首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allostery plays a crucial role in the mechanism of neurotransmitter-sodium symporters, such as the human dopamine transporter. To investigate the molecular mechanism that couples the transport-associated inward release of the Na+ ion from the Na2 site to intracellular gating, we applied a combination of the thermodynamic coupling function (TCF) formalism and Markov state model analysis to a 50-μs data set of molecular dynamics trajectories of the human dopamine transporter, in which multiple spontaneous Na+ release events were observed. Our TCF approach reveals a complex landscape of thermodynamic coupling between Na+ release and inward-opening, and identifies diverse, yet well-defined roles for different Na+-coordinating residues. In particular, we identify a prominent role in the allosteric coupling for the Na+-coordinating residue D421, where mutation has previously been associated with neurological disorders. Our results highlight the power of the TCF analysis to elucidate the molecular mechanism of complex allosteric processes in large biomolecular systems.  相似文献   

2.
3.
FtsZ is an essential cell division protein in Escherichia coli, and its localization, filamentation, and bundling at the mid-cell are required for Z-ring stability. Once assembled, the Z-ring recruits a series of proteins that comprise the bacterial divisome. Zaps (FtsZ-associated proteins) stabilize the Z-ring by increasing lateral interactions between individual filaments, bundling FtsZ to provide a scaffold for divisome assembly. The x-ray crystallographic structure of E. coli ZapA was determined, identifying key structural differences from the existing ZapA structure from Pseudomonas aeruginosa, including a charged α-helix on the globular domains of the ZapA tetramer. Key helix residues in E. coli ZapA were modified using site-directed mutagenesis. These ZapA variants significantly decreased FtsZ bundling in protein sedimentation assays when compared with WT ZapA proteins. Electron micrographs of ZapA-bundled FtsZ filaments showed the modified ZapA variants altered the number of FtsZ filaments per bundle. These in vitro results were corroborated in vivo by expressing the ZapA variants in an E. coli ΔzapA strain. In vivo, ZapA variants that altered FtsZ bundling showed an elongated phenotype, indicating improper cell division. Our findings highlight the importance of key ZapA residues that influence the extent of FtsZ bundling and that ultimately affect Z-ring formation in dividing cells.  相似文献   

4.
小麦吸收土壤磷转运子在酵母突变体中的功能互补分析   总被引:4,自引:1,他引:4  
以小麦磷转运子全长编码cDMA(TaPT2)为探针与小麦基因组DNA进行Southern杂交,结果表明,在小麦基因组中存在该基因的不同家族成员,另外,将TaPT2基因转入酵母突变体MB192中,以野生型菌株YPH084为对照,分别检测YTaPT2,YPH084和MB192酸性磷酸酶分泌情况,生长情况以及对培养基的磷吸收情况,得到结论:TaPT2的功能与酵母磷转运子编码基因PHO84相似,具有增强酵母吸收磷的作用。  相似文献   

5.
6.
Barth Syndrome is the only known Mendelian disorder of cardiolipin remodeling, with characteristic clinical features of cardiomyopathy, skeletal myopathy, and neutropenia. While the primary biochemical defects of reduced mature cardiolipin and increased monolysocardiolipin are well-described, much of the downstream biochemical dysregulation has not been uncovered, and biomarkers are limited. In order to further expand upon the knowledge of the biochemical abnormalities in Barth Syndrome, we analyzed metabolite profiles in plasma from a cohort of individuals with Barth Syndrome compared to age-matched controls via 1H nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry. A clear distinction between metabolite profiles of individuals with Barth Syndrome and controls was observed, and was defined by an array of metabolite classes including amino acids and lipids. Pathway analysis of these discriminating metabolites revealed involvement of mitochondrial and extra-mitochondrial biochemical pathways including: insulin regulation of fatty acid metabolism, lipid metabolism, biogenic amine metabolism, amino acid metabolism, endothelial nitric oxide synthase signaling, and tRNA biosynthesis. Taken together, this data indicates broad metabolic dysregulation in Barth Syndrome with wide cellular effects.  相似文献   

7.
8.
单羧酸转运体 (Monocarboxylte Transporters,MCTs)属于溶质运载蛋白家族(Solute carrier family,SLC)SLC16A亚家族成员.目前已发现该家族有14个成员;研究表明,MCTs具有偶联转运细胞新陈代谢中产生的单羧酸与质子的功能. MCTs在肿瘤组织中表达普遍增高,肿瘤细胞是以糖酵解代谢方式获取能量,该过程中产生的大量乳酸被MCTs运出胞外,以保护细胞免因酸中毒诱发细胞凋亡;细胞外乳酸也能被肿瘤细胞摄取和利用.由于肿瘤组织的血管不发达,使肿瘤细胞内外的乳酸堆积,导致肿瘤细胞存活在缺氧和酸性微环境中,MCTs对此种环境中肿瘤细胞的存活与转移发挥重要作用.因此,研究肿瘤细胞和正常组织中MCTs的差异性表达及其机制,以及MCTs活性的调控机制,对于认识肿瘤细胞在缺氧和酸性微环境中存活与转移规律具有重要意义,并为肿瘤的治疗提供新的分子靶标.本文将对肿瘤中MCTs的功能研究的最新进展进行综述. 同时,结合我们的研究,提出了一些见解.  相似文献   

9.
The Synechocystis Slr0642 protein and its plastidial Arabidopsis (Arabidopsis thaliana) ortholog At2g32040 belong to the folate-biopterin transporter (FBT) family within the major facilitator superfamily. Both proteins transport folates when expressed in Escherichia coli. Because the structural requirements for transport activity are not known for any FBT protein, we applied mutational analysis to identify residues that are critical to transport and interpreted the results using a comparative structural model based on E. coli lactose permease. Folate transport was assessed via the growth of an E. coli pabA abgT strain, which cannot synthesize or take up folates or p-aminobenzoylglutamate. In total, 47 residues were replaced with Cys or Ala. Mutations at 22 positions abolished folate uptake without affecting Slr0642 expression in membranes, whereas other mutations had no effect. Residues important for function mostly line the predicted central cavity and are concentrated in the core α-helices H1, H4, H7, and H10. The essential residue locations are consistent with a folate-binding site lying roughly equidistant from both faces of the transporter. Arabidopsis has eight FBT proteins besides At2g32040, often lacking conserved critical residues. When six of these proteins were expressed in E. coli or in Leishmania folate or pterin transporter mutants, none showed evidence of folate or pterin transport activity, and only At2g32040 was isolated by functional screening of Arabidopsis cDNA libraries in E. coli. Such negative data could reflect roles in transport of other substrates. These studies provide the first insights into the native structure and catalytic mechanism of FBT family carriers.  相似文献   

10.
ADP-glucose pyrophosphorylase (AGPase) catalyzes a rate-limiting step in glycogen and starch synthesis in bacteria and plants, respectively. Plant AGPase consists of two large and two small subunits that were derived by gene duplication. AGPase large subunits have functionally diverged, leading to different kinetic and allosteric properties. Amino acid changes that could account for these differences were identified previously by evolutionary analysis. In this study, these large subunit residues were mapped onto a modeled structure of the maize (Zea mays) endosperm enzyme. Surprisingly, of 29 amino acids identified via evolutionary considerations, 17 were located at subunit interfaces. Fourteen of the 29 amino acids were mutagenized in the maize endosperm large subunit (SHRUNKEN-2 [SH2]), and resulting variants were expressed in Escherichia coli with the maize endosperm small subunit (BT2). Comparisons of the amount of glycogen produced in E. coli, and the kinetic and allosteric properties of the variants with wild-type SH2/BT2, indicate that 11 variants differ from the wild type in enzyme properties or in vivo glycogen level. More interestingly, six of nine residues located at subunit interfaces exhibit altered allosteric properties. These results indicate that the interfaces between the large and small subunits are important for the allosteric properties of AGPase, and changes at these interfaces contribute to AGPase functional specialization. Our results also demonstrate that evolutionary analysis can greatly facilitate enzyme structure-function analyses.ADP-glucose pyrophosphorylase (AGPase) catalyzes the conversion of Glc-1-P (G-1-P) and ATP to ADP-Glc and pyrophosphate. This reaction represents a rate-limiting step in starch synthesis (Hannah, 2005). AGPase is an allosteric enzyme whose activity is regulated by small effector molecules. In plants, AGPase is activated by 3-phosphoglyceraldehyde (3-PGA) and deactivated by inorganic phosphate (Pi).Plant AGPase is a heterotetramer consisting of two identical large and two identical small subunits. The large and small subunits of AGPase were generated by a gene duplication. Subsequent sequence divergence has given rise to complementary rather than interchangeable subunits. Indeed, both subunits are needed for AGPase activity (Hannah and Nelson, 1976, Burger et al., 2003). Biochemical studies have indicated that both subunits are important for catalytic and allosteric properties (Hannah and Nelson, 1976; Greene et al., 1996a, 1996b; Ballicora et al., 1998; Laughlin et al., 1998; Frueauf et al., 2001; Kavakli et al., 2001a, 2001b; Cross et al., 2004, 2005; Hwang et al., 2005, 2006, 2007; Kim et al., 2007; Ventriglia et al., 2008). Surprisingly, Georgelis et al. (2007, 2008) showed that, in angiosperms, the small subunit is under greater evolutionary pressure compared with the large subunit. Detailed analyses have shown that the greater constraint on the small subunit is due to its broader tissue expression patterns compared with the large subunit and the fact that the small subunit must interact with multiple large subunits.Large subunits have undergone more duplication events than have small subunits (Georgelis et al., 2008). This has led to the creation of five groups of large subunits that differ in their patterns of tissue of expression (Akihiro et al., 2005; Crevillen et al., 2005; Ohdan et al., 2005). Crevillen et al. (2003) studied the biochemical properties of four Arabidopsis (Arabidopsis thaliana) AGPases consisting of the four different large subunits and the only functional small subunit in Arabidopsis. The different AGPases had different kinetic and allosteric properties. More specifically, the AGPases differed in their affinity for the allosteric regulator 3-PGA and the substrates G-1-P and ATP. This possibly reflects the different 3-PGA, G-1-P, and ATP levels in the various tissues. This evidence indicates that not only did the different large subunit groups subfunctionalize in terms of expression, but also these groups may have specialized in terms of protein function. While the study of Crevillen et al. (2003) pointed to functional specialization of the large subunit, the identity of the amino acid sites in the large subunit that account for these kinetic and allosteric differences was not pursued.Georgelis et al. (2008) presented supporting evidence for AGPase large subunit specialization by identifying positively selected amino acid sites in the phylogenetic branches following gene duplication events. We also identified amino acid residues that were conserved in one large subunit group but not conserved in another large subunit group (type I functional divergence; Gu, 1999) and amino acid residues that are conserved within large subunit groups but are variable among large subunit groups (type II functional divergence; Gu, 2006). Positively selected type I and type II sites could have contributed to specialization of the different large subunit groups. Indeed, positively selected type II sites in several proteins have been proven via site-directed mutagenesis (Bishop, 2005; Norrgård et al., 2006; Cavatorta et al., 2008; Courville et al., 2008) to be important for protein function and functional specialization. Additionally, several positively selected type I and type II amino acid sites in the large AGPase subunit identified in our previous evolutionary analysis (Georgelis et al., 2008) have been implicated in the kinetic and allosteric properties and heat stability of AGPase. The role of these sites was demonstrated by site-directed mutagenesis experiments of large subunits from Arabidopsis, maize endosperm, and potato (Solanum tuberosum) tuber (Ballicora et al., 1998, 2005; Kavakli et al., 2001a; Jin et al., 2005; Linebarger et al., 2005; Ventriglia et al., 2008). These analyses indicate that the rest of the amino acid sites identified as positive type I and type II sites in our previous evolutionary analysis (Georgelis et al., 2008) represent promising candidate targets for mutagenesis.To identify large subunit amino acids that are possibly important in controlling enzyme properties and that may have contributed to large subunit specialization, we conducted site-directed mutagenesis of the maize endosperm large subunit encoded by Shrunken-2 (Sh2). We specifically identified amino acids of SH2 that correspond to amino acid sites that were detected as positive type I and type II sites during the large subunit evolution (Georgelis et al., 2008). We then replaced the SH2 residues with amino acids of a group different from the SH2 family. Several amino acid sites important for the kinetic and allosteric properties and heat stability of AGPase were identified. Our results indicate that the subunit interfaces between the large and small subunits are important for the allosteric properties of AGPase. They also indicate that amino acid changes at subunit interfaces have been important for AGPase specialization in terms of allosteric properties. These experiments also support the idea that the majority of positively selected sites as detected by codon substitution models (Nielsen and Yang, 1998; Yang et al., 2000) and type II sites are not false positives. Site-directed mutagenesis of such sites can greatly facilitate enzyme structure-function analyses.  相似文献   

11.
12.
The ErbB protein tyrosine kinases are among the most important cell signaling families and mutation-induced modulation of their activity is associated with diverse functions in biological networks and human disease. We have combined molecular dynamics simulations of the ErbB kinases with the protein structure network modeling to characterize the reorganization of the residue interaction networks during conformational equilibrium changes in the normal and oncogenic forms. Structural stability and network analyses have identified local communities integrated around high centrality sites that correspond to the regulatory spine residues. This analysis has provided a quantitative insight to the mechanism of mutation-induced “superacceptor” activity in oncogenic EGFR dimers. We have found that kinase activation may be determined by allosteric interactions between modules of structurally stable residues that synchronize the dynamics in the nucleotide binding site and the αC-helix with the collective motions of the integrating αF-helix and the substrate binding site. The results of this study have pointed to a central role of the conserved His-Arg-Asp (HRD) motif in the catalytic loop and the Asp-Phe-Gly (DFG) motif as key mediators of structural stability and allosteric communications in the ErbB kinases. We have determined that residues that are indispensable for kinase regulation and catalysis often corresponded to the high centrality nodes within the protein structure network and could be distinguished by their unique network signatures. The optimal communication pathways are also controlled by these nodes and may ensure efficient allosteric signaling in the functional kinase state. Structure-based network analysis has quantified subtle effects of ATP binding on conformational dynamics and stability of the EGFR structures. Consistent with the NMR studies, we have found that nucleotide-induced modulation of the residue interaction networks is not limited to the ATP site, and may enhance allosteric cooperativity with the substrate binding region by increasing communication capabilities of mediating residues.  相似文献   

13.
14.
Many animals exhibit different behaviors in different seasons. The photoperiod can have effects on migration, breeding, fur growth, and other processes. The cyclic growth of the fur and feathers of some species of mammals and birds, respectively, is stimulated by the photoperiod as a result of hormone-dependent regulation of the nervous system. To further examine this phenomenon, we evaluated the Arbas Cashmere goat (Capra hircus), a species that is often used in this type of research. The goats were exposed to an experimentally controlled short photoperiod to study the regulation of cyclic cashmere growth. Exposure to a short photoperiod extended the anagen phase of the Cashmere goat hair follicle to increase cashmere production. Assessments of tissue sections indicated that the short photoperiod significantly induced cashmere growth. This conclusion was supported by a comparison of the differences in gene expression between the short photoperiod and natural conditions using gene chip technology. Using the gene chip data, we identified genes that showed altered expression under the short photoperiod compared to natural conditions, and these genes were found to be involved in the biological processes of hair follicle growth, structural composition of the hair follicle, and the morphogenesis of the surrounding skin appendages. Knowledge about differences in the expression of these genes as well as their functions and periodic regulation patterns increases our understanding of Cashmere goat hair follicle growth. This study also provides preliminary data that may be useful for the development of an artificial method to improve cashmere production by controlling the light cycle, which has practical significance for livestock breeding.  相似文献   

15.
The human serotonin transporter (hSERT) is responsible for the termination of synaptic serotonergic signaling. Although there is solid evidence that SERT forms oligomeric complexes, the exact stoichiometry of the complexes and the fractions of different coexisting oligomeric states still remain enigmatic. Here we used single molecule fluorescence microscopy to obtain the oligomerization state of the SERT via brightness analysis of single diffraction-limited fluorescent spots. Heterologously expressed SERT was labeled either with the fluorescent inhibitor JHC 1-64 or via fusion to monomeric GFP. We found a variety of oligomerization states of membrane-associated transporters, revealing molecular associations larger than dimers and demonstrating the coexistence of different degrees of oligomerization in a single cell; the data are in agreement with a linear aggregation model. Furthermore, oligomerization was found to be independent of SERT surface density, and oligomers remained stable over several minutes in the live cell plasma membrane. Together, the results indicate kinetic trapping of preformed SERT oligomers at the plasma membrane.  相似文献   

16.
17.
18.
The serotonin transporter (SERT) controls synaptic serotonin levels and is the primary target for antidepressants, including selective serotonin reuptake inhibitors (e.g. (S)-citalopram) and tricyclic antidepressants (e.g. clomipramine). In addition to a high affinity binding site, SERT possesses a low affinity allosteric site for antidepressants. Binding to the allosteric site impedes dissociation of antidepressants from the high affinity site, which may enhance antidepressant efficacy. Here we employ an induced fit docking/molecular dynamics protocol to identify the residues that may be involved in the allosteric binding in the extracellular vestibule located above the central substrate binding (S1) site. Indeed, mutagenesis of selected residues in the vestibule reduces the allosteric potency of (S)-citalopram and clomipramine. The identified site is further supported by the inhibitory effects of Zn2+ binding in an engineered site and the covalent attachment of benzocaine-methanethiosulfonate to a cysteine introduced in the extracellular vestibule. The data provide a mechanistic explanation for the allosteric action of antidepressants at SERT and suggest that the role of the vestibule is evolutionarily conserved among neurotransmitter:sodium symporter proteins as a binding pocket for small molecule ligands.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号