首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The relative contribution of kainate receptors to ongoing glutamatergic activity is at present unknown. We report the presence of spontaneous, miniature, and minimal stimulation-evoked excitatory postsynaptic currents (EPSCs) that are mediated solely by kainate receptors (EPSC(kainate)) or by both AMPA and kainate receptors (EPSC(AMPA/kainate)). EPSC(kainate) and EPSC(AMPA/kainate) are selectively enriched in CA1 interneurons and mossy fibers synapses of CA3 pyramidal neurons, respectively. In CA1 interneurons, the decay time constant of EPSC(kainate) (circa 10 ms) is comparable to values obtained in heterologous expression systems. In both hippocampal neurons, the quantal release of glutamate generates kainate receptor-mediated EPSCs that provide as much as half of the total glutamatergic current. Kainate receptors are, therefore, key players of the ongoing glutamatergic transmission in the hippocampus.  相似文献   

2.
Excitatory postsynaptic currents (EPSCs) in most mammalian central neurons have a fast alpha-amino-3-hydroxy-5-methyl-4-isoazole-proprionic acid (AMPA) receptor-mediated component, lasting a few milliseconds, and a slow N-methyl-D-aspartic acid (NMDA)-receptor-mediated component, lasting hundreds of milliseconds. The time course of the AMPA phase is crucial in the integrative function of neurons, but measuring it accurately is often confounded by cable filtering between the recording electrode and the synapse. We describe a method for recovering the AMPA phase of individual EPSCs by determining the impulse response of the cable filter from single NMDA channel transitions in the slow tails of the same EPSC, then deconvolving the measured AMPA current. Using simulations, we show that filtering of an AMPA conductance transient in a voltage-clamped dendrite behaves in an almost perfectly linear fashion. Expressions are derived for the time course of single channel transitions and the AMPA phase filtered through a voltage-clamped cable or a single exponential filter, using a kinetic model for AMPA receptor activation. Fitting these expressions to experimental records directly estimates the underlying kinetics of the AMPA phase. Example measurements of spontaneous EPSCs in cultured nonpyramidal rat cortical neurons yielded rising time constants of 0.2-0.8 ms, and decay time constants of 1.3-2 ms at 23-25 degrees C.  相似文献   

3.
Excitatory postsynaptic currents (EPSCs) were studied in the CA1 pyramidal cells of rat hippocampal slices. Components mediated by alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) and by N-methyl-D-aspartate (NMDA) receptors were separated pharmacologically. Quantal parameters of AMPA and NMDA receptor-mediated EPSCs were obtained using both maximal likelihood and autocorrelation techniques. Enhancement of transmitter release with 4-aminopyridine caused a significant increase in quantal size of NMDA EPSC. This was accompanied by a slowing of the EPSC decay. The maximal number of quanta in the NMDA current was unchanged, while the probability of quantal event dramatically enhanced. In contrast, neither the quantal size nor the kinetics of AMPA EPSC was altered by 4-aminopyridine, while the maximal number of quanta increased. These changes in the quantal parameters are consistent with a transition to multivesicular release of the neurotransmitter. Spillover of excessive glutamate on the nonsynaptic areas of dendritic spines causes an increase in the quantal size of NMDA synaptic current. The difference in quantal behavior of AMPA and NMDA EPSCs implies that different mechanisms underlie their quantization: the additive response of nonsaturated AMPA receptors contrasts with the variable involvement of saturated intrasynaptic and nonsaturated extrasynaptic NMDA receptors.  相似文献   

4.
Behavioral and neurochemical studies suggest that the induction of behavioral sensitization to psychostimulants involves transient changes at the synapses of the ventral tegmental area's dopaminergic neurons (VTA-DA). Differences in the behavioral response to amphetamine (Amph) and methylphenidate (MPD) were observed. In an attempt to understand these behavioral differences at the neuronal level, the dose-response characteristics of these two psychostimulants on electrophysiologically identified VTA-DA neurons at the glutamatergic synapse were investigated. Miniature excitatory post-synaptic currents (mEPSCs) and electrically induced EPSCs were recorded from horizontal midbrain slices of rats that had been pretreated intraperitoneally (i.p.) with saline (control), Amph (2.5, 5.0, 10.0 or 20.0 mg/kg), or MPD (2.5, 5.0, 10.0 or 20.0 mg/kg) 24 h before the recording. Perfusion of Amph through the bath (2.5, 5.0, 10.0 or 20.0 microM) increased the frequency (p<0.01) and the amplitude (p<0.05) of mEPSCs in dose-response characteristics, while MPD perfusion through the bath (2.5, 5.0, 10.0, or 20.0 microM) increased only the frequency (p<0.05) of the mEPSC. Both psychostimulants increased the prefrontal cortex's (PFC) glutamatergic EPSC in the VTA-DA neurons. However, only the higher doses of MPD induced significant effects (p<0.05) on the N-methyl-D-aspartate (NMDA) receptor-mediated EPSC but had no effects on the EPSC mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA/kainate) receptors. Contrarily, Amph increased both kinds of mediated EPSC, but mainly the EPSC mediated by AMPA/kainate receptors (p<0.01). These electrophysiological differences could represent the underlying mechanism responsible for the differences of behavioral effects, such as behavioral sensitization, elicited by MPD and Amph.  相似文献   

5.
6.
Adenosine has been implicated as a modulator of retinohypothalamic neurotransmission in the suprachiasmatic nucleus (SCN), the seat of the light-entrainable circadian clock in mammals. Intracellular recordings were made from SCN neurons in slices of hamster hypothalamus using the in situ whole-cell patch clamp method. A monosynaptic, glutamatergic, excitatory postsynaptic current (EPSC) was evoked by stimulation of the optic nerve. The EPSC was blocked by bath application of the adenosine A(1) receptor agonist cyclohexyladenosine (CHA) in a dose-dependent manner with a half-maximal concentration of 1.7 microM. The block of EPSC amplitude by CHA was antagonized by concurrent application of the adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). The adenosine A(2A) receptor agonist CGS21680 was ineffective in attenuating the EPSC at concentrations up to 50 microM. Trains of four consecutive stimuli at 25 ms intervals usually depressed the EPSC amplitude. However, after application of CHA, consecutive responses displayed facilitation of EPSC amplitude. The induction of facilitation by CHA suggested a presynaptic mechanism of action. After application of CHA, the frequency of spontaneous EPSCs declined substantially, while their amplitude distribution was unchanged or slightly reduced, again suggesting a mainly presynaptic site of action for CHA. Application of glutamate by brief pressure ejection evoked a long-lasting inward current that was unaffected by CHA at concentrations sufficient to reduce the evoked EPSC amplitude substantially (1 to 5 microM), suggesting that postsynaptic glutamate receptor-gated currents were unaffected by the drug. Taken together, these observations indicate that CHA inhibits optic nerve-evoked EPSCs in SCN neurons by a predominantly presynaptic mechanism.  相似文献   

7.
The present study investigates the modulation of the ventral tegmental area (VTA)-ventral pallidum (VP) dopaminergic system by glutamate agonists in rats. The glutamate receptor agonists N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) were infused via reversed microdialysis into the VTA, and dopamine (DA), glutamate, and aspartate levels in the VTA and ipsilateral VP were monitored together with motor behavior screened in an open field. NMDA (750 microM) infusion, as well as AMPA (50 microM) infusion, induced an increase of DA and glutamate levels in the VTA, followed by an increase of DA levels in the ipsilateral VP and by enhanced locomotor activity. The increase of DA in the VP was similar after administration of these two glutamate agonists, although motor activity was more pronounced and showed an earlier onset after NMDA infusion. Glutamate levels in the VP were not increased by the stimulation of DA release. It is concluded that DA is released from mesencephalic DA neurons projecting to the VP and that these neurons are controlled by glutamatergic systems, via NMDA and AMPA receptors. Thus, DA in the VP has to be considered as a substantial modulator. Dysregulation of the mesopallidal DA neurons, as well as their glutamatergic control, may play an additional or distinct role in disorders like schizophrenia and drug addiction.  相似文献   

8.
Abstract: l -Glutamate, NMDA, dl -α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), and kainate (KA) increased the release of somatostatin-like immunoreactivity (SRIF-LI) from primary cultures of rat hippocampal neurons. In Mg2+-containing medium, the maximal effects (reached at ∼100 µ M ) amounted to 737% (KA), 722% (glutamate), 488% (NMDA), and 374% (AMPA); the apparent affinities were 22 µ M (AMPA), 39 µ M (glutamate), 41 µ M (KA), and 70 µ M (NMDA). The metabotropic receptor agonist trans -1-aminocyclopentane-1,3-dicarboxylate did not affect SRIF-LI release. The release evoked by glutamate (100 µ M ) was abolished by 10 µ M dizocilpine (MK-801) plus 30 µ M 1-aminophenyl-4-methyl-7,8-methylenedioxy-5 H -2,3-benzodiazepine (GYKI 52466). Moreover, the maximal effect of glutamate was mimicked by a mixture of NMDA + AMPA. The release elicited by NMDA was sensitive to MK-801 but insensitive to GYKI 52466. The AMPA- and KA-evoked releases were blocked by 6,7-dinitroquinoxaline-2,3-dione (DNQX) or by GYKI 52466 but were insensitive to MK-801. The release of SRIF-LI elicited by all four agonists was Ca2+ dependent, whereas only the NMDA-evoked release was prevented by tetrodotoxin. Removal of Mg2+ caused increase of basal SRIF-LI release, an effect abolished by MK-801. Thus, glutamate can stimulate somatostatin release through ionotropic NMDA and AMPA/KA receptors. Receptors of the KA type (AMPA insensitive) or metabotropic receptors appear not to be involved.  相似文献   

9.
Modulation of the Mesolimbic Dopamine System by Glutamate   总被引:4,自引:0,他引:4  
Glutamate has been shown to modulate motor behavior, probably via N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that are involved in the control of the mesolimbic dopamine (DA) system, that is, the ventral tegmental area (VTA)-nucleus accumbens (NAC). In the present study, we investigated the effects of uncompetitive (MK-801) and competitive [DL-2-amino-5-phosphonopentanoic acid (AP-5), CGP 40116] NMDA receptor antagonists and NMDA and AMPA on DA release in the mesolimbic system and on motor behavior. Systemic injection and intrategmental infusion of MK-801 increased DA levels in the VTA, but the systemic administration enhanced DA exclusively in the NAC and increased motor behavior. In contrast, intrategmental infusion of AP-5, but not the systemic administration of its lipophilic analogue CGP 40116, decreased the DA release in the two regions without affecting motor behavior. NMDA and AMPA infusion into the VTA increased DA levels in both areas. This increase was accompanied by a strong motor behavioral stimulation after NMDA but only a moderate increase after AMPA infusion. The present results indicate that mesolimbic DA neurons are controlled by the glutamatergic system and that the effects of uncompetitive and competitive NMDA receptor antagonists on DA release are mediated by an interaction with different brain areas. These findings may account for the different effects of NMDA receptor ligands on motor behavior.  相似文献   

10.
Summary. The effects of metabotropic glutamate receptor (mGluR) activation were studied in medium spiny neurons and large aspiny (LA) interneurons by means of electrophysiological and optical recordings. DCG-IV and L-SOP, agonists for group II and III mGluRs, respectively, produced a presynaptic inhibitory effect on corticostriatal glutamatergic excitatory postsynaptic potentials (EPSPs) in both spiny and LA cells. Activation of group I mGluRs by the selective agonist 3,5-DHPG produced no effect on membrane properties and glutamatergic transmission in spiny neurons, whereas it did cause a membrane depolarization in LA interneurons coupled to increased input resistance. In combined optical and electrophysiological experiments, in spiny neurons 3,5-DHPG enhanced membrane depolarization and intracellular calcium (Ca2+) levels induced by NMDA applications, but not in LA interneurons. These data suggest the existence of a positive interaction between NMDA and group I mGlu receptors only in medium spiny cells which might, at least partially, account for the differential vulnerability to excitotoxic damage observed in striatal neuronal subtypes. Accepted September 20, 1999  相似文献   

11.
Abstract: This study evaluated the hypotheses that in vivo lead (Pb) exposure would alter α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor binding and, based on known glutamate-dopamine interactions and Pb-induced changes in dopamine (DA) systems, that AMPA binding might be differentially influenced by DA agonist treatment under conditions of Pb exposure. Alterations in high-affinity ([3H]AMPA) versus total AMPA [6-[3H]cyano-7-nitroquinoxaline-2,3-dione ([3H]CNQX)] receptor binding were determined in medial frontal cortex, dorsal striatum, and nucleus accumbens of rats exposed to 0, 50, or 150 ppm of Pb acetate for 2 weeks or 8 months. Additional 8-month groups received chronic intermittent treatment with saline, the D1 agonist SKF82958, or the general DA agonist apomorphine. Two-week exposures increased AMPA receptor densities, whereas robust decreases occurred after 8 months of Pb; at the latter time point changes were more pronounced for high-affinity than total AMPA receptor binding, with high-affinity effects expressed preferentially in dorsal striatum and nucleus accumbens. DA agonist treatments almost fully reversed Pb-related declines in [3H]AMPA binding but either had no effect (apomorphine) or even further potentiated (SKF82958) the decreases in [3H]CNQX binding. One possible basis for the long-term (8-month) decrease in AMPA binding is a postsynaptic glutamatergic stimulation of non-NMDA receptors.  相似文献   

12.
Zhang XJ  Liu LL  Wu Y  Jiang SX  Zhong YM  Yang XL 《Neuro-Signals》2011,19(2):110-116
Using patch-clamp whole-cell recording, we investigated how activation of the sigma receptor 1 (σR1) modulates light-evoked excitatory postsynaptic currents (eEPSCs) of ganglion cells (GCs) in rat retinal slice preparations. Bath application of the σR1 agonist SKF10047 (SKF) suppressed N-methyl-D-aspartate (NMDA) receptor-mediated eEPSCs at different holding potentials in ON, OFF and ON-OFF GCs, and the effects were blocked when the preparations were pre-incubated with the σR1 antagonist BD1047. In contrast, SKF had no effects on α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated eEPSCs of these GCs. Furthermore, application of SKF did not affect AMPA receptor-mediated miniature EPSCs of GCs, suggesting that activation of σR1 did not change the release of glutamate from bipolar cells. These results suggest that σR1 may be involved in the regulation of output signaling of GCs by preferentially modulating NMDA receptor-mediated eEPSCs of these retinal neurons.  相似文献   

13.
Summary In vivo voltammetry was used in freely moving rats to study the processes whereby striatal dopamine (DA) release is regulated by corticostriatal glutamatergic neurons. Electrical stimulation of the cerebral cortex was found to markedly increase the striatal DA-related voltammetric signal amplitude. Similar enhancements have been observed after intracerebroventricular administration of 10nmoles glutamate, quisqualate and AMPA, whereas NMDA was found to decrease the amplitude of the striatal signals. The NMDA receptor antagonist APV did not significantly affect the voltammetric signal but prevented the NMDA-induced depression of the DA-related signals. These data are in agreement with those obtained in numerous previous studies suggesting that the glutamatergic corticostriatal neurons exert activatory effects on the striatal DA release via non-NMDA receptors. The mechanism involved might be of a presynaptic nature. The role of the NMDA receptors may however consist of modulating the dopaminergic transmission phasically and in a depressive way, which would be consistent with behavioural data suggesting the existence of a functional antagonism between the activity of the corticostriatal glutamatergic and nigrostriatal dopaminergic systems.Abbreviations Glu glutamate - DA dopamine - NMDA N-methyl-D-aspartate - CPP 3-(2-carboxypiperazin-4µl)propyl-1-phosphonic acid - AMPA -amino-3-hydroxy-5-metylisoxazole-4-propionic acid - APV aminophosphonovaleric acid - DOPAC dihydroxyphenylacetic acid - HVA homovanillic acid - DARPP 32 dopamine-cAMP-regulated phosphoprotein 32 - CSF cerebrospinal fluid Laboratory associated with the University of Aix-Marseille II  相似文献   

14.
15.
16.
17.
Glutamate in the peripheral nervous system is involved in neuropathic pain, yet we know little how nerve injury alters responses to this neurotransmitter in primary sensory neurons. We recorded neuronal responses from the ex-vivo preparations of the dorsal root ganglia (DRG) one week following a chronic constriction injury (CCI) of the sciatic nerve in adult rats. We found that small diameter DRG neurons (<30 µm) exhibited increased excitability that was associated with decreased membrane threshold and rheobase, whereas responses in large diameter neurons (>30 µm) were unaffected. Puff application of either glutamate, or the selective ionotropic glutamate receptor agonists alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainic acid (KA), or the group I metabotropic receptor (mGluR) agonist (S)-3,5-dihydroxyphenylglycine (DHPG), induced larger inward currents in CCI DRGs compared to those from uninjured rats. N-methyl-D-aspartate (NMDA)-induced currents were unchanged. In addition to larger inward currents following CCI, a greater number of neurons responded to glutamate, AMPA, NMDA, and DHPG, but not to KA. Western blot analysis of the DRGs revealed that CCI resulted in a 35% increase in GluA1 and a 60% decrease in GluA2, the AMPA receptor subunits, compared to uninjured controls. mGluR1 receptor expression increased by 60% in the membrane fraction, whereas mGluR5 receptor subunit expression remained unchanged after CCI. These results show that following nerve injury, small diameter DRG neurons, many of which are nociceptive, have increased excitability and an increased response to glutamate that is associated with changes in receptor expression at the neuronal membrane. Our findings provide further evidence that glutamatergic transmission in the periphery plays a role in nociception.  相似文献   

18.
The prefrontal cortex (PFC), a key brain region for cognitive and emotional processes, is highly regulated by dopaminergic inputs. The dopamine D4 receptor, which is enriched in PFC, has been implicated in mental disorders, such as attention deficit-hyperactivity disorder and schizophrenia. Recently we have found homeostatic regulation of AMPA receptor-mediated synaptic transmission in PFC pyramidal neurons by the D4 receptor, providing a potential mechanism for D4 in stabilizing cortical excitability. Because stress is tightly linked to adaptive and maladaptive changes associated with mental health and disorders, we examined the synaptic actions of D4 in stressed rats. We found that neural excitability was elevated by acute stress and dampened by repeated stress. D4 activation produced a potent reduction of excitatory transmission in acutely stressed animals and a marked increase of excitatory transmission in repeatedly stressed animals. These effects of D4 targeted GluA2-lacking AMPA receptors and relied on the bi-directional regulation of calcium/calmodulin kinase II activity. The restoration of PFC glutamatergic transmission in stress conditions may enable D4 receptors to serve as a synaptic stabilizer in normal and pathological conditions.  相似文献   

19.
Abstract: Mechanisms of non-NMDA receptor-mediated excitotoxicity were studied in embryonic rat hippocampal cultures using kainic acid (KA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) as agonists. Under basal culture conditions, overnight treatment with AMPA resulted in negligible excitotoxicity as assessed by phase-contrast microscopy and measurement of lactate dehydrogenase (LDH) release. In contrast, similar treatment with KA resulted in marked excitotoxic morphologic changes and release of LDH. Cotreatment of cultures with AMPA but not NMDA effectively blocked KA toxicity, suggesting that AMPA-induced rapid desensitization of the AMPA/KA receptor could account for the lack of prominent direct toxicity as well as AMPA's ability to block KA toxicity. To test this hypothesis, cultures were briefly pretreated with 10 μ M cyclothiazide, a drug reported to block desensitization of the AMPA/KA receptor, and then exposed overnight to cyclothiazide plus AMPA and/or KA. Cyclothiazide-treated cultures were now vulnerable to AMPA as well as KA; moreover, AMPA was unable to block KA toxicity completely, suggesting that cyclothiazide impaired AMPA/KA receptor desensitization. These and related studies suggest that a regulatory site may exist on the AMPA/KA receptor that modulates non-NMDA receptor-mediated excitotoxicity.  相似文献   

20.
Liu T  Kong D  Shah BP  Ye C  Koda S  Saunders A  Ding JB  Yang Z  Sabatini BL  Lowell BB 《Neuron》2012,73(3):511-522
AgRP neuron activity drives feeding and weight gain whereas that of nearby POMC neurons does the opposite. However, the role of excitatory glutamatergic input in controlling these neurons is unknown. To?address this question, we generated mice lacking NMDA receptors (NMDARs) on either AgRP or POMC neurons. Deletion of NMDARs from AgRP neurons markedly reduced weight, body fat and food intake whereas deletion from POMC neurons had no effect. Activation of AgRP neurons by fasting, as assessed by c-Fos, Agrp and Npy mRNA expression, AMPA receptor-mediated EPSCs, depolarization and firing rates, required NMDARs. Furthermore, AgRP but not POMC neurons have dendritic spines and increased glutamatergic input onto AgRP neurons caused by fasting was paralleled by an increase in spines, suggesting fasting induced synaptogenesis and spinogenesis. Thus glutamatergic synaptic transmission and its modulation by NMDARs play key roles?in controlling AgRP neurons and determining the cellular and behavioral response to fasting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号