首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study investigated the effects of sodium butyrate (SB) on the growth performance, histomorphology, immune response, and stress related markers of Nile tilapia subjected to heat stress. SB was incorporated at 0, 0.5, 1, 1.5, and 2 g per kg diet and fed to fish for 8 weeks. The obtained results revealed significantly improved growth performance with a decreased feed conversion ratio in the fish fed SB (P < 0.05). In the anterior, middle, and distal parts of the intestine, villus length and width and internal villi distance as well as the number of goblet cells were increased in the fish fed SB (P < 0.05). The blood total protein, hemoglobin, and white and red blood cell counts showed a significant quadratic influence (P < 0.05). The survival rate for Nile tilapia exposed to heat stress for 48 h revealed that the SB fed groups had noticeably higher survival rates. Dietary SB significantly increased the phagocytic index and lysozyme and phagocytic activities both before and after heat stress (P < 0.05). After heat stress, blood glucose decreased significantly with SB feeding at 0.5, 1, or 1.5 g per kg diet, while cortisol was reduced in fish fed 1.5 or 2 g per kg diet (P < 0.05). Additionally, in fish fed SB, superoxide dismutase (SOD), catalase, and glutathione peroxidase activities were significantly increased both before and after heat stress, while malondialdehyde was decreased by SB feeding (P < 0.05). Liver heat shock protein 70 and SOD gene expression were significantly upregulated in fish fed on SB at 1 g per kg diet (P < 0.05). Thus, supplementation with SB at 1–2 g per kg diet can be used effectively in tilapia diets for improving growth, feed efficiency, and immune response as well as for tolerance to heat stress.  相似文献   

2.
Nile tilapia farmers must deal with production challenges, such as increased aggressiveness and high stress levels, which potentially diminishes fish welfare. Tryptophan supplementation is a strategy to cope with such problems. However, data is scarce on how tryptophan affects the aggressiveness of this species and other aspects need to be understood on how it influences stress in fish. In this study, we investigate how a 1× (0.32%), 4× (1.28%) and 8× (2.56%) supplemented tryptophan diet affects aggressiveness and stress in Nile tilapia. Aggressiveness in fish was assessed after short-term exposure (7 days) to a tryptophan supplemented diet while stress in fish was assessed after long-term exposure (60 days). The 4x and 8x diets reduced aggressiveness in fish, while the 8x diet reduced aggressiveness more effectively than the 4x diet. Also, long-term exposure to the 8x diet reduced stress in fish, before and after they were exposed to an acute stress. In conclusion, this study showed that a tryptophan supplemented diet can diminish aggressiveness and stress in Nile tilapia, thus demonstrating a potential to improve fish welfare.  相似文献   

3.
Vitamin E (VE), an important lipid-soluble antioxidant, has great influence on growth and maintenance in animal. The effects of VE supplemented diet on growth and feed usage in Nile tilapia (Oreochromis niloticus) was investigated in this study. Three formulated diets containing VE (0, 50 and 100 mg/kg) were fed to Nile tilapia (3.56 ± 0.16 g) in glass aquaria maintaining three replicate groups for 56 days (8 weeks). Survival, growth performance including weight gain, percent weight gain, and specific growth rate (WG, % WG, and SGR), and feed utilization comprising protein efficiency ratio and feed conversion ratio (PER and FCR) were calculated. Hemato-biochemical indices including hemoglobin level (Hb), white blood cell (WBC), red blood cell (RBC) and glucose level were analyzed. In addition, muscle morphology was examined after completion of the experiment. At the end of the trial, WG, %WG, SGR, FCR and PER increased significantly which had dietary VE supplimentation. However, no distinct changes were observed in Hb level, RBC count, WBC count and glucose level among these different dietary groups. Dietary VE treatments significantly upgraded the muscle fiber diameter and lowered the intra-muscle gap. Moreover, quantity of hyperplastic muscle fiber as well as nucleus also significantly enhanced by VE. Morphological structure of muscle characterized by a huge proportion of hyperplastic muscle that may be supposed to contribute the enhanced growth of Nile tilapia receiving VE supplemented diet. Therefore these results suggested that VE incorporation into the feed can be effective to improve the feed efficiency and maximize the growth of O. niloticus.  相似文献   

4.
The study aims to evaluate the effects of pineapples waste on the growth, texture quality and flesh colour of Nile tilapia (Oreochromis niloticus) fingerlings. Fingerlings were fed with four different levels of pineapple waste diets throughout 56 days, which contain a control group (Diet 1) and experimental diets that formulated with 10% (Diet 2), 20% (Diet 3) and 30% (Diet 4) of pineapple waste. The experimental diet was formulated with rice bran, fish meal, soybean meal, vitamin and mineral premix, vegetable oil and binder to attain 32% dietary protein. The results revealed that the formulated fish diet with pineapple waste given the optimum weight gain, weight gain percentage, specific growth rate than the control group, where Diet 4 has shown the highest value (p < 0.05). There were no effects of the pineapple waste diet on the texture quality of the fillet, while only red chromaticity (a*) showed a significant difference (p < 0.05). In conclusion, the addition of pineapple waste can improve the growth rate of Nile tilapia, and the supplementation level of the pineapple waste in the diet was 30% of the total feed formulation.  相似文献   

5.
Studies of fish growth response to changes in dietary protein and energy content are often conducted with fish fed to apparent satiation or at fixed percentages of their body mass. Such designs result in simultaneous changes in protein and non-protein energy intake, thereby failing to distinguish their separate effects on nutrient partitioning and growth. The present study was designed to address this limitation and test the existence of distinct protein- and non-protein energy-dependent growth phases in Nile tilapia (Oreochromis niloticus). All-male Nile tilapia (63 g, SD = 1.3) were subjected to an 8 × 2 factorial design consisting of eight levels of digestible protein (DP) intake (0.44–1.25 g/day) and two levels of non-protein digestible energy (NPDE) intake (16.0 and 22.4 kJ/day). Fish (n = 960) were housed in 60-litre tanks with two replicates per treatment and hand-fed twice a day for 42 days. Nutrient balances were calculated from changes in body mass, analysed body composition and digestible nutrient intake. Linear regression models were compared to linear-plateau regression models to determine whether protein gain followed distinct protein- and non-protein energy-dependent phases or not. Body mass gain increased linearly with increasing DP intake and was significantly higher (2.6 vs 2.3 g/d, P < 0.05) in fish receiving a high NPDE intake. This increase mainly reflected a higher mean fat gain (0.29 vs 0.20 g/d) rather than a higher protein gain (0.42 vs 0.39 g/d) in fish fed a high vs low level of NPDE intake. The comparison of linear and linear-plateau models did not give clear support for the presence of distinct protein and non-protein energy-dependent phases in protein gain. These results indicate that non-protein energy intake has a modest protein-sparing potential, and that protein gain is simultaneously limited by protein and energy intake in Nile tilapia.  相似文献   

6.
A 12-week long feeding experiment was initiated to evaluate the effect of dietary supplementation of red algae, Gracilaria arcuata, on the growth performance, feed utilization and body composition of Nile tilapia Oreochromis niloticus (Linnaeus, 1758). The fish were fed with an algae-free control diet (C) and three experimental diets which replaced conventional fish meal with varying levels of dried G. arcuata (20%, 40% and 60%, represented as G20, G40 and G60, respectively). The growth parameters of final weight (FW), weight gain (WG), percentage of weight gain (WG%), daily growth rate (DGR) and specific growth rate (SGR) were significantly reduced (P < 0.05) at all levels of algae incorporation compared to the control diet. Moreover, the negative impact of Gracilaria meal on the growth performance of Nile tilapia increased as the proportion of algae in the diet increased, with fish on diet G20 exhibiting a significantly higher growth performance than the fish on either of the G40 and G60 diets. On the other hand, the feed utilization parameters feed conversion ratio (FCR) and protein efficiency ratio (PER) did not show significant differences between the fish in the control group and those on diet G20, although poorer FCR and PER outcomes were achieved in the case of fish on diet G60. The content of moisture, protein and ash in muscle and carcass increased as the proportion of Gracilaria meal in the diets increased, but the reverse was true for lipid level. These results indicate that incorporation of less than 20% red algae, Gracilaria arcuata, could be feasible in the diet of Nile tilapia and further studies are recommended to optimize the level of algae to improve growth performance.  相似文献   

7.
Age and growth of Nile tilapia (Oreochromis niloticus) from Lake Nabugabo and Lake Wamala, Uganda, were determined using cross-sectioned sagittal otoliths. Marginal-increment and edge analyses of Nile tilapia otoliths from Lake Nabugabo indicated formation of two annuli per 12-month period. Opaque zones associated with faster growth were observed between April and June and between September and December, coincident with the two rainy seasons of the year. Within both lakes, males were larger at age than females. Nile tilapia from Lake Nabugabo, however, had faster growth rates than Nile tilapia from Lake Wamala, and fish >3 years old from Lake Nabugabo were larger at age than those from Lake Wamala. Ages ranged from 0 to 8.0 years for Nile tilapia from Lake Nabugabo, and from 0.5 to 6.5 years for tilapia from Lake Wamala. Differences in the patterns of growth in Nile tilapia between lakes may reflect, at least in part, the relatively energy-rich omnivorous diet of Nile tilapia in Lake Nabugabo versus a phytoplanktivorous diet in Lake Wamala. Diet differences of Nile tilapia between the two lakes are ascribed to trophic changes in the lakes due to the introduction of Nile perch (Lates niloticus) into Lake Nabugabo but not Lake Wamala. Alternatively, the greater exploitation of Nile tilapia in Lake Nabugabo may have resulted in increased growth rates, whereas Nile tilapia in Lake Wamala may be subject to slower, density-dependent growth. Handling editor: J. Cambray  相似文献   

8.
Lake Ziway harbours indigenous and exotic fish species including Nile tilapia (Oreochromis niloticus) and common carp (Cyprinus carpio). Nile tilapia was the dominant and preferred fish. However, its contribution to total catch has dramatically declined from 89.3% in 1994 to 27% in 2014 while the introduced common carp has increased from 0% before 2012 to 25% in 2014. Common carp potentially compete with Nile tilapia for available resources and could be a cause for the decline. Thus, the study explored the dietary overlap of the two species from April to August 2017. Schoener's overlap index (α) revealed significant dietary overlap between the two species (α = 0.84, between juveniles and α = 0.63, between adults). Juveniles fed mainly on animal origin (zooplankton and insects), while adult Nile tilapia have consumed plant origin (macrophyte and phytoplankton), and adult common carp fed on macrophytes and detritus. The presence of significant dietary overlap between the two species, particularly due to intense competition among juveniles, might cause the reduction of Nile tilapia stock because the native species has shown a competitive disadvantage for food in the presence of common carp. This study provides baseline information to researchers and decision makers working towards the sustainable resource utilisation of the system.  相似文献   

9.
Increasing levels of a mixture of Ulva spp. produced in an integrated multi-trophic aquaculture (IMTA) system were evaluated in Nile tilapia juveniles for partial replacement of dietary fish meal. A control diet (CTRL) was compared with three experimental diets containing 10 % (U10), 15 % (U15), and 20 % (U20) of Ulva spp. meal. Triplicate groups of fish (13 g initial body weight) were fed each diet for 63 days at 26 °C. Nutrient apparent digestibility coefficients and nitrogen retention efficiency did not vary significantly among diets. By the end of the trial, all groups of fish more than tripled their initial body weight. Specific growth rate and final body weight of U10 diet were similar to CTRL and significantly higher than U15 and U20 diets. Increasing Ulva dietary incorporation levels significantly increased feed conversion ratio (FCR), from 1.0 (CTRL) to 1.4 (U20). Fish fed with U10 diet had the highest protein efficiency ratio and nitrogen retention efficiency allowing this fish to growth and reach a final body weight similar to the CTRL group. Protein content was highest in fish fed with the CTRL diet, whereas the highest lipid content was observed in fish fed with U20 diet. The results show that the incorporation of IMTA-produced Ulva meal in Nile tilapia diets is possible up to 10 % without compromising growth performance, protein utilization, and protein retention of juveniles. The high capacity of Nile tilapia to digest all experimental diets suggests that Ulva meal is a practical partial replacement for fish meal in Nile tilapia diets.  相似文献   

10.
【背景】罗非鱼作为联合国粮农组织(FAO)向全世界推广养殖的优良品种之一,有多个品系,其养殖范围已遍布85个国家和地区。1956年我国从越南引进莫桑比克罗非鱼,经过养殖及推广,2006年我国罗非鱼产量达到100万t。但是,该外来物种在给我国带来良好经济价值的同时,对土著种类及水环境造成了极大的影响。【方法】对近几年珠江水系渔获物的调查数据进行整理,并观察尼罗罗非鱼早期发育形态,统计尼罗罗非鱼苗对其他鱼苗的最大捕食量及捕食规格,以分析罗非鱼生物学特性及其在珠江水系的入侵现状。【结果】尼罗罗非鱼早期发育快,卵黄营养非常丰富,比珠江水系土著种类更有竞争性;罗非鱼苗呈现很强的攻击性与捕食性;尼罗罗非鱼已经扩散到珠江水系各主要河流,并在部分江段形成优势种群。【结论与意义】尼罗罗非鱼种群快速扩张,对土著种已构成严重威胁,有必要将其列为珠江水系高危入侵种。  相似文献   

11.
This work aims to evaluate the antibacterial activity of biological zinc nanoparticles (BIO-ZnONPs) against pathogenic fish bacteria and assess the effect of BIO-ZnONPs on the performance, behavior, and immune response in Nile tilapia (Oreochromis niloticus) as compared to chemical zinc nanoparticles (CH- ZnONPs). Aspergillus niger TS16 fabricated the BIO-ZnONPs were spherical shape with the average size of 45 nm and net charge of ?27.23 mV. Generally, the results indicate that BIO-ZnONPs were more effective than CH- ZnONPs in enhancing the performance properties of Nile tilapia. Five experimental groups of Nile tilapia (initial body weight of 20.2 g) were treated with two concentrations of 0.5 and 1 mg L?1 from biological and chemical ZnONPs, while the fifth group was served as a control. After ten weeks of treated water with ZnONPs, the performance, feed efficiency parameters, feeding, and swimming behaviors significantly improved in BIO-ZnONPs treated groups (P < 0.05). The liver function, LYZ activity, and NBT values were significantly enhanced in the 0.5 mg L?1 BIO-ZnONPS group compared to CH- ZnONPs group and control (P < 0.05). Furthermore, the lowest cortisol and the highest testosterone and growth hormone levels were recorded in 1 mg L?1 BIO-ZnONPs group. Regarding the antibacterial effects, BIO-ZnONPs displayed the lower total bacterial loads in water and fish tissues (intestine, gills, skin, and muscle) and the maximum antibacterial properties against pathogenic bacteria (Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Aeromonas hydrophila). Our study exemplifies novel findings of BIO-ZnONPs in the promotion of fish health and production and its antibacterial properties in Nile tilapia.  相似文献   

12.
Mozambique tilapia, (Oreochromis mossambicus), are a euryhaline teleost and an important biological model species. Captive male tilapia frequently have high levels of the estrogen-induced yolk precursor protein vitellogenin (Vg), a common indicator of exposure to estrogenic compounds. Sex steroids are found in commercial fish diets, but relatively few studies have examined the relationship between commercial diets and Vg production. In a fasting experiment to ascertain a dietary role in male Vg production, plasma Vg was reduced to negligible levels after 2 weeks of fasting, while no change in estrogen receptor (ER) expression was seen. When male tilapia were fed a squid-based diet that replaced the commercial trout diet, plasma Vg was reduced to undetectable levels over 40 days, concomitant with significant reductions in hepatic expression of Vgs A, B, and C, and ERβ, compared with control fish fed commercial trout diet. Female tilapia fed the squid-based for 20 days had no change in these parameters. When male tilapia were fed a defined, soy-based diet, plasma Vg reduced to 20% of levels in fish given either commercial trout diet or a defined, fishmeal-based diet. Overall, results from these studies suggest that estrogens in a commercial trout diet induce vitellogenin production by increasing expression of Vg, but not ER genes in male tilapia.  相似文献   

13.
The world tilapia production faces seasonal variations. However, very few nutritional studies have addressed suboptimal temperature. We evaluated the effect of two temperatures (20 or 30 °C) and two vegetable oil blends (one rich in corn oil (COR) and one rich linseed oil (LIN)) on tilapia growth, body composition, and blood parameters using a 2 × 2 factorial design with the following treatments: COR-20; LIN-20; COR-30; LIN-30 (Trial 1). In addition, we also evaluated the effect of postingestive signals of dietary oils when the organoleptic properties of diets were isolated (Trial 2). In the Trial 1, 256 fish (15.36 ± 0.14 g) were placed in 16 aquariums and submitted during 30 days to the 2 × 2 factorial designs: COR-20; LIN-20; COR-30; LIN-30. The temperatures were established in two independent water recirculation systems. In the Trial 2, 96 fish (34.02 ± 0.79 g) were placed in 12 aquariums and subjected to the same experimental design of Trial 1, but to evaluate fish feeding behavior. They were allowed to select the encapsulated diets provided in different feeding halls to evaluate if diet preferences are influenced by postingestive signals. As the Trial 1 results show, diets had no significant effects on growth, dietary protein use, and body centesimal composition, but 30 °C induced the best performance and protein deposition (P < 0.05). LIN-20 showed lower very-low-density lipoprotein and cortisol, but higher high-density lipoprotein (HDL), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and triglycerides (TG) than COR-20 (P < 0.05). COR-30 presented higher HDL, AST, ALT, TG, and cortisol than LIN-30. The fish fed COR showed lower C20:5n-3 (EPA) and higher n-6 than fish fed LIN (P < 0.05). The fish fed LIN had high n-3 highly unsaturated fatty acid. ∑ polyunsaturated fatty acid was higher at 30 °C. Finally, the tilapia in Trial 2 showed clear diet intake regulation and preference for LIN (P < 0.05), regardless of temperature. In short, lipid sources had no influence on tilapia performance; however, temperature affects carcass lipid deposition as well as fatty acids profile. Notably, the preference for linseed oil can suggest nutritional metabolic issues, contributing to animal behavior knowledge.  相似文献   

14.
The influence of herbicides causes health and economic loss, which requires innovative solutions to sustain the aquaculture industry. In this regard, dietary isatis is included in Nile tilapia diets to relieve atrazine (ATZ)-induced growth retardation, hepato-renal dysfunction, and oxidative stress. The first and second groups offered the control diet (control), while the third and fourth groups offered the isatis supplemented diet (1%). Meantime, half of the water was replaced and mixed with ATZ (1.39 mg/L) in the second and fourth groups for 30 days. The group of fish delivered isatis had significantly enhanced FBW, WG, and SGR, while fish intoxicated with ATZ had meaningfully impaired growth behavior (p < 0.05). Further, the FCR was improved by isatis, and ATZ resulted in the worst FCR among the groups. Interestingly fish fed isatis and exposed with ATZ (88.89%) had a higher survival rate than fish exposed with ATZ without isatis feeding, and both are lower than the control (97.78%) (p < 0.05). The histological structure in the isatis-treated groups showed distinguished enhancement and branching of the intestinal villi. The intestine of ATZ–treated fish revealed damage and inflammatory cell infiltration in the intestinal mucosa with separation of lining epithelium. Generally, fish fed isatis and intoxicated with ATZ had lower uric acid, urea, creatinine, ALT, and AST and higher total protein, globulin, and albumin than fish exposed with ATZ without feeding with isatis (p < 0.05). Markedly, fish-fed isatis had the highest SOD, CAT, GPx, and the lowest MDA level compared to the other groups (p < 0.05). Meanwhile, fish exposed with ATZ had the worst SOD, CAT, GPx, and the highest MDA level compared to the other groups (p < 0.05). In summary, dietary isatis relieved ATZ induced growth retardation, hepato-renal dysfunction, and oxidative stress in Nile tilapia.  相似文献   

15.
Cadmium (Cd) is believed to be one of the most abundant and ubiquitously distributed toxins in the aquatic system. This metal is released to the aquatic environment from both anthropogenic sources, such as industrial, agricultural and urban effluents as well as natural sources, such as rocks and soils. Otherwise, the temperature increase of water bodies, which has been observed due to global climatic changes, has been shown to increase Cd toxicity for several aquatic animal species including fish. In the present study, Nile tilapia, Oreochromis niloticus (L.), (26.0±0.38 g) were reared at 20, 24, 28, or 32 °C and exposed to 0.0 or 0.5 mg Cd/L for 8 weeks to investigate effects of water temperature, Cd toxicity and their interaction on fish performance as well as metallothionein (MT) and Cd distribution in different fish organs. It was found that fish reared in Cd-free group at 28 °C showed the optimum growth and feed intake, while Cd-exposed fish showed low growth and feed intake irrespective to water temperature. A synergetic relationship between water temperature and Cd toxicity was observed where Cd toxicity increased as water temperature increased and the worse growth was obtained in Cd-exposed fish reared at 32 °C. Additionally, the highest Cd residues in different fish organs were detected in Cd-exposed fish reared at 32 °C. Similarly, MT concentrations in different fish organs increased as water temperature increased especially in Cd-exposed fish groups. A high positive correlation between MT and Cd concentrations in fish organs was detected. The distribution of MT and Cd levels was in the order of liver>kidney>gills>muscles. The present study revealed that the optimum water temperature suitable for Nile tilapia growth is 28 °C. Additionally, Cd exposure had a deteriorate effect on the growth and health of Nile tilapia. This hazardous effect increased as water temperature increased. Further, liver and kidney were the prime sites of Cd accumulation, while Cd load in the muscles was the lowest as compared to the other investigated organs.  相似文献   

16.
This study was carried out to evaluate the effects of dietary lipid sources on growth performance, fatty acids composition and cold tolerance of Nile tilapia (Oreochromis niloticus) fingerlings (7.00 ± 0.50 g/fish). The fish were fed four isonitrogenous (28% crude protein), isocaloric (500 kcal/100 g) diets containing four lipid sources; fish oil (FO), corn oil (CO), coconut oil (COCO) or fish oil/ corn oil mixture (1:1 ratio) (oil mix). The diets were offered to the fish at a daily rate of 3% of their body weights (BW), twice a day for two months. After the feeding trial, the fish were exposed to decreasing water temperature from 25 °C until the appearance of death symptoms. The results revealed that FO-based diets (FO and oil mix) produced the best growth rates and feed efficiency, followed by corn oil diet, while COCO resulted in the lowest performance. Fish fed on CO and oil mix showed higher body unsaturated fatty acids (UFA) and lower lethal temperature than those fed on FO- or COCO-based diets. These results indicate that cold shock can modify the lipid metabolism in Nile tilapia by lowering total body saturated fatty acids and raising n-6 and n-3 UFA. This finding suggests that the inclusion of high levels of plant oils in Nile tilapia feeds can enhance their cold tolerance.  相似文献   

17.
This study evaluated how water temperature (26, 28, and 30°C), number of meals per day (one or two meals), and protein percent in diet (20, 25 and 30%) impact growth performance, biometric indices, and feeding behavior of Nile tilapia, Oreochromis niloticus. Fish were randomly allocated into 18 equal replicate groups. Higher final body weight was observed in fish reared at 30°C and fed one meal per day containing 30% crude protein. Better weight gain, weight gain %, feed conversion ratio, specific growth rate, and condition factor were recorded in fish reared at 26°C and fed one meal per day containing 30% protein. The best length weight relationship was obtained in fish reared at 26°C and fed one meal per day containing 30% crude protein. Shorter feeding duration and duration of appetite inhibition latency were recorded in fish reared at 30°C, fed one meal per day, and given a diet containing 30% protein. The highest proactivity was recorded in fish reared at 30°C, received one meal per day, and with 25% crude protein in their diet. Conclusively, rearing Nile tilapia at 26–30°C with a lower feeding frequency (one meal/day) and a 30% crude protein diet achieved better performance and feeding behavior.  相似文献   

18.
The maternal nutritional status during pregnancy and lactation was closely related to the growth and development of the fetus and infants, which had a profound impact on the health of the offspring. N-3 polyunsaturated fatty acid (PUFA) had been proved to have beneficial effects on glucolipid metabolism. However, the effects of dietary different n-3 PUFA levels for mother during pregnancy and lactation on susceptibility to high-fat-diet-induced metabolic syndrome for offspring in adulthood are still unclear. The maternal mice were fed with control, n-3 PUFA-deficient or fish oil-contained n-3 PUFA-rich diets during pregnancy and lactation, and the weaned offspring were fed with high-fat or low-fat diet for 13 weeks, then were subjected to oral glucose tolerance tests. The results showed that dietary n-3 PUFA-deficiency in early life could aggravate the high-fat-diet-induced glucolipid metabolism disorders, including glucose intolerance, insulin resistance, obesity, and dyslipidemia, thus increased the susceptibility to metabolic syndrome of adult mice. Notably, nutritional supplementation with n-3 PUFA in early life could significantly alleviate the glucose metabolism disorders by increasing insulin sensitivity, inhibiting gluconeogenesis and promoting glycogenesis. In addition, administration with n-3 PUFA in early life remarkably reduced serum and hepatic lipid profiles by mediating the expression of genes related to lipogenesis and β-oxidation of fatty acids. Dietary n-3 PUFA-deficiency in early life increases the susceptibility to metabolic syndrome of adult offspring, and nutritional supplementation with n-3 PUFA enhances the tolerance to a high-fat diet of adult offspring.  相似文献   

19.
A factorial experiment was designed to examine the effect on compensatory growth (CG) of Nile tilapia Oreochromis niloticus fed diets containing different protein and lipid levels under normal and temporally restricted feeding regimes. Four diets were formulated to contain either 30% or 36% crude protein, and 5% or 11% crude lipid. Triplicate replicates of each treatment were assigned to 24 150‐L tanks (20 fish/tank density). Fish (mean initial weight ± SD = 8.79 ± 0.34 g) were then fed either the normal feeding regime (thrice daily to apparent satiation) or the restricted regime (1 day feed deprivation followed by 3 days of feeding to apparent satiation) over a 44‐days study period. Fish receiving a diet under the restricted regime achieved weight gains (WG) comparable to fish consuming the diet containing 30% protein and 5% lipids under the normal feeding regime. Fish maintained on the restricted feeding regime exhibited reduced feed intake (FI), WG, feed efficiency ratio (FE), protein efficiency rate (PER) and hepatosomatic index versus fish on the normal feeding regime, except WG in fish fed the diet with 30% protein and 5% lipids. However, the resultant FI (85%~94%) was higher than the excepted 75% intake when fish were subjected to the restricted regime. Feeding 11% lipid diets led to improved FI, WG, FE, and PER compared to feeding the 5% lipid diets. Increased FI, WG, and FE, but reduced PER were observed in fish fed with 36% protein versus fish fed 30% protein. Fish receiving the 36% protein diets had lower whole‐body moisture and ash contents, but elevated whole‐body protein and lipid contents compared to those receiving the 30% protein diets. Whole‐body moisture contents were lower, but whole‐body protein, lipid and ash contents were higher in fish fed 11% lipid diets than in fish fed 5% lipid diets. There was an increase in whole‐body moisture content, but a decrease in protein and lipid content in response to the restricted feeding regime. Ash content was not affected by the feeding regime. The present study shows that Nile tilapia fed diets subjected to a restricted feeding regime exhibited growth comparable to those fed the diet at 30% protein and 5% lipid levels under a normal feeding regime. This positive effect was more pronounced in diets at a high protein level or in a combination of high protein and lipid levels.  相似文献   

20.
The effects of rearing temperature on hepatic glucokinase (GK), glucose-6-phosphatase (G6Pase) and Glucose-6-phosphate dehydrogenase (G6PD) activity and gene expression were studied in GIFT (genetically improved farmed tilapia) tilapia fed a high carbohydrate diet containing 28% crude protein, 5% crude lipid and 40% wheat starch. Triplicate groups of fish (11.28 g initial body weight) were fed the diet for 45 days at 22 °C, 28 °C or 34 °C. At the end of the trial, final body weight of juvenile at 28 °C (59.12 g) was higher than that of the fish reared at 22 °C (27.13 g) and 34 °C (43.17 g). Feed intake, feed efficiency and protein efficiency ratio were also better at 28 °C. Liver glycogen levels were higher at 28 °C, while plasma glucose levels were higher in the 22 °C group. Significant (P<0.05) effects of water temperature on enzymes activities and gene expression were observed. Hepatic GK activity and mRNA level were higher at 28 °C than at 34 °C. Higher G6Pase and G6PD activity and gene expression were observed at 22 °C. Overall, the data show that juveniles reared at 28 °C exhibited enhanced liver glycolytic capacity. In contrast, hepatic gluconeogenesis and lipogenesis were increased by low temperature (22 °C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号