首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cattle with high feed efficiencies (designated “efficient”) produce less methane gas than those with low feed efficiencies (designated “inefficient”); however, the role of the methane producers in such difference is unknown. This study investigated whether the structures and populations of methanogens in the rumen were associated with differences in cattle feed efficiencies by using culture-independent methods. Two 16S rRNA libraries were constructed using ∼800-bp amplicons generated from pooled total DNA isolated from efficient (n = 29) and inefficient (n = 29) animals. Sequence analysis of up to 490 randomly selected clones from each library showed that the methanogenic composition was variable: less species variation (22 operational taxonomic units [OTUs]) was detected in the rumens of efficient animals, compared to 27 OTUs in inefficient animals. The methanogenic communities in inefficient animals were more diverse than those in efficient ones, as revealed by the diversity indices of 0.84 and 0.42, respectively. Differences at the strain and genotype levels were also observed and found to be associated with feed efficiency in the host. No difference was detected in the total population of methanogens, but the prevalences of Methanosphaera stadtmanae and Methanobrevibacter sp. strain AbM4 were 1.92 (P < 0.05) and 2.26 (P < 0.05) times higher in inefficient animals, while Methanobrevibacter sp. strain AbM4 was reported for the first time to occur in the bovine rumen. Our data indicate that the methanogenic ecology at the species, strain, and/or genotype level in the rumen may play important roles in contributing to the difference in methane gas production between cattle with different feed efficiencies.Microbial fermentation and ruminal nutrient absorption are key steps in the energy metabolism of cattle. The microbiota in the rumen is highly associated with the diet, age, antibiotic use, and health of host animals (32). Different types of symbiotic anaerobic microorganisms, including bacteria, archaea, ciliated protozoa, and fungi, inhabit the rumen (15), interact with each other, and play important roles in affecting the host''s performance. The microbial-host relationships are highly complex and varied, ranging from mutually beneficial cooperation to competition (10). Among ruminal microbes, bacteria decompose the feed into short-chain (C1 to C5) fatty acids, amino acids, H2, and CO2, etc. (20). To maintain the low hydrogen level in this habitat, hydrogen-utilizing microbes, such as methanogens, utilize H2 and carbon substrates, mainly CO2, acetate, or methanol, to generate methane gas and hence to reduce hydrogen pressure in the rumen (8). However, this process causes a significant (6%) loss of dietary energy in the form of methane emission (14), which contributes to 13 to 19% of global greenhouse gas (16), and is one of the significant agricultural “causative sectors” contributing to global warming (13). Therefore, the energy loss and the consequent methane emission arouse both nutritional and environmental concerns in the livestock industry.Archaeal methanogens are obligate anaerobes (38), and species of the order Methanobacteriales are the most common methanogens found in the rumen (11). Recent studies using culture-independent methods investigating the methanogenic communities in the rumens of sheep and cattle have identified 21 different strains belonging to 13 species in sheep (40, 41, 43, 44) and 13 different strains related to 8 species in cattle (23, 37, 42). In addition, the identification of novel uncultured methanogens in the rumen (23, 33, 40) suggests that the understanding of the methanogenic ecology is limited. Cattle with higher feed efficiencies are reported to produce 20 to 30% less methane (9, 24). However, the linkage between rumen methanogenic composition and the host''s feed efficiency and methane production has not been studied and reported.As one of the indicators of feed efficiency in cattle, residual feed intake (RFI) measures the difference between an animal''s actual feed intake and the expected feed requirements for growth (1, 2). Cattle with low RFI (L-RFI) are designated “efficient,” while animals with high RFI (H-RFI) are designated “inefficient.” A recent study reporting a correlation between bacterial profiles and cattle RFI has suggested the probable linkage between rumen microbial ecology and feed efficiency in cattle (7). Therefore, we hypothesized that the structures and populations of methanogens may be also associated with RFI and methane gas production by the host. In this study, the compositions of methanogens in the rumens of cattle with different RFIs were compared by sequence analysis of the partial 16S rRNA genes (∼800 bp) generated from two constructed libraries, using pooled DNA from efficient (L-RFI) and inefficient (H-RFI) animals. The population of selected species in each steer was evaluated using quantitative real-time PCR (qRT-PCR) analysis, and the correlation between methanogenic structure/population and cattle RFI was investigated.  相似文献   

2.
3.
Although rumen fluid transplantation (RT) has been developed to confer benefits for adult ruminants by altering gastrointestinal tract microbiota, the question remains whether RT can also benefit weaned lambs. Hence, in this study, thirty-eight pre-weaning lambs were randomly assigned to one of three treatment groups: control lambs (CON) received 25 ml of normal saline solution, and lambs in two RT groups received 25 ml of rumen fluid either from 3-month-old lambs (LT) or from one-year-old adult ewes (AT). The effects on their growth performance, nutrient digestibility, some blood parameters and gastrointestinal tract microbiota were monitored. There were differences (P < 0.05) in rumen bacterial composition between the groups at weaning, at 3 months and at 1 year. Rumen fluid transplantation decreased (P < 0.05) average daily feed intake, average daily gain in live weight and apparent digestibility of ether extract in the LT group, and it decreased (P < 0.05) apparent digestibility of NDF and ADF in the AT group. Rumen fluid transplantation also increased (P < 0.05) concentrations of serum immunoglobulin A in the AT group and increased (P < 0.05) serum concentrations of interleukin-6, interferon alpha and D-lactate in both LT and AT groups. Bacterial α-diversity in the rumen and rectum was not affected by RT (P > 0.05), but a bacterial community change was observed after RT, and the abundance of some dominant bacteria in both rumen and rectum changed after RT (P < 0.05). Analysis of correlations between the parameters indicated that the altered gastrointestinal microbiota and accelerated maturity of rumen microorganisms induced by RT caused some impairment of gastrointestinal integrity and immunity, which led to decreased feed intake, reduced feed digestibility and lower growth performance of the weaned lambs. In conclusion, rumen fluid transplantation altered the gastrointestinal microbiota causing adverse effects on feed intake, feed digestibility and growth performance of the weaned lambs.  相似文献   

4.
Heat stress influences rumen fermentative processes with effects on the physiology and production of dairy cows. However, the underlying relationship between rumen microbiota and its associated metabolism with heat tolerance in cows have not been extensively described yet. Therefore, the main objective of this study was to investigate differential heat resistance in Holstein cows using rumen bacterial and metabolome analyses. We performed both principal component analysis and membership function analysis to select seven heat-tolerant (HT) and seven heat-sensitive (HS) cows. Under heat stress conditions, the HT cows had a significantly (P < 0.05) higher propionic acid content than the HS cows; while measures of the respiratory rate, acetic, and butyric acid in the HT cows were significantly (P < 0.05) lower compared with the HS cows. Also, the HT cows showed lower (P < 0.01) rectal temperature and acetic acid to propionic acid ratio than the HS group of cows. Omics sequencing revealed that the relative abundances of Muribaculaceae, Rikenellaceae, Acidaminococcaceae, Christensenellaceae, Rikenellaceae_RC9_gut_group, Succiniclasticum, Ruminococcaceae_NK4A214_group and Christensenellaceae_R-7_group were significantly (P < 0.01) higher in the HT cows; whereas Prevotellaceae, Prevotella_1, Ruminococcaceae_UCG-014, and Shuttleworthia were significantly (P < 0.01) lower in HT cows compared to HS cows. Substances mainly involved in carbohydrate metabolism, including glycerol, mannitol, and maltose, showed significantly higher content in the HT cows (P < 0.05) compared to that in the HS cows. Simultaneously, distinct metabolites were significantly correlated with differential bacteria, suggesting that glycerol, mannitol, and maltose could serve as potential biomarkers for determining heat resistance that require further study. Overall, distinct changes in the rumen microbiota and metabolomics in the HT cows may be associated with a better adaptability to heat stress. These findings suggest their use as diagnostic tools of heat tolerance in dairy cattle breeding schemes.  相似文献   

5.
Protein metabolism and body composition have been identified as major determinants of residual feed intake (RFI) in beef cattle fed high-starch fattening diets. This study aimed to evaluate if these two identified RFI determinants in beef cattle are the same across two contrasting silage-based diets. During two consecutive years, an 84-day feed efficiency test (Test A) immediately followed by a second 112-day feed efficiency test (Test B) was carried out using a total of 100 animals offered either one of two diets (either corn silage- or grass silage-based) over 196 days. At the end of Test A, the 32 animals most divergent for RFI (16 extreme RFI animals per diet, eight low RFI and eight high RFI) were identified and evaluated during Test B for their i) N use efficiency (NUE; N retention/N intake) calculated either from a 10-d nitrogen balance trial or from estimations based on body composition changes occurring during the whole experiment (Test A and Test B; 196 days), ii) carcass and whole-body protein turnover rates analysed through the 3-methyl-histidine urinary excretion and the N isotopic turnover rates of urine, respectively, and iii) body composition measured at the slaughterhouse at the end of Test B. Oxygen consumption was measured during Test B for the 100 animals by two GreenFeed systems. Irrespective of the diet, efficient RFI animals tended (P = 0.08) to improve their NUE when N retention was estimated for 196 days or when considering their lower urinary urea-N to total N ratio (P = 0.03). In contrast, NUE calculated during the 10-d N balance showed no differences (P = 0.65) across RFI groups suggesting that this method may not be suitable to capture small NUE differences. Efficient RFI individuals presented higher dressing percentage and muscle deposition in the carcass (P = 0.003) but lighter rumen (P = 0.001), and a trend for lower oxygen consumption (P = 0.08) than inefficient RFI animals irrespective of the diet. Lower protein degradation rates of skeletal muscle and lower protein synthesis rates of plasma proteins were found in efficient RFI cattle but only with the corn silage-based diet (RFI × Diet; P = 0.02). The higher insulinaemia associated with the corn silage-based diet (P = 0.001) seemed to be a key metabolic feature explaining the positive association between protein turnover and RFI only in this diet. Feed N was more efficiently used for growth by efficient RFI animals regardless of the diet but lower protein turnover rates in efficient RFI animals were only observed with corn silage-based diets.  相似文献   

6.
《Endocrine practice》2020,26(10):1186-1195
Objective: To review data implicating microbiota influences on Coronavirus Disease 2019 (COVID-19) in patients with diabetes.Methods: Primary literature review included topics: “COVID-19,” “SARS,” “MERS,” “gut micro-biota,” “probiotics,” “immune system,” “ACE2,” and “metformin.”Results: Diabetes was prevalent (~11%) among COVID-19 patients and associated with increased mortality (about 3-fold) compared to patients without diabetes. COVID-19 could be associated with worsening diabetes control and new diabetes diagnosis that could be linked to high expression of angiotensin-converting enzyme 2 (ACE2) receptors (coronavirus point of entry into the host) in the endocrine pancreas. A pre-existing gut microbiota imbalance (dysbiosis) could contribute to COVID-19–related complications in patients with diabetes. The COVID-19 virus was found in fecal samples (~55%), persisted for about 5 weeks, and could be associated with diarrhea, suggesting a role for gut dysbiosis. ACE2 expressed on enterocytes and colonocytes could serve as an alternative route for acquiring COVID-19. Experimental models proposed some probiotics, including Lactobacillus casei, L. plantarum, and L. salivarius, as vectors for delivering or enhancing efficacy of anti-coronavirus vaccines. These Lactobacillus probiotics were also beneficial for diabetes. The potential mechanisms for interconnections between coronavirus, diabetes, and gut microbiota could be related to the immune system, ACE2 pathway, and metformin treatment. There were suggestions but no proof supporting probiotics benefits for COVID-19 infection.Conclusion: The data suggested that the host environment including the gut microbiota could play a role for COVID-19 in patients with diabetes. It is a challenge to the scientific community to investigate the beneficial potential of the gut microbiota for strengthening host defense against coronavirus in patients with diabetes.  相似文献   

7.
Feeding costs represent one of the highest expenditures in animal production systems. Breeding efficient animals that express their growth potential while eating less is therefore a major objective for breeders. We estimated the genetic parameters for feed intake, feed efficiency traits (residual feed intake (RFI) and feed conversion ratio (FCR)), growth and body composition traits in the Romane meat sheep breed. In these traits, selection responses to single-generation divergent selection on RFI were evaluated. From 2009 to 2016, a total of 951 male lambs were tested for 8 weeks starting from 3 months of age. They were weighed at the beginning and at the end of the testing period. Backfat thickness and muscle depth were recorded at the end of the testing period through ultrasound measurements. Feed intake was continuously recorded over the testing period using the automatic concentrate feeders. The heritability of RFI was estimated at 0.45 ± 0.08, which was higher than the heritability of FCR (0.30 ± 0.08). No significant genetic correlations were observed between RFI and growth traits. A favourable low negative genetic correlation was estimated between RFI and muscle depth (−0.30 ± 0.15), though additional data are needed to confirm these results. The selection of low RFI sires based on their breeding values led to the production of lambs eating significantly less concentrate (3% decrease in the average daily feed intake), but with the same growth as lambs from sires selected based on high RFI breeding values. We concluded that in meat sheep, RFI is a heritable trait that is genetically independent of post-weaning growth and body composition traits. A one-generation divergent selection based on RFI breeding values highlighted that substantial gains in feeding costs can be expected in selection schemes for meat sheep breeds.  相似文献   

8.
Methane is an undesirable end product of rumen fermentative activity because of associated environmental impacts and reduced host feed efficiency. Our study characterized the rumen microbial methanogenic community in beef cattle divergently selected for phenotypic residual feed intake (RFI) while offered a high-forage (HF) diet followed by a low-forage (LF) diet. Rumen fluid was collected from 14 high-RFI (HRFI) and 14 low-RFI (LRFI) animals at the end of both dietary periods. 16S rRNA gene clone libraries were used, and methanogen-specific tag-encoded pyrosequencing was carried out on the samples. We found that Methanobrevibacter spp. are the dominant methanogens in the rumen, with Methanobrevibacter smithii being the most abundant species. Differences in the abundance of Methanobrevibacter smithii and Methanosphaera stadtmanae genotypes were detected in the rumen of animals offered the LF compared to the HF diet while the abundance of Methanobrevibacter smithii genotypes was different between HRFI and LRFI animals irrespective of diet. Our results demonstrate that while a core group of methanogen operational taxonomic units (OTUs) exist across diet and phenotype, significant differences were observed in the distribution of genotypes within those OTUs. These changes in genotype abundance may contribute to the observed differences in methane emissions between efficient and inefficient animals.  相似文献   

9.
Cellular mitochondrial function has been suggested to contribute to variation in feed efficiency (FE) among animals. The objective of this study was to determine mitochondrial abundance and activities of various mitochondrial respiratory chain complexes (complex I (CI) to complex IV (CIV)) in liver and muscle tissue from beef cattle phenotypically divergent for residual feed intake (RFI), a measure of FE. Individual DM intake (DMI) and growth were measured in purebred Simmental heifers (n = 24) and bulls (n = 28) with an initial mean BW (SD) of 372 kg (39.6) and 387 kg (50.6), respectively. All animals were offered concentrates ad libitum and 3 kg of grass silage daily, and feed intake was recorded for 70 days. Residuals of the regression of DMI on average daily gain (ADG), mid-test BW0.75 and backfat (BF), using all animals, were used to compute individual RFI coefficients. Animals were ranked within sex, by RFI into high (inefficient; top third of the population), medium (middle third of population) and low (efficient; bottom third of the population) terciles. Statistical analysis was carried out using the MIXED procedure of SAS v 9.3. Overall mean ADG (SD) and daily DMI (SD) for heifers were 1.2 (0.4) and 9.1 (0.5) kg, respectively, and for bulls were 1.8 (0.3) and 9.5 (1.02) kg, respectively. Heifers and bulls ranked as high RFI consumed 10% and 15% more (P < 0.05), respectively, than their low RFI counterparts. There was no effect of RFI on mitochondrial abundance in either liver or muscle (P > 0.05). An RFI × sex interaction was apparent for CI activity in muscle. High RFI animals had an increased activity (P < 0.05) of CIV in liver tissue compared to their low RFI counterparts; however, the relevance of that observation is not clear. Our data provide no clear evidence that cellular mitochondrial function within either skeletal muscle or hepatic tissue has an appreciable contributory role to overall variation in FE among beef cattle.  相似文献   

10.
Feed-efficient animals have lower production costs and reduced environmental impact. Given that rumen microbial fermentation plays a pivotal role in host nutrition, the premise that rumen microbiota may contribute to host feed efficiency is gaining momentum. Since diet is a major factor in determining rumen community structure and fermentation patterns, we investigated the effect of divergence in phenotypic residual feed intake (RFI) on ruminal community structure of beef cattle across two contrasting diets. PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR) were performed to profile the rumen bacterial population and to quantify the ruminal populations of Entodinium spp., protozoa, Fibrobacter succinogenes, Ruminococcus flavefaciens, Ruminococcus albus, Prevotella brevis, the genus Prevotella, and fungi in 14 low (efficient)- and 14 high (inefficient)-RFI animals offered a low-energy, high-forage diet, followed by a high-energy, low-forage diet. Canonical correspondence and Spearman correlation analyses were used to investigate associations between physiological variables and rumen microbial structure and specific microbial populations, respectively. The effect of RFI on bacterial profiles was influenced by diet, with the association between RFI group and PCR-DGGE profiles stronger for the higher forage diet. qPCR showed that Prevotella abundance was higher (P < 0.0001) in inefficient animals. A higher (P < 0.0001) abundance of Entodinium and Prevotella spp. and a lower (P < 0.0001) abundance of Fibrobacter succinogenes were observed when animals were offered the low-forage diet. Thus, differences in the ruminal microflora may contribute to host feed efficiency, although this effect may also be modulated by the diet offered.  相似文献   

11.
Characterizing ruminal parameters in the context of sampling routine and feed efficiency is fundamental to understand the efficiency of feed utilization in the bovine. Therefore, we evaluated microbial and volatile fatty acid (VFA) profiles, rumen papillae epithelial and stratum corneum thickness and rumen pH (RpH) and temperature (RT) in feedlot cattle. In all, 48 cattle (32 steers plus 16 bulls), fed a high moisture corn and haylage-based ration, underwent a productive performance test to determine residual feed intake (RFI) using feed intake, growth, BW and composition traits. Rumen fluid was collected, then RpH and RT logger were inserted 5.5±1 days before slaughter. At slaughter, the logger was recovered and rumen fluid and rumen tissue were sampled. The relative daily time spent in specific RpH and RT ranges were determined. Polynomial regression analysis was used to characterize RpH and RT circadian patterns. Animals were divided into efficient and inefficient groups based on RFI to compare productive performance and ruminal parameters. Efficient animals consumed 1.8 kg/day less dry matter than inefficient cattle (P⩽0.05) while achieving the same productive performance (P⩾0.10). Ruminal bacteria population was higher (P⩽0.05) (7.6×1011 v. 4.3×1011 copy number of 16S rRNA gene/ml rumen fluid) and methanogen population was lower (P⩽0.05) (2.3×109 v. 4.9×109 copy number of 16S rRNA gene/ml rumen fluid) in efficient compared with inefficient cattle at slaughter with no differences (P⩾0.10) between samples collected on-farm. No differences (P⩾0.10) in rumen fluid VFA were also observed between feed efficiency groups either on-farm or at slaughter. However, increased (P⩽0.05) acetate, and decreased (P⩽0.05) propionate, butyrate, valerate and caproate concentrations were observed at slaughter compared with on-farm. Efficient had increased (P⩽0.05) rumen epithelium thickness (136 v. 126 µm) compared with inefficient cattle. Efficient animals also spent 318% and 93.2% more time (P⩽0.05) in acidotic (4.14% v. 1.30%) (pH⩽5.6) and optimal (5.6<pH<6.0) (8.53% v. 4.42%) RpH range compared with inefficient cattle. The circadian patterns revealed lower (P⩽0.05) RpH and no differences (P⩾0.10) in RT pre-, during, and post-prandial periods in efficient compared with inefficient cattle. In essence, superior feed efficiency in cattle seems linked to rumen features consistent with improved efficiency of feed utilization. Microbial abundance, rumen epithelial histomorphology, and RpH, may serve as indicators for feed efficiency in cattle. The divergences of assessments made on-farm and at slaughter should be considered in the development of proxies for feed efficiency.  相似文献   

12.
The microbiota of whole crop corn silage and feces of silage-fed dairy cows were examined. A total of 18 dairy cow feces were collected from six farms in Japan and China, and high-throughput Illumina sequencing of the V4 hypervariable region of 16S rRNA genes was performed. Lactobacillaceae were dominant in all silages, followed by Acetobacteraceae, Bacillaceae, and Enterobacteriaceae. In feces, the predominant families were Ruminococcaceae, Bacteroidaceae, Clostridiaceae, Lachnospiraceae, Rikenellaceae, and Paraprevotellaceae. Therefore, Lactobacillaceae of corn silage appeared to be eliminated in the gastrointestinal tract. Although fecal microbiota composition was similar in most samples, relative abundances of several families, such as Ruminococcaceae, Christensenellaceae, Turicibacteraceae, and Succinivibrionaceae, varied between farms and countries. In addition to the geographical location, differences in feeding management between total mixed ration feeding and separate feeding appeared to be involved in the variations. Moreover, a cow-to-cow variation for concentrate-associated families was demonstrated at the same farm; two cows showed high abundance of Succinivibrionaceae and Prevotellaceae, whereas another had a high abundance of Porphyromonadaceae. There was a negative correlation between forage-associated Ruminococcaceae and concentrate-associated Succinivibrionaceae and Prevotellaceae in 18 feces samples. Succinivibrionaceae, Prevotellaceae, p-2534-18B5, and Spirochaetaceae were regarded as highly variable taxa in this study. These findings help to improve our understanding of variation and similarity of the fecal microbiota of dairy cows with regard to individuals, farms, and countries. Microbiota of naturally fermented corn silage had no influence on the fecal microbiota of dairy cows.  相似文献   

13.
The cattle rumen has a diverse microbial ecosystem that is essential for the host to digest plant material. Extremes in body weight (BW) gain in mice and humans have been associated with different intestinal microbial populations. The objective of this study was to characterize the microbiome of the cattle rumen among steers differing in feed efficiency. Two contemporary groups of steers (n=148 and n=197) were fed a ration (dry matter basis) of 57.35% dry-rolled corn, 30% wet distillers grain with solubles, 8% alfalfa hay, 4.25% supplement, and 0.4% urea for 63 days. Individual feed intake (FI) and BW gain were determined. Within contemporary group, the four steers within each Cartesian quadrant were sampled (n=16/group) from the bivariate distribution of average daily BW gain and average daily FI. Bacterial 16S rRNA gene amplicons were sequenced from the harvested bovine rumen fluid samples using next-generation sequencing technology. No significant changes in diversity or richness were indicated, and UniFrac principal coordinate analysis did not show any separation of microbial communities within the rumen. However, the abundances of relative microbial populations and operational taxonomic units did reveal significant differences with reference to feed efficiency groups. Bacteroidetes and Firmicutes were the dominant phyla in all ruminal groups, with significant population shifts in relevant ruminal taxa, including phyla Firmicutes and Lentisphaerae, as well as genera Succiniclasticum, Lactobacillus, Ruminococcus, and Prevotella. This study suggests the involvement of the rumen microbiome as a component influencing the efficiency of weight gain at the 16S level, which can be utilized to better understand variations in microbial ecology as well as host factors that will improve feed efficiency.  相似文献   

14.
Residual feed intake (RFI) is an alternative measure of feed efficiency (FE) and is calculated as the difference between actual and expected feed intake. The biological mechanisms underlying animal-to-animal variation in FE are not well understood. The aim of this study was to investigate the digestive ability of beef cows selected for RFI divergence as heifers, using two contrasted diets. Fifteen 4-year-old beef cows were selected from a total of 69 heifers based on their RFI following the feedlot test. The selected heifers were ranked into high-RFI (+ 1.02 ± 0.28, n = 8) and low-RFI (−0.73 ± 0.28, n = 7), and a digestibility trial was performed after their first lactation. Both RFI groups were offered two different diets: 100% hay or a fattening diet which consisted of a DM basis of 67% whole-plant maize silage and 33% high starch concentrates over four experimental periods (two per diet). A diet effect was observed on feed intake and apparent digestibility, whereas no diet × RFI interaction was detected (P > 0.05). Intake and apparent digestibility were higher in cows fed the fattening diet than in those fed the hay diet (P < 0.0001). DM intake (DMI) and organic matter apparent digestibility (OMd) were repeatable and positively correlated between the two subsequent periods of measurements. For the hay and fattening diets, the repeatability between periods was r = 0.71 and r = 0.73 for DMI and r = 0.87 and r = 0.48 for OMd, respectively. Moreover, both intake (r = 0.55) and OMd (r = 0.54) were positively correlated (P < 0.05) between the hay and fattening diets. Significant differences between beef cows selected for divergence in RFI as heifers were observed for digestive traits (P < 0.05), DM and organic matter (OM) apparent digestibility being higher for low-RFI cows. Overall, this study showed that apparent digestibility contributes to between-animal variation in FE in beef cows.  相似文献   

15.
The use of antibiotics as supplements in animal feed is restricted due to possible health hazards associated with them. Consequently, there is increasing interest in exploiting natural products to improve health and production of livestock with no detrimental side effects. In this study, we examined the effect of Astragalus membranaceus root (AMT) supplementation on DM intake, growth performance, rumen fermentation and immunity of Tibetan sheep. Twenty-four male Tibetan sheep (31 ± 1.4 kg; 9 months old) were assigned randomly to one of four dietary treatments with different levels of AMT: 0, 20, 50 and 80 g/kg DM (A0, A2, A5 and A8, respectively) in addition to their basal diets. A0 acted as a control group, and measurements were recorded over a 56-d feeding period. Sheep fed with AMT had a higher average daily gain and a lower feed:gain ratio than controls (P < 0.001). Rumen concentrations of NH3-N (P < 0.001), total volatile fatty acids (P = 0.028), acetate (P = 0.017) and propionate (P = 0.031) in A5 and A8 were higher than those in A0. The addition of AMT in the feed significantly increased serum antioxidant and immunity factors of the sheep and increased the concentrations of serum interleukin, immunoglobulin and tumour necrosis factor-α (P = 0.010). We concluded that AMT can be used as a feed additive to improve growth performance and rumen fermentation and enhance the immunity of Tibetan sheep. Some responses exhibited a dose-dependent response, whereas other did not exhibit a pattern, with an increase in AMT. The addition of 50 and 80 g/kg AMT of total DM intake showed the most promising results.  相似文献   

16.
17.
Identifying animals that are superior in terms of feed efficiency may improve the profitability and sustainability of the beef cattle sector. However, measuring feed efficiency is costly and time-consuming. Biomarkers should thus be explored and validated to predict between-animal variation of feed efficiency for both genetic selection and precision feeding. In this work, we aimed to assess and validate two previously identified biomarkers of nitrogen (N) use efficiency in ruminants, plasma urea concentrations and the 15N natural abundance in plasma proteins (plasma δ15N), to predict the between-animal variation in feed efficiency when animals were fed two contrasted diets (high-starch vs high-fibre diets). We used an experimental network design with a total of 588 young bulls tested for feed efficiency through two different traits (feed conversion efficiency [FCE] and residual feed intake [RFI]) during at least 6 months in 12 cohorts (farm × period combination). Animals reared in the same cohort, receiving the same diet and housed in the same pen, were considered as a contemporary group (CG). To analyse between-animal variations and explore relationships between biomarkers and feed efficiency, two statistical approaches, based either on mixed-effect models or regressions from residuals, were conducted to remove the between-CG variability. Between-animal variation of plasma δ15N was significantly correlated with feed efficiency measured through the two criteria traits and regardless of the statistical approach. Conversely, plasma urea was not correlated to FCE and showed only a weak, although significant, correlation with RFI. The response of plasma δ15N to FCE variations was higher when animals were fed a high-starch compared to a high-fibre diet. In addition, we identified two dietary factors, the metabolisable protein to net energy ratio and the rumen protein balance that influenced the relation between plasma δ15N and FCE variations. Concerning the genetic evaluation, and despite the moderate heritability of the two biomarkers (0.28), the size of our experimental setup was insufficient to detect significant genetic correlations between feed efficiency and the biomarkers. However, we validated the potential of plasma δ15N to phenotypically discriminate two animals reared in identical conditions in terms of feed efficiency as long as they differ by at least 0.049 g/g for FCE and 1.67 kg/d for RFI. Altogether, the study showed phenotypic, but non-genetic, relationships between plasma proteins δ15N and feed efficiency that varied according to the efficiency index and the diet utilised.  相似文献   

18.
Breeding values for feed intake and feed efficiency in beef cattle are generally derived indoors on high-concentrate (HC) diets. Within temperate regions of north-western Europe, however, the majority of a growing beef animal’s lifetime dietary intake comes from grazed grass and grass silage. Using 97 growing beef cattle, the objective of the current study was to assess the repeatability of both feed intake and feed efficiency across 3 successive dietary test periods comprising grass silage plus concentrates (S+C), grazed grass (GRZ) and a HC diet. Individual DM intake (DMI), DMI/kg BW and feed efficiency-related parameters, residual feed intake (RFI) and gain to feed ratio (G : F) were assessed. There was a significant correlation for DMI between the S+C and GRZ periods (r = 0.32; P < 0.01) as well as between the S+C and HC periods (r = 0.41; P < 0.001), whereas there was no association for DMI between the GRZ and HC periods. There was a significant correlation for DMI/kg BW between the S+C and GRZ periods (r = 0.33; P < 0.01) and between the S+C and HC periods (r = 0.40; P < 0.001), but there was no association for the trait between the GRZ and HC periods. There was a significant correlation for RFI between the S+C and GRZ periods (r = 0.25; P < 0.05) as well as between S+C and HC periods (r = 0.25; P < 0.05), whereas there was no association for RFI between the GRZ and HC periods. Gain to feed ratio was not correlated between any of the test periods. A secondary aspect of the study demonstrated that traits recorded in the GRZ period relating to grazing bite rate, the number of daily grazing bouts and ruminating bouts were associated with DMI (r = 0.28 to 0.42; P < 0.05 - 0.001), DMI/kg BW (r = 0.36 to 0.45; P < 0.01 - 0.001) and RFI (r = 0.31 to 0.42; P < 0.05 - 0.001). Additionally, the number of ruminating boli produced per day and per ruminating bout were associated with G : F (r = 0.28 and 0.26, respectively; P < 0.05). Results from this study demonstrate that evaluating animals for both feed intake and feed efficiency indoors on HC diets may not reflect their phenotypic performance when consuming conserved forage-based diets indoors or when grazing pasture.  相似文献   

19.
In the mink industry, feed costs are the largest variable expense and breeding for feed efficient animals is warranted. Implementation of selection for feed efficiency must consider the relationships between feed efficiency and the current selection traits BW and litter size. Often, feed intake (FI) is recorded on a cage with a male and a female and there is sexual dimorphism that needs to be accounted for. Study aims were to (1) model group recorded FI accounting for sexual dimorphism, (2) derive genetic residual feed intake (RFI) as a measure of feed efficiency, (3) examine the relationship between feed efficiency and BW in males (BWM) and females (BWF) and litter size at day 21 after whelping (LS21) in Danish brown mink and (4) investigate direct and correlated response to selection on each trait of interest. Feed intake records from 9574 cages, BW records on 16 782 males and 16 875 females and LS21 records on 6446 yearling females were used for analysis. Genetic parameters for FI, BWM, BWF and LS21 were obtained using a multivariate animal model, yielding sex-specific additive genetic variances for FI and BW to account for sexual dimorphism. The analysis was performed in a Bayesian setting using Gibbs sampling, and genetic RFI was obtained from the conditional distribution of FI given BW using genetic regression coefficients. Responses to single trait selection were defined as the posterior distribution of genetic superiority of the top 10% of animals after conditioning on the genetic trends. The heritabilities ranged from 0.13 for RFI in females and LS21 to 0.59 for BWF. Genetic correlations between BW in both sexes and LS21 and FI in both sexes were unfavorable, and single trait selection on BW in either sex showed increased FI in both sexes and reduced litter size. Due to the definition of RFI and high genetic correlation between BWM and BWF, selection on RFI did not significantly alter BW. In addition, selection on RFI in either sex did not affect LS21. Genetic correlation between sexes for FI and BW was high but significantly lower than unity. The high correlations across sex allowed for selection on standardized averages of animals’ breeding values (BVs) for RFI, FI and BW, which yielded selection responses approximately equal to the responses obtained using the sex-specific BVs. The results illustrate the possibility of selecting against RFI in mink with no negative effects on BW and litter size.  相似文献   

20.
Feed efficiency is an important trait in pig production, with evidence to suggest that the efficiencies of a variety of biological systems contribute to variation in this trait. Little work has been conducted on the contribution of the intestinal innate immune response to divergence in feed efficiency. Hence, the objective of this study was to examine select bacterial populations and gene expression profiles of a range of targets relating to gut health and immunity in the intestine of pigs phenotypically divergent in feed efficiency in: a) the basal state; and (b) following an ex-vivo lipopolysaccharide (LPS) challenge of ileal and colonic tissue. Male pigs (initial BW 22.4 kg (SD = 2.03)) were fed a standard finishing diet for the final 43 days prior to slaughter to evaluate feed intake and growth for the purpose of calculating residual feed intake (RFI). On day 115, 16 animals (average weight 85 kg, SEM 2.8 kg), designated high RFI (HRFI) and low RFI (LRFI) were slaughtered. The LRFI pigs had increased lactobacillus spp. in the caecum compared to HRFI pigs (P < 0.05). RFI groups did not differ in the expression of the measured genes involved in the innate immune system in the basal ileal or colonic tissues (P > 0.10). Interestingly, there was an interaction between RFI and LPS for the cytokines IL-8, IL-1, IL-6, TNF-α, Interferon-γ (IFN-γ) and SOCS3, with the LRFI group having consistently lower gene expression in the colon following the LPS challenge, compared to the HRFI group. The lower gene expression of SOCS and cytokines following an ex vivo LPS challenge supports the theory that a possible energy saving mechanism exists in the intestinal innate immune response to an immune challenge in more feed efficient pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号