首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of (i) medium and high feed value (MFV and HFV) maize silages and (ii) MFV and HFV grass silages, each in combination with a range of concentrate feed levels, on the performance of finishing lambs were evaluated using 280 Suffolk-X lambs (initial live weight 36.1 kg). The MFV and HFV maize silages represented crops with dry matter (DM) concentrations of 185 and 250 g/kg, respectively, at harvest, and had starch and metabolisable energy (ME) concentrations of 33 and 277 g/kg DM and 9.6 and 11.0 MJ/kg, respectively. HFV and MFV grass silages had DM and ME concentrations of 216 and 294 g/kg and 11.0 and 11.5 MJ/kg DM, respectively. A total of 13 treatments were involved. The four silages were offered ad libitum with daily concentrate supplements of 0.2, 0.5 or 0.8 kg per lamb. A final treatment consisted of concentrate offered ad libitum with 0.5 kg of the HFV grass silage daily. Increasing the feed value of grass silage increased (P < 0.001) forage intake, daily carcass and live weight gains, final live weight and carcass weight. Increasing maize silage feed value tended to increase (P = 0.07) daily carcass gain. Increasing concentrate feed level increased total food and ME intakes, and live weight and carcass gains. There was a significant interaction between silage feed value and the response to concentrate feed level. Relative to the HFV grass silage, the positive linear response to increasing concentrate feed level was greater with lambs offered the MFV grass silage for daily live weight gain (P < 0.001), daily carcass gain (P < 0.01) and final carcass weight (P < 0.01). Relative to the HFV maize silage, there was a greater response to increasing concentrate feed level from lambs offered the MFV maize silage in terms of daily carcass gain (P < 0.05) and daily live weight gain (P = 0.06). Forage type had no significant effect on the response to increased concentrate feed level. Relative to the MFV grass silage supplemented with 0.2 kg concentrate, the potential concentrate-sparing effect of the HFV grass silage, and the MFV and HFV maize silages was 0.41, 0.09 and 0.25 kg daily per lamb, respectively. It is concluded that increasing forage feed value increased forage intake and animal performance, and maize silage can replace MFV grass silage in the diet of finishing lambs as performance was equal to or better (depending on maturity of maize at harvest) than that for MFV grass silage.  相似文献   

2.
The study involved 120 crossbred ewes (sixty 1.5 years old animals and sixty 2.5 years old animals; initial liveweight 67.6 kg, condition score 3.7), that were mated in October. They were assigned to six treatments (two shearing treatments (shorn and unshorn) × two silage feed values (low and medium) and two extended grazed herbage allowances (1.0 and 1.8 kg dry matter (DM)/day)) designed to evaluate the effects of shearing at housing, grass silage feed value and extended-grazed herbage allowance on their performance and the performance of their progeny. Swards, which had silage harvested on 6 September, received fertiliser N (34 kg/ha) for extended (deferred) grazing between 19 December and lambing in mid-March. The herbage was allocated at DM allowances of 1.0 or 1.8 kg/ewe daily until 1 February. For the final 6 weeks of pregnancy, daily herbage DM allowances were 1.5, 1.6, 2.0, 2.0 and 2.0 kg for weeks 6, 5, 4, 3 and 2 to parturition, respectively. Two grass silages (low and medium feed value) were offered from housing on 19 December to lambing in mid-March. At housing, half the ewes were shorn whilst the remainder remained unshorn. Each ewe received 23.4 kg concentrate prior to lambing. For the extended-grazed herbage and the low and medium feed-value silages, DM concentrations were 132, 225 and 265 g/kg, and metabolisable energy (ME) concentrations were 10.0, 10.0 and 10.7 MJ/kg DM, respectively. Treatment did not alter (P > 0.05) litter size or number reared. Grass silage feed value did not significantly alter silage DM intake, or ewe and subsequent lamb performance. Increasing herbage allowance in mid-pregnancy decreased herbage utilisation (P < 0.05) and increased herbage intake (P < 0.05). Shearing increased silage intake (P < 0.05), lamb birth weight (P < 0.01) and tended to increase lamb weaning weight (P = 0.07). Relative to the housed shorn ewes, extended grazing did not alter (P > 0.05) ewe or subsequent lamb performance. It is concluded that shearing ewes at housing increased lamb birth weight due to increased silage intake probably associated with cold stress immediately post shearing and reduced heat stress in late pregnancy. Based on differences in lamb weight at weaning 0.8 kg of grass silage DM intake had the same feed value as a daily extended herbage DM allowance of 1.8 kg per ewe throughout the study. Neither silage feed value nor herbage allowance in mid-pregnancy affected lamb birth weight or subsequent growth rate.  相似文献   

3.
A study was undertaken to investigate the performance of breeding ewes fed a range of forage and concentrate-based diets in late pregnancy, balanced for supply of metabolizable protein (MP). For the final 6 weeks before lambing, 104 twin-bearing multiparous ewes were offered one of four diets: ad libitum precision-chop grass silage + 0.55 kg/day concentrates (GS); ad libitum maize silage + 0.55 kg/day concentrates (MS); a 1 : 1 mixture (on a dry matter (DM) basis) of grass silage and maize silage fed ad libitum + 0.55 kg/day (GSMS); or 1.55 kg/day concentrates + 50 g/day chopped barley straw (C). The CP content of the concentrates was varied between treatments (157 to 296 g/kg DM) with the aim of achieving a daily intake of 130 g/day MP across all treatments. Compared with ewes fed GS, forage DM intake was higher (P < 0.05) in ewes fed MS (+0.21 kg/day) and GSMS (+0.16 kg/day), resulting in higher (P < 0.001) total DM intakes with these treatments. C ewes had the lowest total DM intake of all the treatments examined (P < 0.001). C ewes lost more live weight (LW; P < 0.001) and body condition score (BCS; P < 0.05) during the first 3 weeks of the study but there were no dietary effects on ewe LW or BCS thereafter. The incidence of dystocia was lower (P < 0.01) in C ewes compared with those offered silage-based diets (7.5% v. 37.4% ewes), and was higher (P < 0.01) in ewes fed MS compared with GS or GSMS (50.7%, 34.7% and 26.9%, respectively). There were no significant dietary effects on the plasma metabolite concentrations of ewes in late pregnancy, pre-weaning lamb mortality, weaned lamb output per ewe or on lamb growth rate. The results of this study demonstrate that both maize silage and all-concentrate diets can replace grass silage in pregnant ewe rations without impacting on performance, provided the supply of MP is non-limiting. The higher incidence of dystocia in ewes fed maize silage as the sole forage is a concern.  相似文献   

4.
The effects of (i) herbage allowance, (ii) frequency of allocation and (iii) grass silage feed value on ewe and lamb performance were studied in mid-gestation ewes. Furthermore, the effects of (i) herbage allowance, (ii) frequency of allocation and (iii) grazing date and their interactions on subsequent herbage yield and feed value were also evaluated. Swards, which had a cut of silage removed on 6 September, received fertiliser nitrogen (34 kg/ha) for extended (deferred) grazing between 6 December and 1 February. Two grass silages differing in feed value were ensiled either precision chopped or in big bales from predominantly perennial ryegrass swards, respectively. In experiment 1, a completely randomised study involving 120 crossbred mid-gestation ewes (Belclare × Scottish Blackface) that had been mated in October was undertaken to evaluate the effects of extended grazed herbage allowance (1.0 and 1.8 kg dry matter (DM)/day), frequency of herbage allocation (daily and twice weekly) and grass silage feed value (low and medium) on ewe and subsequent lamb performance. The six diets were offered from days 63 to 120 of gestation. From day 120 of gestation to parturition all ewes were housed and offered the medium feed value silage ad libitum. All ewes received 19 kg concentrate prior to lambing. Increasing herbage allowance increased forage intake (P < 0.05), lamb birth weight (P < 0.01), weaning weight (P < 0.05) and growth rate from birth to weaning (P < 0.05), decreased herbage utilisation (P < 0.05) and tended to increase ewe condition score at lambing (P = 0.06). Frequency of herbage allocation or grass silage feed value did not alter (P > 0.05) ewe or subsequent lamb performance. In experiment 2, the effect of extended grazed herbage allowance (1.0 and 1.8 kg DM/ewe daily), frequency of allocation (daily and twice weekly) and grazing date (6 to 12 December, 27 December to 3 January and 17 to 23 January) on herbage yield at two harvest dates (27 April and 25 May) was examined in a split plot design study consisting of 72 plots. Delaying grazing date decreased herbage yield (P < 0.01) whilst delaying harvest date increased herbage yield (P < 0.05). Frequency of herbage allocation did not alter (P > 0.05) subsequent herbage yield. It is concluded that for ewes in mid-gestation 1.0 kg of low feed value silage DM had the same feed value, as determined by weaned lamb weight, as 1.3 kg herbage DM allowance. Each 1-day delay in grazing date reduced herbage DM yield by 54.2 kg/ha.  相似文献   

5.
The effect of harvesting time (HT) of timothy-dominated grass silage and level of concentrate on the chemical composition of silage, and on feed intake and milk production by Norwegian dairy goats, were evaluated. The silages were prepared from the primary growth at three stages of maturity: very early (HT 1), early (HT 2) and normal (HT 3). The silages were fed ad libitum to 18 goats of the Norwegian dairy goat breed in early lactation and supplemented with a low (LC; 0.6 kg per goat daily) or normal (NC; 1.2 kg per goat daily) level of concentrate. The experiment was conducted as a cyclic changeover design with four periods of 28 days using three blocks of goats according to their initial body condition (poor, medium or high body condition). Silages contained 771, 696 and 619 g digestible organic matter per kg dry matter in silage (D-value) for HT 1, 2 and 3, respectively. Postponing the harvesting time decreased (P<0.001) silage dry matter intake (DMI) and silage DMI per kg body weight (BW). Increased concentrate allowance decreased silage DMI, with substitution rates (decrease in silage DMI when concentrate dry matter intake is increased, kg/kg) of 0.43, 0.21 and 0.27 at HT 1, HT 2 and HT 3, respectively. Milk yield and yields of milk constituents decreased (P<0.001) with delayed harvesting time and thus reflected the changes in silage D-value. Milk free fatty acids (FFA) concentration was not affected by dietary treatments. The efficiency of nutrient utilization was best when LC was fed and increased with postponed harvesting time. The higher energy efficiency of the HT 3 LC fed goats indicates that these goats canalized a higher proportion of energy intake to milk production, compared to goats fed NC and earlier harvested silage. Marginal ECM production response to increased net energy lactation (NEL) intake were higher when intake was increased due to higher silage digestibility (0.14 kg ECM/MJ NEL) compared with increased NEL intake due to increased concentrate level (0.12 kg ECM/MJ NEL). Improving silage quality by earlier harvesting time resulted in higher feed intake and milk yield than obtained by the same increase in NEL intake by concentrate supplementation.  相似文献   

6.
A completely randomised design study involving 132 continental crossbred beef steers was undertaken to evaluate the effects of method of grain treatment and feed level, and grass silage feed value on animal performance, carcass characteristics and meat quality of beef cattle. Winter wheat was harvested and the grain was stored either ensiled crimped and treated with 4.5 l/t of a proprietary acid-based additive (crimped), ensiled whole and treated with 20 kg feed-grade urea per t (urea) or stored conventionally in an open bin treated with 3 l propionic acid per t. Two grass silages, of contrasting feed value (L and H) were ensiled. For the conventional, crimped and urea treatments, grain dry matter (DM) concentrations were 802, 658 and 640 g/kg, respectively. For the L- and H-feed value silages, DM concentrations were 192 and 240 g/kg and D values were 671 and 730 g/kg DM, respectively. The silages were offered as the sole forage supplemented with either conventional, crimped or urea-treated grain-based concentrate at either 3.5 or 6.0 kg DM per steer per day. The grain supplement consisted of 850 and 150 g/kg DM of grain and citrus pulp, respectively. For the conventional, urea and crimped treatments, DM intakes were 8.85, 9.43 and 9.04 kg/day (standard error (s.e.) = 0.129); estimated carcass gains were 0.60, 0.55 and 0.61 kg/day (s.e. = 0.020), respectively. For the low- and high- feed value grass silages, estimated carcass gains were 0.56 and 0.61 kg/day (s.e. = 0.014), respectively. For the low and high grain feed levels, estimated carcass gains were 0.56 and 0.61 kg/day, respectively. Grain treatment, grain feed level or silage feed value did not alter (P > 0.05) meat quality, lean colour or fat colour. There were significant silage feed value × grain feed level interactions (P < 0.05) for final live weight (LW) and daily live-weight gain (DLWG). Increasing grain feed level increased final LW and DLWG when offered with the low-feed value silage, however, grain feed level had no effect on final LW or DLWG when offered with the high-feed value silage. It is concluded that urea treatment of grain increased silage intake and feed conversion ratio (kg DM intake per kg carcass) and tended to decrease carcass gain. Crimping provides a biologically equally effective method to store grain as conventional methods. Improving grass silage feed value had a greater impact on animal performance than increasing grain feed level by 2.4 kg DM per day.  相似文献   

7.
The effect of the forage source on ruminal fermentation in vitro was investigated for fine (F) and coarse (C) milled diets, using a modified Hohenheim gas production test and a semi-continuous rumen simulation technique (Rusitec). It was hypothesised that the replacement of maize silage by grass silage might lead to associative effects and that interactions related to particle size variation could occur. Five diets with a maize silage to grass silage ratio of 100 : 0, 79 : 21, 52 : 48, 24 : 76 and 0 : 100 differed in their content of CP and carbohydrate fractions, as well as digestible crude nutrients, derived from a digestibility trial with wether sheep. For in vitro investigations, the diets were ground to pass a sieve of either 1 mm (F) or 4 mm (C) perforation. Cumulative gas production was recorded during 93 h of incubation and its capacity decreased with increasing proportion of grass silage in the diet. Across all diets, gas production was delayed in C treatments compared with F treatments. Degradation of crude nutrients and detergent fibre fractions was determined in a Rusitec system. Daily amounts of NH3-N and short-chain fatty acids (SCFA) were measured in the effluent. Degradation of organic matter (OM) and fibre fractions, as well as amounts of NH3-N, increased with stepwise replacement of maize silage by grass silage. Degradability of CP was unaffected by diet composition, as well as total SCFA production. In contrast to the results of the gas production test, degradation of OM and CP was higher in C than in F treatments, accompanied by higher amounts of NH3-N and SCFA. Interactions of silage ratio and particle size were rare. It was concluded that the stepwise replacement of maize silage by grass silage might lead to a linear response of most fermentation characteristics in vitro. This linear effect was also supported by total tract digestibility data. However, further investigations with silages of variable quality seem to be necessary.  相似文献   

8.
The effects of maturity of maize at harvest, level of inclusion and potential interactions on the performance, carcass composition, meat quality and potential concentrate-sparing effect when offered to finishing beef cattle were studied. Two maize silages were ensiled that had dry matter (DM) concentrations of 217 and 304 g/kg and starch concentrations of 55 and 258 g/kg DM, respectively. Grass silage was offered as the sole forage supplemented with either 4 or 8 kg concentrate/steer daily or in addition with one of the two maize silages at a ratio 0.5 : 0.5, on a DM basis, maize silage : grass silage supplemented with 4 kg concentrate daily. The two maize silages were also offered as the sole forage supplemented with 4 kg concentrate/steer daily. The forages were offered ad libitum. The six diets were offered to 72 steers (initial live weight 522 s.d. 23.5 kg) for 146 days. There were significant interactions (P < 0.05) between maize maturity and inclusion level for food intake, fibre digestibility and daily gain. For the grass silage supplemented with 4 or 8 kg concentrate, and the maize silages with DM concentrations of 217 and 304 g/kg offered as 0.5 or 1.0 of the forage component of the diet, total DM intakes were 8.3, 9.8, 8.9, 8.2, 9.2 and 9.8 kg DM/day (s.e. 0.27); live-weight gains were 0.74, 1.17, 0.86, 0.71, 0.88 and 1.03 kg/day (s.e. 0.057); and carcass gains were 0.48, 0.73, 0.56, 0.46, 0.56 and 0.63 kg/day (s.e. 0.037), respectively. Increasing the level of concentrate (offered with grass silage), maize maturity and level of maize inclusion reduced (P < 0.05) fat b* (yellowness). The potential daily concentrate-sparing effect, as determined by carcass gain, for the maize silages with DM concentrations of 217 and 304 g/kg offered as 0.5 and 1.0 of the forage component of the diet were 1.3, −0.3, 1.3 and 2.4 kg fresh weight, respectively. It is concluded that the response, in animal performance, including maize silage is dependent on the stage of maturity and level of inclusion in the diet. Maize silage with a DM of 304 g/kg offered ad libitum increased carcass gain by 31%, because of a combination of increased metabolizable energy (ME) intake and improved efficiency of utilization of ME, and produced carcasses with whiter fat.  相似文献   

9.
A feeding experiment was conducted with 10 dairy cows of the Fleckvieh breed and the cross Red Holstein Friesian × Fleckvieh, to study whether feeding with grass silage at the morning meal and maize silage at the evening meal (treatment B: alternating forage allocation) affects forage intake and milk production, in comparison with combined feeding with these two silages at each meal (treatment A). In order to prevent a selective forage consumption in treatment A, the two silages were given as a homogeneous mixture of nearly equal portions (51.6% maize silage, 48.4% grass silage) of dry matter (DM). The experiment was of switch-back design, with the treatment sequences ABA and BAB, and three experimental periods of 6 weeks.The daily forage consumption averaged 12.3 kg DM when the silages were given as a mixture and was significantly higher than the total forage consumption of 11.8 kg DM (P < 0.05) during the alternating allocation of the silages. In treatment B, daily intake of maize silage (7.10 kg DM) was greater than that of grass silage (4.70 kg DM/day). Furthermore, variation between cows in forage intake was significantly higher in this treatment than in treatment A. Average daily milk yield for treatment A was 18.75 kg with 3.84% fat and 3.70% protein, and 18.10 kg with 3.76% fat and 3.68% protein for treatment B. Production was significantly higher (P < 0.05), by 0.65 kg milk or 0.90 kg FCM, for treatment A.  相似文献   

10.
Milk fat lipolysis giving high concentrations of free fatty acids (FFA) and off-flavor in the goat's milk is a challenge for the dairy industry in Norway. This has been considered to be caused by underfeeding of the goats and thereby energy mobilization in early and mid lactation. Energy intake can be improved by feeding silage of early harvesting time (HT) and supplementation with concentrate. In the present experiment, 18 goats in early lactation were fed grass silages prepared from the primary growth at a very early, early or normal stage of maturity (HT 1, HT 2 and HT 3, respectively), supplemented with a low (LC; 0.6 kg per goat daily) or normal (NC; 1.2 kg per goat daily) level of concentrate. The experiment was conducted as a cyclic change-over design with four periods of 28 days using three blocks of goats according to their initial body condition (poor, medium or high). Milk and blood samples were collected at the end of each period. Milk yield and yields of milk constituents decreased with delayed harvesting time and with LC. Sensory milk taste quality was not affected by dietary treatment, and milk FFA was highest when NC was fed. The proportion of short and medium chain fatty acids in milk fat decreased with postponed harvesting time and LC, while most of the long chain fatty acids (including C18:1c9) increased with postponed harvesting time and LC. The calculated energy balance decreased and the serum concentration of non-esterified fatty acids (NEFA) increased with decreasing energy content in the diet (postponed harvesting time and low level of concentrate). Goats with initial poor body condition had higher milk FFA concentrations than goats in higher initial body condition. High milk FFA concentration was correlated to poor milk taste quality, low serum NEFA concentration, low C18:1c9 proportion and high energy balance. Our findings suggest that increasing energy intake and energy balance during the first 4 months of lactation does not reduce FFA concentration in goats’ milk.  相似文献   

11.
This study evaluated wheat grain which was treated with xylose in aqueous Ca–Mg lignosulphonate solution at elevated temperatures (WeiPass®) in order to reduce ruminal degradation of starch and crude protein. The two tested isoenergetic and isonitrogenous diets contained on dry matter (DM) basis either 16% maize grain and 6.4% soybean meal (Diet CON) or 17.8% xylose-treated wheat and 4.6% soybean meal (Diet Wheat). Thirty-six German Holstein dairy cows were assigned to one of the two groups according to parity, body weight after calving, and milk yield during the previous lactation. Data collection started at 21 d before the expected calving date until 120 d in milk. The average of DM intake, energy-corrected milk (ECM) yield, and milk fat and protein yields (all given as kg/d) were 18.9, 28.7, 1.25, and 1.02 for Diet CON and 19.3, 32.5, 1.36, and 1.11 for Diet Wheat, respectively. Only ECM and milk protein yields were greater (p < 0.05) for cows receiving Diet Wheat. In conclusion, the xylose-treated wheat grain can replace maize grain and part of soybean meal in diets for lactating dairy cows and may be an alternative feedstuff depending on overall ration composition and availability and costs of grain sources.  相似文献   

12.
Diets based on large proportions of grassland-based feed are uncommon in forage-based intensive beef production, thus contradicting governmental or commercial strategies to promote the use of grassland-based feed in ruminant production systems. Compared with typical maize silage/concentrate diets, grassland-based diets are associated with impaired nitrogen (N) and energy utilisation because of the comparably lower energy and higher CP content of these feeds. However, quantitative studies concerning the effects of increased dietary proportions of grassland-derived feeds on N and energy losses and utilisation and on methane emissions are missing and the compensation potential of using a limited proportion of an energy-rich forage is unknown. Therefore, we tested five diets with varying types and proportions of forage and concentrate. Three diets consisted of grass silage, maize silage, and concentrate in ratios of, g/kg DM, 100:600:300 (G100; control), 300:500:200 (G300), and 500:300:200 (G500), respectively. Two diets were composed of grass silage, corn-cob mix (CCM), and concentrate in ratios of, g/kg DM, 500:300:200 (G500CCM), and 750:150:100 (G750CCM), respectively. A high-protein concentrate (270 g CP/kg DM) was fed to G100, whereas a low-protein concentrate (140 g CP/kg DM) was used in the remaining diets. Diets were fed throughout the entire fattening period to groups of six Limousin-crossbred bulls each. When weighing 246 ± 18 kg, each animal underwent a 7-day total daily faeces and urine collection, which was followed by measuring methane emissions in respiration chambers for 48 h. Total DM intake was similar across all diets, whereas the N intake varied (P < 0.05). Urinary N loss (g/day) was the highest for G750CCM (28.2) and G100 (26.6) and lowest for G500CCM (15.2) and G300 (16.9) (P < 0.001). Energy utilisation was comparable among all groups. Metabolisable energy intake decreased numerically only with increasing proportions of grass silage in the diet. Substituting maize silage with CCM counteracted the loss in metabolisable energy intake. Absolute methane emissions were not different across the groups, but methane emission intensity (mg/g body protein retention) varied (P < 0.05), being numerically lower for G100 (349) and G500CCM (401) compared with the other groups (488 on average). In conclusion, the results show that the grass silage proportion in beef cattle diets can be substantially increased when strategically combined with energy-dense forages, such as CCM. This also limits the need for concentrate and additional protein sources; in addition, the associated urinary N emissions, which are potentially noxious to the environment, are avoided.  相似文献   

13.
Proteolytic activity was measured by the digestion of 14C-labelled casein in digesta removed from the rumen of four sheep receiving a grass hay/concentrate diet and four sheep receiving a maize silage/concentrate diet. Samples were removed immediately before feeding and at 2-h intervals after feeding up to 12 h. Animals on both diets produced similar proteolytic activities (1.83 (S.D. 0.41) and 2.14 (S.D. 0.61) mg 14C-casein hydrolysed (ml ruminal fluid)-1 h-1 with the maize silage- and grass hay-based diets, respectively). Time after feeding had no effect on proteolytic activity, but between-animal variation was consistent and highly significant, with the highest-activity animals having activities 64 and 74% higher than the lowest-activity animals on the two diets, respectively.  相似文献   

14.
Even though extensive research has examined the role of nutrition on milk fat composition, there is less information on the impact of forages on milk fatty acid (FA) composition. In the current study, the effect of replacing grass silage (GS) with maize silage (MS) as part of a total mixed ration on animal performance and milk FA composition was examined using eight multiparous mid-lactation cows in a replicated 4 × 4 Latin square with 28-day experimental periods. Four treatments comprised the stepwise replacement of GS with MS (0, 160, 334 and 500 g/kg dry matter (DM)) in diets containing a 54 : 46 forage : concentrate ratio on a DM basis. Replacing GS with MS increased (P < 0.001) the DM intake, milk yield and milk protein content. Incremental replacement of GS with MS in the diet enhanced linearly (P < 0.001) the proportions of 6:0-14:0, decreased (P < 0.01) the 16:0 concentrations, but had no effect on the total milk fat saturated fatty acid content. Inclusion of MS altered the distribution of trans-18:1 isomers and enhanced (P < 0.05) total trans monounsaturated fatty acid and total conjugated linoleic acid content. Milk total n-3 polyunsaturated fatty acid (PUFA) content decreased with higher amounts of MS in the diet and n-6 PUFA concentration increased, leading to an elevated n-6 : n-3 PUFA ratio. Despite some beneficial changes associated with the replacement of GS with MS, the overall effects on milk FA composition would not be expected to substantially improve long-term human health. However, the role of forages on milk fat composition must also be balanced against the increases in total milk and protein yield on diets containing higher proportions of MS.  相似文献   

15.
It is well-established that altering the proportion of starch and fibre in ruminant diets can alter ruminal and post-ruminal digestion, although quantitative evidence that this reduces enteric methane (CH4) production in dairy cattle is lacking. The objective of this study was to examine the effect of varying grass-to-maize silage ratio (70 : 30 and 30 : 70 DM basis), offered ad libitum, with either a concentrate that was high in starch or fibre, on CH4 production, intake, performance and milk composition of dairy cows. A total of 20 cows were allocated to one of the four experimental diets in a two-by-two factorial design run as a Latin square with each period lasting 28 days. Measurements were conducted during the final 7 days of each period. Cows offered the high maize silage ration had a higher dry matter intake (DMI), milk yield, milk energy output and lower CH4 emissions when expressed per kg DMI and per unit of ingested gross energy, but there was no difference in total CH4 production. Several of the milk long-chain fatty acids (FA) were affected by forage treatment with the most notable being an increase in 18:0, 18:1 c9, 18:2 c9 c12 and total mono unsaturated FA, observed in cows offered the higher inclusion of maize silage, and an increase in 18:3 c9 c12 c15 when offered the higher grass silage ration. Varying the composition of the concentrate had no effect on DMI or milk production; however, when the high-starch concentrate was fed, milk protein concentration and milk FAs, 10:0, 14:1, 15:0, 16:1, increased and 18:0 decreased. Interactions were observed for milk fat concentration, being lower in cows offered high-grass silage and high-fibre concentrates compared with the high-starch concentrate, and FA 17:0, which was the highest in milk from cows fed the high-grass silage diet supplemented with the high-starch concentrate. In conclusion, increasing the proportion of maize silage in the diets of dairy cows increased intake and performance, and reduced CH4 production, but only when expressed on a DM or energy intake basis, whereas starch-to-fibre ratio in the concentrate had little effect on performance or CH4 production.  相似文献   

16.
A study was carried out on six hill farms, located in the main hill regions of Northern Ireland, over three breeding seasons to investigate the effect of sire breed on ewe dystocia, lamb survival and weaned lamb output. On each farm, groups of 26 to 40 purebred Scottish Blackface ewes (n = 3174) were crossed with Blackface, Swaledale, North Country Cheviot, Lleyn and Texel sires by natural service (year 1) and artificial insemination (years 2 and 3). Each of the mating groups was initially balanced for ewe age, live weight and condition score, and a total of 15 sires of each breed were used over the 3 years. In total, 2272 ewes were recorded at lambing, producing 3451 lambs, over the 3 years. Sire breed had a significant effect (P < 0.001) on lamb birth weight with Blackface and Swaledale the lowest and Texel the highest. The proportion of ewes with dystocia was higher with Texel sires compared with Lleyn, Swaledale and Blackface sires (P < 0.05). Ewes mated to Cheviot sires had more dystocia than those mated to Blackface and Swaledale sires (P < 0.05), while ewes mated to Lleyn sire breed had more dystocia (P < 0.05) than those mated to Blackface sire breed. Most of the incidence of dystocia was attributable to increased lamb birth weight (P < 0.001), and some to litter size (P < 0.05). Swaledale, Cheviot, Lleyn and Texel sire breeds increased the incidence of malpresentations (P < 0.05). Lamb live weight at weaning was higher with Texel- and Cheviot- and Lleyn-sired lambs compared with Blackface- and Swaledale-sired lambs (P < 0.01). The level of lamb mortality at birth was not affected by sire breed. However, lamb mortality at weaning was lower for Lleyn-sired lambs compared with the other lamb genotypes (P < 0.05). These results indicate that the use of sires from larger breeds, such as Lleyn and Texel, within the Blackface ewe flocks can increase lamb output, with no apparent detrimental effects on lamb mortality or ewe survival, but increased assistance at lambing will be required.  相似文献   

17.
Aims: To investigate the effect of the forage source and feed particle size (FPS) in ruminant rations on the composition of the ruminal Firmicutes community in vitro. Methods and Results: Three diets, varying in maize silage to grass silage ratio and FPS, were incubated in a rumen simulation system. Microbial samples were taken from the liquid fermenter effluents. Microbial community analysis was performed by 16S rRNA‐based techniques. Clostridia‐specific single‐strand conformation polymorphism profiles revealed changes of the community structure in dependence on both factors tested. The coarse grass silage–containing diets seemed to enhance the occurrence of different Roseburia species. As detected by real‐time quantitative PCR, Ruminococcus albus showed a higher abundance with decreasing FPS. A slightly lower proportion of Bacilli was found with increasing grass silage to maize silage ratio by fluorescence in situ hybridization (FISH). In contrast, a slightly higher proportion of bacterial species belonging to the Clostridium‐clusters XIV a and b was detected by FISH with increasing grass silage contents in the diet. Conclusions: The ruminal Firmicutes community is affected by the choice of the forage source and FPS. Significance and Impact of the Study: This study supplies fundamental knowledge about the response of ruminal microbial communities to changing diets. Moreover, the data suggest a standardization of grinding of feeds for in vitro studies to facilitate the comparison of results of different laboratories.  相似文献   

18.
In total, 20 multiparous Holstein-Friesian dairy cows received one of four diets in each of four periods of 28-day duration in a Latin square design to test the hypothesis that the inclusion of lucerne in the ration of high-yielding dairy cows would improve animal performance and milk fatty acid (FA) composition. All dietary treatments contained 0.55 : 0.45 forage to concentrates (dry matter (DM) basis), and within the forage component the proportion of lucerne (Medicago sativa), grass (Lolium perenne) and maize silage (Zea mays) was varied (DM basis): control (C)=0.4 : 0.6 grass : maize silage; L20=0.2 : 0.2 : 0.6 lucerne : grass : maize silage; L40=0.4 : 0.6 lucerne : maize silage; and L60=0.6 : 0.4 lucerne : maize silage. Diets were formulated to contain a similar CP and metabolisable protein content, with the reduction of soya bean meal and feed grade urea with increasing content of lucerne. Intake averaged 24.3 kg DM/day and was lowest in cows when fed L60 (P<0.01), but there was no effect of treatment on milk yield, milk fat or protein content, or live weight change, which averaged 40.9 kg/day, 41.0, 30.9 g/kg and 0.16 kg/day, respectively. Milk fat content of 18:2 c9 c12 and 18:3 c9 c12 c15 was increased (P<0.05) with increasing proportion of lucerne in the ration. Milk fat content of total polyunsaturated fatty acids was increased by 0.26 g/100 g in L60 compared with C. Plasma urea and β-hydroxybutyrate concentrations averaged 3.54 and 0.52 mmol/l, respectively, and were highest (P<0.001) in cows when fed L60 and lowest in C, but plasma glucose and total protein was not affected (P>0.05) by dietary treatment. Digestibility of DM, organic matter, CP and fibre decreased (P<0.01) with increasing content of lucerne in the diet, although fibre digestibility was similar in L40 and L60. It is concluded that first cut grass silage can be replaced with first cut lucerne silage without any detrimental effect on performance and an improvement in the milk FA profile, although intake and digestibility was lowest and plasma urea concentrations highest in cows when fed the highest level of inclusion of lucerne.  相似文献   

19.
The objective was to investigate the effect of variation in forage source and feed particle size of a diet, including interactions, on the amount and the composition of microbial crude protein (CP) in a semi-continuous culture system (Rusitec). Different microbial CP fractions were compared. Five diets with mean forage proportion of 0.88 and different maize silage to grass silage ratios (100 : 0, 79 : 21, 52 : 48, 24 : 76 and 0 : 100) were used. Diets were ground through sieves with a pore size of either 1 or 4 mm, matching the particle size of fine (F) and coarse (C), respectively. Diets were characterised by increasing concentrations of CP and fibre fractions, and decreasing concentrations of starch with ascending inclusion rates of grass silage. Microbial mass was isolated from feed residues after incubation from the liquid phase of the fermenter and from the liquid effluent. The amount of synthesised microbial CP was determined on the basis of 15N balance. It increased quite linearly by the stepwise replacement of maize silage by grass silage, and was higher in C treatments compared to F treatments. Efficiency of microbial CP synthesis (EMPS) was improved from 29 to 43 mg microbial N/g degraded organic matter (OM) by increasing the proportion of grass silage in the diet, but was unaffected by particle size. The N content as well as the profiles of amino acids of the three microbial fractions was affected by diet composition and particle size. The ratio of solid- to liquid-associated microbes was affected by diet composition and feed particle size. The amount and EMPS seemed to be improved by degradation of OM from grass silage and an increasing availability of N. Moreover, the results of this study indicated a shift in the composition of the microbial community caused by variation in forage composition and feed particle size.  相似文献   

20.
Breeding values for feed intake and feed efficiency in beef cattle are generally derived indoors on high-concentrate (HC) diets. Within temperate regions of north-western Europe, however, the majority of a growing beef animal’s lifetime dietary intake comes from grazed grass and grass silage. Using 97 growing beef cattle, the objective of the current study was to assess the repeatability of both feed intake and feed efficiency across 3 successive dietary test periods comprising grass silage plus concentrates (S+C), grazed grass (GRZ) and a HC diet. Individual DM intake (DMI), DMI/kg BW and feed efficiency-related parameters, residual feed intake (RFI) and gain to feed ratio (G : F) were assessed. There was a significant correlation for DMI between the S+C and GRZ periods (r = 0.32; P < 0.01) as well as between the S+C and HC periods (r = 0.41; P < 0.001), whereas there was no association for DMI between the GRZ and HC periods. There was a significant correlation for DMI/kg BW between the S+C and GRZ periods (r = 0.33; P < 0.01) and between the S+C and HC periods (r = 0.40; P < 0.001), but there was no association for the trait between the GRZ and HC periods. There was a significant correlation for RFI between the S+C and GRZ periods (r = 0.25; P < 0.05) as well as between S+C and HC periods (r = 0.25; P < 0.05), whereas there was no association for RFI between the GRZ and HC periods. Gain to feed ratio was not correlated between any of the test periods. A secondary aspect of the study demonstrated that traits recorded in the GRZ period relating to grazing bite rate, the number of daily grazing bouts and ruminating bouts were associated with DMI (r = 0.28 to 0.42; P < 0.05 - 0.001), DMI/kg BW (r = 0.36 to 0.45; P < 0.01 - 0.001) and RFI (r = 0.31 to 0.42; P < 0.05 - 0.001). Additionally, the number of ruminating boli produced per day and per ruminating bout were associated with G : F (r = 0.28 and 0.26, respectively; P < 0.05). Results from this study demonstrate that evaluating animals for both feed intake and feed efficiency indoors on HC diets may not reflect their phenotypic performance when consuming conserved forage-based diets indoors or when grazing pasture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号