首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Abstract

The present study was carried out to evaluate the nitrate contamination in groundwater and ascertain the associated health risks to rural populations in the agricultural area of the Kadava River basin. A total of (80) eighty representative samples from rural habitat located in agricultural fields were collected during pre- and postmonsoon seasons of 2011, which are mainly used for drinking and irrigation. The chemical results confirm that, 52.5 and 65% groundwater samples from pre- and postmonsoon season are unfit for drinking because of high nitrate contents exceeding the limit of nitrate (>45?mg L?1) recommended by the BIS. The oral and dermal exposure pathways were calculated for different age group based on US EPA and ICMR standards. HQ1 is much higher than the critical limit of 1 which increases the risk from 92.5 to 95% groundwater samples, while value of HQ2 is far below to the critical value of 1; hence, all age groups free from risk. THQ values depicts that, children were at greater risk followed by infants and adults. Therefore, it is immensely important to regulate the use of nitrogen complex fertilizer and groundwater management practices should be implemented to prevent the associated risks to human health.  相似文献   

2.
《农业工程》2022,42(5):485-500
The quality of the groundwater in the study area was evaluated through various water quality indexes for drinking and irrigation purposes. To evaluate the water quality index, 186 groundwater samples were sampled during 2 different seasons, likely pre-monsoon (PRM) and post-monsoon (POM). The collected samples were measured for physical-chemical parameters like pH, EC, TDS, Na, K, Ca, Mg, Cl, HCO3, PO4, SO4, NO3 and H4SiO4. The research findings indicated that groundwater of the study area is approaching an alarming stage of its suitability for drinking purpose because a major percentage (i. e. 56%: PRM, 46%: POM) of samples are within poor category. Thus, the proper management strategy for water resources must be developed and a preventive management practice to address this issue must be implemented. Various water quality parameters such as electrical conductivity (EC), pH, salinity hazard, sodium hazard and permeability indexes (PI) were considered for irrigation water quality evaluation and it is inferred that the groundwater of the study area is suitable for irrigation. The PRM and POM samples with higher Na + and Cl concentrations were identified. The primary source of groundwater contamination is anthropogenic factors like domestic, agriculture effluents and mining activities. However, the groundwater of these regions is also greatly influenced by geogenic factors like weathering, rock-water interaction and precipitation which results in groundwater water level fluctuation. The research findings suggest the groundwater quality of this region is approaching an alarming stage for drinking purposes. Thus, developing a management strategy for drinking water sources and implementing preventive management practices to address this issue becomes imperative.  相似文献   

3.
《农业工程》2021,41(5):463-478
The sources of toxic trace elements from the rivers to be debouched into the sea through estuaries are either weathered naturally from the soils and rocks or introduced anthropogenicaly from point or non-point sources, in labile form or in particulate form. The chemistry and ecology of an estuarine system are entirely different from the fluvial as well as the marine system. To gain a better understanding of the geochemical behavior of physico-chemical parameters, major ions and trace elements and to examine variations in associated chemical fluxes, 20 water samples were collected throughout the Manakudy estuary and analyzed during pre and post monsoon season. The major ion sequence of abundance is followed as Na > Mg > K > Ca > NO3 > SiO4 > P > NO2 with respect to the mean values during both monsoons. Among the trace metals, the mean concentration of Fe, Zn, Mn, and Pb are 4128, 42, 36, & 5.18 μg/l in premonsoon and 2064, 31,37, 25, & 6.17 μg/l in postmonsoon is found as high when compared to Cu, Cr, Cd and Co. To precisely identify the toxicity level of trace metals in water, the contamination factor (CF) and potential ecological risk index (PERI) were computed. Cu recorded as highly contaminating metal in estuarine water followed Zn based on CF values. The PERI values show moderate to high risk in premonsoon and moderate to significantly high risk in postmonsoon water. The physico-chemical parameters, major ions and trace elements are interrelated components of water quality properties which controls the estuarine water ecosystem. So that the enrichment and overloading of these components are by the geogenic and anthropogenic processes that adversely affects the species diversity, metabolism and the population of habitats. It is recommended for strategic management plans must be implemented to control the overloading of pollutants in Manakudy estuarine water.  相似文献   

4.
Abstract

Elevated nitrate concentration in groundwater is a worldwide problem. Continuous exposure to high levels of nitrate in groundwater may cause adverse health effects among residents who use groundwater for consumption. Therefore, this study was conducted to identify the nitrate distribution and its potential health risk assessment from semi-arid region of Peddavagu in Central Telangana (PCT), South India. Groundwater samples were collected from thirty five locations and analyzed for nitrate and other water quality parameters. Nitrate (NO3-) in groundwater was observed to vary from 17 to 120?mg/L, with a mean of 58.74?mg/L. About 57% of samples exceeded the maximum acceptable limit of Indian drinking water standard. About, 40% of groundwater samples drinking water quality index (DWQI) is good, while 60% of groundwater falls in poor quality for drinking purposes. Health risk maps were created based on hazard quotient to quantify the potential health risk of the residents using US Environmental Protection Agency (US EPA) health risk assessment model. Health risk assessment revealed that mean total hazard index (HItotal) for men, women, and children were found as 1.42E?+?00, 1.67E?+?00, and 1.95E?+?00, respectively. Results exhibited that children are at high health risk than men and women in the PCT. Further, the human exposure to the NO3- contaminated water was above the critical limit of non-carcinogenic risk.  相似文献   

5.
Around 150 million people are at risk from arsenic-contaminated groundwater in India and Bangladesh. Multiple metal analysis in Bangladesh has found other toxic elements above the World Health Organization (WHO) health-based drinking water guidelines which significantly increases the number of people at risk due to drinking groundwater. In this study, drinking water samples from the Bongaon area (North 24 Parganas district, West Bengal, India) were analyzed for multiple metal contamination in order to evaluate groundwater quality on the neighbourhood scale. Each sample was analyzed for arsenic (As), boron (B), barium (Ba), chromium (Cr), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), and uranium (U). Arsenic was found above the WHO health-based drinking water guideline in 50% of these tubewells. Mn and B were found at significant concentrations in 19% and 6% of these tubewells, respectively. The maps of As, Mn, and B concentrations suggest that approximately 75% of this area has no safe tubewells. The concentrations of As, Mn, B, and many other toxic elements are independent of each other. The concentrations of Pb and U were not found above WHO health-based drinking water guidelines but they were statistically related to each other (p-value = 0.001). An analysis of selected isotopes in the Uranium, Actinium, and Thorium Radioactive Decay Series revealed the presence of thorium (Th) in 31% of these tubewells. This discovery of Th, which does not have a WHO health-based drinking water guideline, is a potential public health challenge. In sum, the widespread presence and independent distribution of other metals besides As must be taken into consideration for drinking water remediation strategies involving well switching or home-scale water treatment.  相似文献   

6.
Entomological survey was conducted to know the breeding habitat preference of the forest breeder malaria vector Anopheles baimaii, known earlier as An. dirus species D in the northeastern region of India. Breeding potential of the vector in forest areas was found to be high in water stored in jungle pool (69.84%) followed by elephant footprints with clear water (39.13%) and with turbid water (26.19%), whereas in forest fringe areas, the vector breeding was more prominent in elephant footprints: 65.11% in clear water and 62.5% in turbid water. Although other habitats had shown only low breeding of the vector, all types of habitats were positively correlated with malaria occurrence. Cattle hoof marks (r = 0.998) and elephant footprint (turbid; r = 0.999) explained nearly the same amount of variance. It was observed that deforestation as well as elephant habitat-type destruction had engendered man–elephant conflicts intensively in fringe areas. Seasonal abundance pattern of this vector was found to vary in forest and forest fringe areas in relation to different habitats. Seasonal abundance of An. baimaii was significantly different in different habitats. The Tukey post hoc comparisons indicated that the abundance of An. baimaii in different habitats was significantly higher (P < 0.05) in monsoon season than that of premonsoon and postmonsoon seasons. No significant difference was observed between premonsoon and postmonsoon seasons. The findings therefore will eventually help to predict transmission of malaria in targeted area and in formulating an improved malaria control program in the northeastern region of India.  相似文献   

7.
Groundwater is a vital source of drinking water in Siddipet rural and urban regions of Central Telangana, South India and it is a major cause of fluoride toxicity in humans. The intake of elevated fluoride has a significant impact on human health, especially immediate problems that are seen in children's teeth. The primary aim of the study was to identify the seasonal variation in fluoride concentration and associated health risks in the residents of the study region. To assess the fluoride contamination in groundwater, a total of 158 samples were analyzed in two seasons. The mean concentrations of fluoride 1.26 mg/L and 2.21 mg/L were 1.46 and 2.8 times higher than the acceptable limit of 1.5 mg/L, before and after monsoon respectively. To estimate the human health risks due to the ingestion of elevated fluoride through drinking water, hazard quotient fluoride (HQFluoride) was calculated using the United States Environmental Protection Agency method. HQFluoride values were 0.44–2.44 and 0.89–4.67 for children, 0.36–2.00 and 0.73–3.82 for females, and 0.41–2.26 and 0.82–4.31 for males in pre- and post-monsoon seasons respectively, suggesting emphatically greater risk than the acceptable limits (HQFluoride > 1), which generates health risks.  相似文献   

8.
Multivariate water quality parameters and statistical analysis were used to evaluate the factors controlling coastal drinking water quality and associated health risks among fisherfolks. Multidrug-resistant strains noticed in 400 isolates show 62% Salmonella; 53% Shigella sp.; 48% E. coli; and 36% Vibrio sp. in groundwater sample. In component analysis seawater intrusion, redox reaction, anthropogenic pollution, and weather factors were responsible for more than 93.3% in postmonsoon and 89.4% in summer season, respectively, for Cumulative %. In epidemiology study, 66% and 76% of municipally supplied drinking water were used in Pondicherry and Rameshwaram, respectively, compared to the amount of groundwater (34% and 20%) used in the study area. Similarly, Pondicherry and Rameshwaram areas recorded open defecation instances of 94% and 82%, respectively where less than 5% of the population used hygienic sanitation as part of the Clean India Mission in rural areas.  相似文献   

9.
This study was aimed to examine the risk of chronic arsenic (As) exposure for the residents living in Nui Phao, Thai Nguyen in the northern Vietnam. Groundwater, vegetables, human hair, and nail samples were collected from volunteers living in Nui Phao. The results revealed that 75% of the groundwater samples had As exceeding the World Health Organization (WHO) drinking water guideline of 10 µg L?1. The result of As concentration for most of the vegetable samples was greater than the WHO/FAO safe (0.1?mg kg?1). The result of hair and nail samples in this study showed that 3.5 and 20% of the samples had As concentration exceeding the level of As toxicity in hair and nails, respectively. The result of health risks indicated that the potential health risk of As contamination is greater for groundwater than vegetables. The total hazard quotient (HQ) value through vegetables ingestion and drinking water exceeded 1.0 suggesting potential health risk for local residents. The calculation of potential carcinogenic risk through both consumption of vegetables and drinking water was low cancer risk in adults. Other food sources and the exposure pathways are needed to exactly assess health risks in this area.  相似文献   

10.

Background

There is an urgent need for an improved understanding of the sources, distributions and properties of atmospheric aerosol in order to control the atmospheric pollution over northeastern Himalayas where rising anthropogenic interferences from rapid urbanization and development is becoming an increasing concern.

Methodology/Principal Findings

An extensive aerosol sampling program was conducted in Darjeeling (altitude ∼2200 meter above sea level (masl), latitude 27°01′N and longitude 88°15′E), a high altitude station in northeastern Himalayas, during January–December 2005. Samples were collected using a respirable dust sampler and a fine dust sampler simultaneously. Ion chromatograph was used to analyze the water soluble ionic species of aerosol. The average concentrations of fine and coarse mode aerosol were found to be 29.5±20.8 µg m−3 and 19.6±11.1 µg m−3 respectively. Fine mode aerosol dominated during dry seasons and coarse mode aerosol dominated during monsoon. Nitrate existed as NH4NO3 in fine mode aerosol during winter and as NaNO3 in coarse mode aerosol during monsoon. Gas phase photochemical oxidation of SO2 during premonsoon and aqueous phase oxidation during winter and postmonsoon were the major pathways for the formation of SO4 2− in the atmosphere. Long range transport of dust aerosol from arid regions of western India was observed during premonsoon. The acidity of fine mode aerosol was higher in dry seasons compared to monsoon whereas the coarse mode acidity was higher in monsoon compared to dry seasons. Biomass burning, vehicular emissions and dust particles were the major types of aerosol from local and continental regions whereas sea salt particles were the major types of aerosol from marine source regions.

Conclusions/Significance

The year-long data presented in this paper provide substantial improvements to the heretofore poor knowledge regarding aerosol chemistry over northeastern Himalayas, and should be useful to policy makers in making control strategies.  相似文献   

11.
Abstract

The present study aimed to evaluate the suitability for drinking purpose of shallow groundwater near the Béni-Mellal wastewater treatment lagoon based on various physicochemical, heavy metals, and bacteriological parameter analyses. The physicochemical results revealed that some of the samples do not comply with the Moroccan and/or WHO standards for drinking water. Parameters including turbidity, TH, Na+, Li+, Ba2+, Ca2+ (~47.1% of samples), Cd (~52.9% of samples), Fe (~82.4% of samples), Pb (~58.8% of samples), T. coliforms, and E. coli exceeded the drinking limits. The statistical analyses revealed that the shallow groundwater chemistry is mainly controlled by geogenic and anthropogenic sources. For quality assessment, using the Moroccan groundwater assessment grid, the values of EC and Cl, NO3, NH4+, oxidability, and E. coli, fixed as pollution indicators, showed that most of the wells showed medium-to-poor quality, 14% of them have a very poor water quality, and 20% of them belong to the bad water quality. According to geometric and arithmetic DWQI values, the groundwater quality was frequently fair to good, needing treatment or at least disinfection before public consumption. A sensitivity analysis results indicated that Fe, Cd, Cr, Pb, and E. coli have an important impact on the DWQI computing.  相似文献   

12.
13.
Intensive agriculture and industrial activities have resulted in contamination in rivers and groundwater quality, which threatens human health. In this study, we used comprehensive physiochemical indicators to assess the quality of groundwater used for drinking and irrigation in addition to the potential risks to local residents in a riverbank filtration site. Human health risks through drinking water intake and dermal contact were also estimated. Moreover, we analyzed the spatial distribution regularities of health risk values in a riverbank filtration site. The assessment results revealed that NH4–N, NO2–N, F?, Mn, and As are main contaminants affecting groundwater quality and that 62% of the total samples is suitable for a variety of purposes. All groundwater in the study area is suitable for irrigation based on the sodium adsorption ratio (SAR), residual sodium carbonate (RSC), Na percentage (%Na), and U.S. Salinity Laboratory (USSL) and Wilcox diagrams. The health risk assessment suggests that residents in the study area are at high health risk, and women and children face higher risk than men in both non-carcinogenic and carcinogenic risks. The spatial distribution regularities of health risk values suggest that the human health risk value of each groundwater sample is different in the study area and has certain regularity. Therefore, effective measurements must be taken to address the groundwater contamination and to reduce the human health risks.  相似文献   

14.
In the Mexico City metropolitan area (MCMA), 70% of the water for 18 million inhabitants is derived from the Basin of Mexico regional aquifer. To provide an overview of the quality of the groundwater, a longitudinal study was conducted, in which 30 sites were randomly selected from 1,575 registered extraction wells. Samples were taken before and after chlorine disinfection during both the rainy and dry seasons (2000-2001). Microbiological parameters (total coliforms, fecal coliforms, streptococci, and Vibrio spp.), the presence of Helicobacter pylori, and physicochemical parameters, including the amount of trihalomethanes (THMs), were determined. Although microorganisms and inorganic and organic compounds were evident, they did not exceed current permissible limits. Chlorine levels were low, and the bacterial counts were not affected by chlorine disinfection. Eighty-four bacterial species from nine genera normally associated with fecal contamination were identified in water samples. H. pylori was detected in at least 10% of the studied samples. About 40% of the samples surpassed the THM concentration allowed by Mexican and U.S. regulations, with levels of chloroform being high. The quality of the water distributed to the MCMA varied between the rainy and dry seasons, with higher levels of pH, nitrates, chloroform, bromodichloromethane, total organic carbon, and fecal streptococci during the dry season. This study showed that the groundwater distribution system is susceptible to contamination and that there is a need for a strict, year-round disinfection strategy to ensure adequate drinking-water quality. This situation in one of the world's megacities may reflect what is happening in large urban centers in developing countries which rely on a groundwater supply.  相似文献   

15.
In the Mexico City metropolitan area (MCMA), 70% of the water for 18 million inhabitants is derived from the Basin of Mexico regional aquifer. To provide an overview of the quality of the groundwater, a longitudinal study was conducted, in which 30 sites were randomly selected from 1,575 registered extraction wells. Samples were taken before and after chlorine disinfection during both the rainy and dry seasons (2000-2001). Microbiological parameters (total coliforms, fecal coliforms, streptococci, and Vibrio spp.), the presence of Helicobacter pylori, and physicochemical parameters, including the amount of trihalomethanes (THMs), were determined. Although microorganisms and inorganic and organic compounds were evident, they did not exceed current permissible limits. Chlorine levels were low, and the bacterial counts were not affected by chlorine disinfection. Eighty-four bacterial species from nine genera normally associated with fecal contamination were identified in water samples. H. pylori was detected in at least 10% of the studied samples. About 40% of the samples surpassed the THM concentration allowed by Mexican and U.S. regulations, with levels of chloroform being high. The quality of the water distributed to the MCMA varied between the rainy and dry seasons, with higher levels of pH, nitrates, chloroform, bromodichloromethane, total organic carbon, and fecal streptococci during the dry season. This study showed that the groundwater distribution system is susceptible to contamination and that there is a need for a strict, year-round disinfection strategy to ensure adequate drinking-water quality. This situation in one of the world's megacities may reflect what is happening in large urban centers in developing countries which rely on a groundwater supply.  相似文献   

16.
Abstract

The principal objectives of this study were to evaluate groundwater quality and human health risks of fluoride contamination in Shasler Vagu (SV) watershed of Nalgonda district, India. For this purpose, 107 groundwater samples were collected and analyzed various physcio-chemical parameters including fluoride, and Gibbs diagrams, Hill–Piper trilinear diagram, and groundwater quality index (GWQI) were applied to understand the groundwater chemistry and its suitability for drinking purpose. In addition to this, non-carcinogenic health risks of high fluoride intake were also evaluated using the US Environmental Protection Agency model for adults and children in the study region. Groundwater chemistry is mainly controlled by HCO3?-Ca2+-Mg2+ and Na+-HCO3? type, and rock weathering. Assessment of GWQI indicates that 76% of groundwater sources in the study region have poor quality for drinking uses. Results reveal that fluoride concentration ranged from 1.4 to 5.9?mg/L in the groundwater samples, which was significantly higher than the recommended limit of 1.5?mg/L for drinking uses. Results of hazard quotient (HQ) estimates are in the ranges of 0.90–3.78 and 1.21–5.11 in adults and children populations of the study region, respectively. About 98% of adults and 100% of children population of SV watershed are at very high risks of chronic toxicity by excess fluoride intake.  相似文献   

17.
The aim of this study is to assess the risk to human health presented by total chromium (CrT) and hexavalent chromium (Cr(VI)) due to the intake of the groundwater (shallow aquifer) in the Aosta Valley region. One hundred and fifty-three groundwater samples were collected from seventeen locations in the Aosta Valley region during the years 2007–2015 to determine the CrT and Cr(VI) concentrations. The cancer risk (CR) and non-cancer risk, reflected by the hazard quotient (HQ) were estimated using the United States Environmental Protection Agency methods. The concentrations of CrT exceeded the limit for drinking water established by Italian legislative decree at the sampling location Ao23 in all the years studied. Moreover, Cr(VI) concentrations exceeded the limit for drinking water at many sampling locations in the study area. The estimated HQ values for non-cancer risk suggested that all the sampling locations were well within the safe zone during all the years except for location Ao23 in many years considered. The CR levels were very low to high risk in the groundwater of the study area. The results of this analysis suggest that a suitable treatment of the groundwater is required before its utilization for drinking purposes. This study could be of great value for the prevention of risk to human health and for groundwater resource management.  相似文献   

18.
Abstract

The present study, deals with the estimation of degrees of contamination, ecological and human health risk of heavy metals (As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn) in sediments, surface water and fishes, which were collected from middle stretch of Damodar river and ponds at Asansol, which receives outfall of various coal-based industries. Metal content in the premonsoon season was higher than the postmonsoon, due to influx of rainwater. The heavy metal pollution indices (HPI) at some locations was observed up to 1.45 times than recommended value and the cadmium (Cd) was found dominating metal for high HPI value. The Cd concentration in surface water and pore water varied from 2.8 to 14.9?µg/L and 15.3–57.0?µg/L, respectively, which was up to 6 times higher than the permissible limit. Ecological risk assessment for sediments illustrates ‘moderate to considerable ecological risk’, especially because of Cd. Hazard index (HI) calculated to identify potential human health risk by dermal exposure of surface water was <0.1, indicating ‘negligible non-cancer risk’ for all age group of people. However, HI varied from 0.73 to 1.49 for adult and 1.37–2.78 by consumption of fishes indicates children have higher ‘non-cancer risk’ than adult.  相似文献   

19.
Abstract

A comprehensive study was conducted from a semi-arid part of Yavtmal District, Maharashtra, India through combination approaches of geochemical modeling and its health consequences. The groundwater quality assessment shows that 55% of groundwater samples have the concentration of fluoride above the desirable limit. The high Na+/Ca+ ratio (>1.0) suggest the occurrence of cation exchange, which is further supported by Scholler’ chloro-alkaline indices. The geochemical modeling reveals that the existence of CaCO3 precipitation and CaF2 in groundwater. Simulation analysis indicates the dissolution of calcite, gypsum, and albite and precipitation of dolomite, fluorite, halite, and K-feldspar along with cation exchange as the main water–rock interactions influencing the groundwater chemistry. This is further significantly supported by pollution index of groundwater (PIG). PIG indicates about 18% of total samples fall in very high pollution zone, 3% in high pollution zone, 8% in moderate pollution zone, 24% in low pollution zone, and remaining (47%) express insignificant pollution. The 28% of subject studied have skeletal fluorosis varying from mild to severe type. In different pollution zones, the affected persons by dental fluorosis are varying from 15% to 41%. A proper monitoring and treatment are required for high fluoride water before its use for drinking and cooking.  相似文献   

20.
Structure of bacterial communities in diverse freshwater habitats   总被引:1,自引:0,他引:1  
The structures and dynamics of bacterial communities from raw source water, groundwater, and drinking water before and after filtration were studied in four seasons of a year, with culture-independent methods. Genomic DNA from water samples was analyzed by the polymerase chain reaction?- denaturing gradient gel electrophoresis system and by cloning of the 16S rRNA gene. Water samples exhibited complex denaturing gradient gel electrophoresis genetic profiles composed of many bands, corresponding to a great variety of bacterial taxa. The bacterial communities of different seasons from the four sampling sites clustered into two major groups: (i) water before and after filtration, and (ii) source water and groundwater. Phylogenetic analyses of the clones from the autumn sampling revealed 13 phyla, 19 classes, and 155 operational taxonomic units. Of the clones, 66% showed less than 97% similarities to known bacterial species. Representatives of the phyla Proteobacteria, Bacteroidetes, and Actinobacteria were found at all four sampling sites. Species belonging to the phylum Firmicutes were an important component of the microbial community in filtered water. Representatives of Enterobacteriaceae were not detected, indicating the absence of fecal pollution in the drinking water. Differences were found in the bacterial populations that were sampled from the same sites in different seasons. Each water habitat had a unique bacterial profile. Drinking water harbors diverse and dynamic microbial communities, part of which may be active and resilient to chlorine disinfection. This study provides, for the first time, basic data for uncultivable drinking water bacteria in Israel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号