首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vorderwald cattle are a regional cattle breed from the Black Forest in south western Germany. In recent decades, commercial breeds have been introgressed to upgrade the breed in performance traits. On one hand, native genetic diversity of the breed should be conserved. On the other hand, moderate rates of genetic gain are needed to satisfy breeders to keep the breed. These goals are antagonistic, since the native proportion of the gene pool is negatively correlated to performance traits and the carriers of introgressed alleles are less related to the population. Thus, a standard Optimum Contribution Selection (OCS) approach would lead to reinforced selection on migrant contributions (MC). Our objective was the development of strategies for practical implementation of an OCS approach to manage the MC and native genetic diversity of regional breeds. Additionally, we examined the organisational efforts and the financial impacts on the breeding scheme of Vorderwald cattle. We chose the advanced Optimum Contribution Selection (aOCS) to manage the breed in stochastic simulations based on real pedigree data. In addition to standard OCS approaches, aOCS facilitates the management of the MC and the rate of inbreeding at native alleles. We examined two aOCS strategies. Both strategies maximised genetic gain, while strategy (I) conserved the MC in the breeding population and strategy (II) reduced the MC at a predefined annual rate. These two approaches were combined with one of three flows of replacement of sires (FoR strategies). Additionally, we compared breeding costs to clarify about the financial impact of implementing aOCS in a young sire breeding scheme. According to our results, conserving the MC in the population led to significantly (P < 0.01) higher genetic gain (1.16 ± 0.13 points/year) than reducing the MC (0.88 ± 0.10 points/year). In simulation scenarios that conserved the MC, the final value of MC was 57.6% ± 0.004, while being constraint to 58.2%. However, reducing the MC is only partially feasible based on pedigree data. Additionally, this study proves that the classical rate of inbreeding can be managed by constraining only the rate of inbreeding at native alleles within the aOCS approach. The financial comparison of the different breeding schemes proved the feasibility of implementing aOCS in Vorderwald cattle. Implementing the modelled breeding scheme would reduce costs by 1.1% compared with the actual scheme. Reduced costs were underpinned by additional genetic gain in superior simulation scenarios compared to expected genetic gain in reality (+4.85%).  相似文献   

2.
Genetic structure and diversity of 3789 animals of the Brahman breed from 23 Colombian regions were assessed. Considering the Brahman Zebu cattle as a single population, the multilocus test based on the HW equilibrium, shows significant differences (P < 0.001). Genetic characterization made on the cattle population allowed to examine the genetic variability, calculating a H o = 0.6621. Brahman population in Colombia was a small subdivision wthin populations (F it = 0.045), a geographic subdivision almost non-existent or low differentiation (F st = 0.003) and the F is calculated (0.042) indicates no detriment to the variability in the population, despite the narrow mating takes place or there is a force that causes the variability is sustained without inbreeding actually affect the cattle population. The outcomes of multivariate analyses, Bayesian inferences and interindividual genetic distances suggested that there is no genetic sub-structure in the population, because of the high rate of animal migration among regions.  相似文献   

3.
Under a climate change perspective, the genetic make-up of local livestock breeds showing adaptive traits should be explored and preserved as a priority. We used genotype data from the ovine 50 k Illumina BeadChip for assessing breed autozygosity based on runs of homozygosity (ROH) and fine-scale genetic structure and for detecting genomic regions under selection in 63 Tunisian sheep samples. The average genomic inbreeding coefficients based on ROH were estimated at 0.017, 0.021, and 0.024 for Barbarine (BAR, n = 26), Noire de Thibar (NDT, n = 23), and Queue fine de l'Ouest (QFO, n = 14) breeds, respectively. The genomic relationships among individuals based on identity by state (IBS) distance matrix highlighted a recent introgression of QFO into the BAR and a genetic differentiation of NDT samples, possibly explained by past introgression of European gene pools. Genome-wide scan for ROH across breeds and within the BAR sample set identified an outstanding signal on chromosome 13 (46.58–49.61 Mbp). These results were confirmed using FST index, differentiating fat vs. thin-tailed individuals. Candidate genes under selection pressure (CDS2, PROKR1, and BMP2) were associated to lipid storage and probably preferentially selected in fat-tailed BAR animals. Our findings suggest paying more attention to preserve the genetic integrity and adaptive alleles of local sheep breeds.  相似文献   

4.
Genetic diversity studies in domestic animals aim at evaluating genetic variation within and across breeds mainly for conservation purposes. In Sicily, dairy sheep production represents an important resource for hilly and mountain areas economy. Their milk is used for the production of traditional raw milk cheeses, sometimes protected designation of origin (PDO) cheeses. In some cases, the quality of these products is linked to a specific breed, i.e. mono-breed labelled cheeses and it is therefore important to be able to distinguish the milk of a breed from that of others, in order to guarantee both the consumer and the breed itself. In order to investigate the genetic structure and to perform an assignment test, a total of 331 individuals (Barbaresca, BAR n = 57, Comisana, COM n = 65, Pinzirita, PIN n = 75, Sarda, SAR n = 64, and Valle del Belice, VDB n = 70) were analysed using a panel of 20 microsatellite markers. A total of 259 alleles were observed with average polymorphic information content equal to 0.76, showing that the microsatellites panel used was highly informative. Estimates of observed heterozygosity ranged from 0.65 in the BAR breed to 0.75 in the COM breed. The low value of genetic differentiation among breeds (Fst = 0.049) may indicate that these breeds are little differentiated probably due to common history and breeding practices. The low Fis and Fit values indicated low level of inbreeding within and among breeds. The unrooted neighbor-joining dendrogram obtained from the Reynold's genetic distances, and factorial correspondence analysis revealed a separation between BAR and the other sheep breeds. Recent migration rates were estimated, showing that four out of the five breeds have not received a significant proportion of migrants. Only for the PIN breed a recent introgression rate from the VDB breed (7.2%) was observed. The Bayesian assignment test showed that BAR and SAR breeds had a more definite genetic structure (proportion of assignment of 92% and 86.6%, respectively), whereas the lowest assignment value was found in the PIN breed (67.1%). Our results indicated high genetic variability, low inbreeding and low genetic differentiation, except for BAR breed, and were in accordance with geographical location, history, and breeding practices. The low robustness of the assignment test makes it unfeasible for traceability purposes, due to the high level of admixture, in particular for COM, PIN and VDB.  相似文献   

5.
Single nucleotide polymorphism (SNP) genotyping tools, which can analyse thousands of SNPs covering the whole genome, have opened new opportunities to estimate the inbreeding level of animals directly using genome information. One of the most commonly used genomic inbreeding measures considers the proportion of the autosomal genome covered by runs of homozygosity (ROH), which are defined as continuous and uninterrupted chromosome portions showing homozygosity at all loci. In this study, we analysed the distribution of ROH in three commercial pig breeds (Italian Large White, n = 1968; Italian Duroc, n = 573; and Italian Landrace, n = 46) and four autochthonous breeds (Apulo-Calabrese, n = 90; Casertana, n = 90; Cinta Senese, n = 38; and Nero Siciliano, n = 48) raised in Italy, using SNP data generated from Illumina PorcineSNP60 BeadChip. We calculated ROH-based inbreeding coefficients (FROH) using ROH of different minimum length (1, 2, 4, 8, 16 Mbp) and compared them with several other genomic inbreeding coefficients (including the difference between observed and expected number of homozygous genotypes (FHOM)) and correlated all these genomic-based measures with the pedigree inbreeding coefficient (FPED) calculated for the pigs of some of these breeds. Autochthonous breeds had larger mean size of ROH than all three commercial breeds. FHOM was highly correlated (0.671 to 0.985) with FROH measures in all breeds. Apulo-Calabrese and Casertana had the highest FROH values considering all ROH minimum lengths (ranging from 0.273 to 0.189 and from 0.226 to 0.152, moving from ROH of minimum size of 1 Mbp (FROH1) to 16 Mbp (FROH16)), whereas the lowest FROH values were for Nero Siciliano (from 0.072 to 0.051) and Italian Large White (from 0.117 to 0.042). FROH decreased as the minimum length of ROH increased for all breeds. Italian Duroc had the highest correlations between all FROH measures and FPED (from 0.514 to 0.523) and between FHOM and FPED (0.485). Among all analysed breeds, Cinta Senese had the lowest correlation between FROH and FPED. This might be due to the imperfect measure of FPED, which, mainly in local breeds raised in extensive production systems, cannot consider a higher level of pedigree errors and a potential higher relatedness of the founder population. It appeared that ROH better captured inbreeding information in the analysed breeds and could complement pedigree-based inbreeding coefficients for the management of these genetic resources.  相似文献   

6.
The Lidia bovine breed is distinguished for its low genetic exchangeability given its selection on aggressive behavior, its management uniqueness and its subdivided structure. In this study, we present a comprehensive genome‐wide analysis of genetic diversity, population structure and admixture of 468 animals from Mexican and Spanish Lidia breed populations and 64 samples belonging to 10 Spanish native and American‐creole breeds using 37 148 single nucleotide polymorphisms. We found similar average inbreeding values in the Lidia breed, with different distributions within groups; variability of inbreeding values among Spanish lineages was significant and no differences were found among the Mexican sub‐populations. Together, the high FIS of the lineages and the behavior of the runs of homozygosity are consequences of the lineage's small effective population sizes, contributing to their inbreeding increase. Population admixture analysis discarded any influence on the genetic structure of the Lidia populations from the Spanish native and American‐creole breeds. In addition, both Lidia populations depicted different genetic origins, with the exception of some Mexican individuals whose origins traced back to recent Spanish importations.  相似文献   

7.
We tested the hypothesis that mating strategies with genomic information realise lower rates of inbreeding (∆F) than with pedigree information without compromising rates of genetic gain (∆G). We used stochastic simulation to compare ∆F and ∆G realised by two mating strategies with pedigree and genomic information in five breeding schemes. The two mating strategies were minimum-coancestry mating (MC) and minimising the covariance between ancestral genetic contributions (MCAC). We also simulated random mating (RAND) as a reference point. Generations were discrete. Animals were truncation-selected for a single trait that was controlled by 2000 quantitative trait loci, and the trait was observed for all selection candidates before selection. The criterion for selection was genomic-breeding values predicted by a ridge-regression model. Our results showed that MC and MCAC with genomic information realised 6% to 22% less ∆F than MC and MCAC with pedigree information without compromising ∆G across breeding schemes. MC and MCAC realised similar ∆F and ∆G. In turn, MC and MCAC with genomic information realised 28% to 44% less ∆F and up to 14% higher ∆G than RAND. These results indicated that MC and MCAC with genomic information are more effective than with pedigree information in controlling rates of inbreeding. This implies that genomic information should be applied to more than just prediction of breeding values in breeding schemes with truncation selection.  相似文献   

8.
The aim of this study was to evaluate genetic variability in the Turkish Arab horse population using pedigree information. This study is the first detailed pedigree analysis of the breed in Turkey. Pedigree data were collected from the National Studbook. The pedigree data for 23 668 horses, born between 1904 and 2014, were used in the analysis. From this data set, a reference population (RP) of 14 838 animals symbolising the last generation was defined. Demographic parameters, the inbreeding level (F), the average relatedness (AR), the effective population size (Ne), the effective number of founders (fe), the effective number of ancestors (fa) and the number of founder genome equivalents (fg) were calculated for the population. The average generation interval for the RP was 12.2±4.6 years, whereas the calculated pedigree completeness levels were 98.2%, 96.6% and 95.0% for the first, second and third known generations. The mean equivalent generations (t), the average complete generations and the mean maximum generations for the RP were 7.8, 5.4 and 12.2, respectively, whereas the meanFand AR were 4.6% and 9.5% for the RP. The rate of inbred animals was 94.2% for the RP, whereas the number of founders, the number of ancestors and thefe,faandfgwere 342, 223, 40, 22 and 9.6 for the RP. The large differences observed betweenfe, and the number of founders demonstrates that genetic diversity decreased between the founder and the RP. Contribution of the 14 most influential founder to the RP was 50.0%, whereas just eight ancestral horses can account for 50% of the genetic variability.Neestimated via an individual increase in inbreeding per generation (N¯e), and paired increase in coancestry(N¯eC), were 74.4±3.9 and 73.5±0.58, respectively. The inbreeding increases with the pedigree knowledge. In addition, the decrease in inbreeding in last years is more noticeable.  相似文献   

9.
Most molecular measures of inbreeding do not measure inbreeding at the scale that is most relevant for understanding inbreeding depression—namely the proportion of the genome that is identical-by-descent (IBD). The inbreeding coefficient FPed obtained from pedigrees is a valuable estimator of IBD, but pedigrees are not always available, and cannot capture inbreeding loops that reach back in time further than the pedigree. We here propose a molecular approach to quantify the realized proportion of the genome that is IBD (propIBD), and we apply this method to a wild and a captive population of zebra finches (Taeniopygia guttata). In each of 948 wild and 1057 captive individuals we analyzed available single-nucleotide polymorphism (SNP) data (260 SNPs) spread over four different genomic regions in each population. This allowed us to determine whether any of these four regions was completely homozygous within an individual, which indicates IBD with high confidence. In the highly nomadic wild population, we did not find a single case of IBD, implying that inbreeding must be extremely rare (propIBD=0–0.00094, 95% CI). In the captive population, a five-generation pedigree strongly underestimated the average amount of realized inbreeding (FPed=0.013<propIBD=0.064), as expected given that pedigree founders were already related. We suggest that this SNP-based technique is generally useful for quantifying inbreeding at the individual or population level, and we show analytically that it can capture inbreeding loops that reach back up to a few hundred generations.  相似文献   

10.
The knowledge of the genetic relationship and admixture among neighbouring populations is crucial for conservation efforts. The aim of this study was to analyse the genetic diversity of five Italian sheep breeds (Appenninica, Garfagnina Bianca, Massese, Pomarancina and Zerasca) using a panel of 24 microsatellite markers. Blood samples from 226 individuals belonging to the aforementioned populations were obtained and genotyped. All the investigated breeds showed a significant heterozygote deficiency caused by the high level of inbreeding indicated also by the high level of FIS (0.146). Genetic differentiation between breeds was moderate (FST = 0.05) but significant and the individuals could be assigned to their breeds with an high success rate even if the inter-individual distances showed that few animals clustered separately from the other individuals of the same breed, especially for Pomarancina breed. The genetic distances reflect the historical knowledge of these breeds and some patterns of ancestral and recent gene flow between neighbour populations arise. The clustering analysis detects the presence of six clusters. Massese and Zerasca breeds were grouped together as well as Appenninica and Pomarancina with the latter forming two distinct clusters equally represented. The formation of this last breed is occurred with the absorption of individuals of the Appenninica breed and the gene flow probably continued in these recent years allowing the presence of a population substructure for Pomarancina breed. Such substructure supports the high level of heterozygote deficiency found for this breed despite the relatively high population size. The five populations analysed presented some genetic similarities but a clear uniqueness of the populations has been showed for almost all of them. Special attention to monitor genetic variability and to organize mating plans should be given especially for the three endangered breeds.  相似文献   

11.
The objective of this study was to investigate whether inbreeding depression in milk production or fertility performance has been partially purged due to selection within the Irish Holstein-Friesian population. Classical, ancestral (i.e., the inbreeding of an individual''s ancestors according to two different formulae) and new inbreeding coefficients (i.e., part of the classical inbreeding coefficient that is not accounted for by ancestral inbreeding) were computed for all animals. The effect of each coefficient on 305-day milk, fat and protein yield as well as calving interval, age at first calving and survival to second lactation was investigated. Ancestral inbreeding accounting for all common ancestors in the pedigree had a positive effect on 305-day milk and protein yield, increasing yields by 4.85 kg and 0.12 kg, respectively. However, ancestral inbreeding accounting only for those common ancestors, which contribute to the classical inbreeding coefficient had a negative effect on all milk production traits decreasing 305-day milk, fat and protein yields by -8.85 kg, -0.53 kg and -0.33 kg, respectively. Classical, ancestral and new inbreeding generally had a detrimental effect on fertility and survival traits. From this study, it appears that Irish Holstein-Friesians have purged some of their genetic load for milk production through many years of selection based on production alone, while fertility, which has been less intensely selected for in the population demonstrates no evidence of purging.  相似文献   

12.
《Small Ruminant Research》2009,84(1-3):42-48
Ten Greek sheep breeds were analysed at 28 microsatellite markers in order to estimate their genetic diversity and differentiation. This study aims to provide information on the genetic structure of the breeds analysed and the ancestral populations, and give indications and proposals for the conservation strategies. The breeds included were the local sheep breeds raised in different regions of Greece. In total, 310 animals were sampled. Non-biased average expected heterozygosity ranged from 0.68 ± 0.134 (Skopelos breed) to 0.76 ± 0.103 (Karagouniko breed) with an average of 0.74, while the average observed heterozygosity ranged from 0.626 ± 0.132 (Skopelos) to 0.74 ± 0.135 (Kefallenias). Estimates of inbreeding coefficient (Fis) were significant for all breeds studied, except for Kefallenias and Lesvos breeds (P < 0.05). The results of the phylogenetic relationships are in accordance with the geographical location of the breeds, the history of the origin of the breeds and the breeding practices. The phylogenetic tree showed three groupings according to the bootstrapping values. Correspondence analysis showed the isolation of the Skopelos breed and the grouping of Sfakia and Anogeiano breeds in a separate cluster.  相似文献   

13.
The availability of dense single nucleotide polymorphism (SNP) assays allows for the determination of autozygous segments based on runs of consecutive homozygous genotypes (ROH). The aim of the present study was to investigate the occurrence and distribution of ROH in 21 Italian sheep breeds using medium‐density SNP genotypes in order to characterize autozygosity and identify genomic regions that frequently appeared in ROH within individuals, namely ROH islands. After filtering, the final number of animals and SNPs retained for analyses were 502 and 46 277 respectively. A total of 12 302 ROH were identified. The mean number of ROH per breed ranged from 10.58 (Comisana) to 44.54 (Valle del Belice). The average length of ROH across breeds was 4.55 Mb and ranged from 3.85 Mb (Biellese) to 5.51 Mb (Leccese). Valle del Belice showed the highest value of inbreeding on the basis of ROH (FROH = 0.099), whereas Comisana showed the lowest (FROH = 0.016), and high standard deviation values revealed high variability in autozygosity levels within each breed. Differences also existed in the length of ROH. Analysis of the distribution of ROH according to their size showed that, for all breeds, the majority of the detected ROH were <10 Mb in length, with a few long ROH >25 Mb. The levels of ROH that we estimated here reflect the inbreeding history of the investigated sheep breeds. These results also highlight that ancient and recent inbreeding have had an impact on the genome of the Italian sheep breeds and suggest that several animals have experienced recent autozygosity events. Comisana and Bergamasca appeared as the less consanguineous breeds, whereas Barbaresca, Leccese and Valle del Belice showed ROH patterns typically produced by recent inbreeding. Moreover, within the genomic regions most commonly associated with ROH, several candidate genes were detected.  相似文献   

14.
In the present study, we used genomic data, generated with a medium density single nucleotide polymorphisms (SNP) array, to acquire more information on the population structure and evolutionary history of the synthetic Frizarta dairy sheep. First, two typical measures of linkage disequilibrium (LD) were estimated at various physical distances that were then used to make inferences on the effective population size at key past time points. Population structure was also assessed by both multidimensional scaling analysis and k-means clustering on the distance matrix obtained from the animals’ genomic relationships. The Wright’s fixation FST index was also employed to assess herds’ genetic homogeneity and to indirectly estimate past migration rates. The Wright’s fixation FIS index and genomic inbreeding coefficients based on the genomic relationship matrix as well as on runs of homozygosity were also estimated. The Frizarta breed displays relatively low LD levels with r2 and |Dʹ| equal to 0.18 and 0.50, respectively, at an average inter-marker distance of 31 kb. Linkage disequilibrium decayed rapidly by distance and persisted over just a few thousand base pairs. Rate of LD decay (β) varied widely among the 26 autosomes with larger values estimated for shorter chromosomes (e.g. β=0.057, for OAR6) and smaller values for longer ones (e.g. β=0.022, for OAR2). The inferred effective population size at the beginning of the breed’s formation was as high as 549, was then reduced to 463 in 1981 (end of the breed’s formation) and further declined to 187, one generation ago. Multidimensional scaling analysis and k-means clustering suggested a genetically homogenous population, FST estimates indicated relatively low genetic differentiation between herds, whereas a heat map of the animals’ genomic kinship relationships revealed a stratified population, at a herd level. Estimates of genomic inbreeding coefficients suggested that most recent parental relatedness may have been a major determinant of the current effective population size. A denser than the 50k SNP panel may be more beneficial when performing genome wide association studies in the breed.  相似文献   

15.
《Small Ruminant Research》2008,79(1-3):32-40
Population structure and genetic diversity in the Portuguese native breeds of sheep Algarvia (AL), Badana (BA), Galega Bragançana (GB), Galega Mirandesa (GM), Mondegueira (MO) and Churra da Terra Quente (TQ), as well as the exotic Assaf (AS), were analyzed by typing 25 microsatellite markers in 210 individuals. The markers used exhibited high levels of polymorphism, with means for total and effective number of alleles per locus of 13.0 and 4.2, respectively, and an expected heterozygosity of 0.72 across loci. The mean number of alleles per locus and expected heterozygosity were highest in GM and GB, and lowest in AS. Exclusive alleles were found in 10 of the 25 markers analysed, mostly in the AS breed. The proportion of loci which were not in Hardy–Weinberg equilibrium in each breed ranged between 0.12 (GB) and 0.40 (AL and GM), mostly due to a lower than expected number of heterozygotes in those loci. All breeds showed a significant deficit in heterozygosity, which was more pronounced in GM (FIS = 0.113) and BA (FIS = 0.103), suggesting that inbreeding might be a major concern in these breeds. The analysis of relationships among breeds, assessed by different methods, indicates that AS and AL are the more distanced breeds relative to the others, while the closest relationships were observed between TQ with MO and GM with GB. The estimated FST indicates that only 0.049 of the total genetic variability can be attributed to differences among breeds, and this ratio dropped to 0.029 when only the native breeds were considered. The analysis of individual distances based on allele-sharing indicates that only AS and AL had a tendency for animals of the same breed to cluster together, while for the other breeds there was overlapping among breeds. The results of this study confirm that native breeds of sheep represent an important reservoir of genetic diversity, even though the level of differentiation among closely located breeds tends to be rather small. For several of the breeds analyzed, the levels of inbreeding currently observed cause some apprehension, and recommend the establishment of appropriate conservation strategies, aimed at minimizing inbreeding to avoid further losses of genetic diversity.  相似文献   

16.
The Lundehund is an old dog breed with remarkable anatomical features including polydactyly in all four limbs and extraordinary flexibility of the spine. We genotyped 28 Lundehund using the canine Illumina high density beadchip to estimate the effective population size (Ne) and inbreeding coefficients as well as to identify potential regions of positive selection. The decay of linkage disequilibrium was slow with r2 = 0.95 in 50 kb distance. The last 7-200 generations ago, Ne was at 10-13. An increase of Ne was noted in the very recent generations with a peak value of 19 for Ne at generation 4. The FROH estimated for 50-, 65- and 358-SNP windows were 0.87, 087 and 0.81, respectively. The most likely estimates for FROH after removing identical-by-state segments due to linkage disequilibria were at 0.80-0.81. The extreme loss of heterozygosity has been accumulated through continued inbreeding over 200 generations within a probably closed population with a small effective population size. The mean inbreeding coefficient based on pedigree data for the last 11 generations (FPed = 0.10) was strongly biased downwards due to the unknown coancestry of the founders in this pedigree data. The long-range haplotype test identified regions with genes involved in processes of immunity, olfaction, woundhealing and neuronal development as potential targets of selection. The genes QSOX2, BMPR1B and PRRX2 as well as MYOM1 are candidates for selection on the Lundehund characteristics small body size, increased number of digits per paw and extraordinary mobility, respectively.  相似文献   

17.
Genome-wide SNP data provide a powerful tool to estimate pairwise relatedness among individuals and individual inbreeding coefficient. The aim of this study was to compare methods for estimating the two parameters in a Finnsheep population based on genome-wide SNPs and genealogies, separately. This study included ninety-nine Finnsheep in Finland that differed in coat colours (white, black, brown, grey, and black/white spotted) and were from a large pedigree comprising 319 119 animals. All the individuals were genotyped with the Illumina Ovine SNP50K BeadChip by the International Sheep Genomics Consortium. We identified three genetic subpopulations that corresponded approximately with the coat colours (grey, white, and black and brown) of the sheep. We detected a significant subdivision among the colour types (F ST = 5.4%, P<0.05). We applied robust algorithms for the genomic estimation of individual inbreeding (F SNP) and pairwise relatedness (Φ SNP) as implemented in the programs KING and PLINK, respectively. Estimates of the two parameters from pedigrees (F PED and Φ PED) were computed using the RelaX2 program. Values of the two parameters estimated from genomic and genealogical data were mostly consistent, in particular for the highly inbred animals (e.g. inbreeding coefficient F>0.0625) and pairs of closely related animals (e.g. the full- or half-sibs). Nevertheless, we also detected differences in the two parameters between the approaches, particularly with respect to the grey Finnsheep. This could be due to the smaller sample size and relative incompleteness of the pedigree for them.We conclude that the genome-wide genomic data will provide useful information on a per sample or pairwise-samples basis in cases of complex genealogies or in the absence of genealogical data.  相似文献   

18.
The purpose of this investigation was to determine the feasibility of using a single inertial measurement unit (IMU) placed on the sacrum to estimate 3-dimensional ground reaction force (F) during linear acceleration and change of direction tasks. Force plate measurements of F and estimates from the proposed IMU method were collected while subjects (n = 15) performed a standing sprint start (SS) and a 45° change of direction task (COD). Error in the IMU estimate of step-averaged component and resultant F was quantified by comparison to estimates from the force plate using Bland-Altman 95% limits of agreement (LOA), root mean square error (RMSE), Pearson’s product-moment correlation coefficient (r), and the effect size (ES) of the differences between the two systems. RMSE of the IMU estimate of step-average F ranged from 37.70 N to 77.05 N with ES between 0.04 and 0.47 for SS while for COD, RMSE was between 54.19 N to 182.92 N with ES between 0.08 and 1.69. Correlation coefficients between the IMU and force plate measurements were significant (p  0.05) for all values (r = 0.53 to 0.95) except the medio-lateral component of step-average F. The average angular error in the IMU estimate of the orientation of step-average F was ≤10° for all tasks. The results of this study suggest the proposed IMU method may be used to estimate sagittal plane components and magnitude of step-average F during a linear standing sprint start as well as the vertical component and magnitude of step-average F during a 45° change of direction task.  相似文献   

19.
The aim of the present study was to estimate the genetic intra-breed variability of Churra tensina and Churra lebrijana endangered breeds and to establish genetic relationships with Churra, Latxa and Merino breeds, as well as Spanish mouflon, by using 28 microsatellite markers, to provide useful information for their conservation. Allele frequencies and heterozygosity revealed high genetic variation in the two endangered breeds despite their small population size. Estimates of inbreeding coefficient (FIS) were significant for all breeds studied, except for Churra lebrijana breed. The highest inbreeding coefficient (FIS = 0.143) was found in the Spanish mouflon. Genetic differentiation tests (FST = 0.121) and assignment of individuals to populations indicated the existence of defined breed populations, and low genetic flow between these breeds. The highest pairwise Reynolds distance (DR) values were observed between Mouflon and the domestic sheep breeds. Considering only domestic sheep breeds, the Churra lebrijana breed showed the highest pairwise DR values. The lowest values were found between Latxa and the other domestic sheep, except for Churra lebrijana. Results of pairwise DR values, as well as phylogenetic tree and bottleneck analysis showed an important genetic isolation of the Churra lebrijana breed from the other Churra types, and genetic signatures of a demographic bottleneck. Finally, structure analysis of populations detected a population subdivision in the Latxa sheep breed. In conclusion, this study presents valuable insight into the existing genetic variability of two Spanish endangered breeds, as well as the first study in Spanish mouflon based on microsatellite analysis. The high degree of variability demonstrated in Churra tensina and Churra lebrijana implies that these populations are rich reservoirs of genetic diversity.  相似文献   

20.
Increased inbreeding is an inevitable consequence of selection in livestock populations. The analysis of high‐density single nucleotide polymorphisms (SNPs) facilitates the identification of long and uninterrupted runs of homozygosity (ROH) that can be used to identify chromosomal regions that are identical by descent. In this work, the distribution of ROH of different lengths in five Italian cattle breeds is described. A total of 4095 bulls from five cattle breeds (2093 Italian Holstein, 749 Italian Brown, 364 Piedmontese, 410 Marchigiana and 479 Italian Simmental) were genotyped at 54K SNP loci. ROH were identified and used to estimate molecular inbreeding coefficients (FROH), which were compared with inbreeding coefficients estimated from pedigree information (FPED) and using the genomic relationship matrix (FGRM). The average number of ROH per animal ranged from 54 ± 7.2 in Piedmontese to 94.6 ± 11.6 in Italian Brown. The highest number of short ROH (related to ancient consanguinity) was found in Piedmontese, followed by Simmental. The Italian Brown and Holstein had a higher proportion of longer ROH distributed across the whole genome, revealing recent inbreeding. The FPED were moderately correlated with FROH > 1 Mb (0.662, 0.700 and 0.669 in Italian Brown, Italian Holstein and Italian Simmental respectively) but poorly correlated with FGRM (0.134, 0.128 and 0.448 for Italian Brown, Italian Holstein and Italian Simmental respectively). The inclusion of ROH > 8 Mb in the inbreeding calculation improved the correlation of FROH with FPED and FGRM. ROH are a direct measure of autozygosity at the DNA level and can overcome approximations and errors resulting from incomplete pedigree data. In populations with high linkage disequilibrium (LD) and recent inbreeding (e.g. Italian Holstein and Italian Brown), a medium‐density marker panel, such as the one used here, may provide a good estimate of inbreeding. However, in populations with low LD and ancient inbreeding, marker density would have to be increased to identify short ROH that are identical by descent more precisely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号