft tissue tumors.  相似文献   

20.

Background

Altered tumor suppressor p53 and/or CDKN2A as well as Ras genes are frequently found in primary and metastatic melanomas. These alterations were found to be responsible for acquisition of invasive and metastatic potential through their defective regulatory control of metalloproteinases and urokinase genes.

Methodology/Principal Findings

Using primary human melanoma M10 cells with altered p53, CDKN2A and N-Ras genes, we found that inhibition of the proprotein convertases (PCs), enzymes involved in the proteolytic activation of various cancer-related protein precursors resulted in significantly reduced invasiveness. Analysis of M10 cells and their gastric and lymph node derived metastatic cells revealed the presence of all the PCs found in the secretory pathway. Expression of the general PCs inhibitor α1-PDX in these cells in a stable manner (M10/PDX) had no effect on the mRNA expression levels of these PCs. Whereas, in vitro digestion assays and cell transfection experiments, revealed that M10/PDX cells display reduced PCs activity and are unable to process the PCs substrates proIGF-1R and proPDGF-A. These cells showed reduced migration and invasion that paralleled decreased gelatinase MMP-2 activity and increased expression and secretion of tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2. Furthermore, these cells showed decreased levels of urokinase-type plasminogen activator receptor (uPAR) and increased levels of plasminogen activator inhibitor-1 (PAI-1).

Conclusions

Taken together, these data suggest that inhibition of PCs activity results in decreased invasiveness of primary human melanoma cells despite their altered p53, CDKN2A and N-Ras genes, suggesting that PCs may serve as novel therapeutic targets in melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号