首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Recent data suggest that insulators organize chromatin architecture in the nucleus. The best studied Drosophila insulator proteins, dCTCF (a homolog of the vertebrate insulator protein CTCF) and Su(Hw), are DNA-binding zinc finger proteins. Different isoforms of the BTB-containing protein Mod(mdg4) interact with Su(Hw) and dCTCF. The CP190 protein is a cofactor for the dCTCF and Su(Hw) insulators. CP190 is required for the functional activity of insulator proteins and is involved in the aggregation of the insulator proteins into specific structures named nuclear speckles. Here, we have shown that the nuclear distribution of CP190 is dependent on the level of EAST protein, an essential component of the interchromatin compartment. EAST interacts with CP190 and Mod(mdg4)-67.2 proteins in vitro and in vivo. Over-expression of EAST in S2 cells leads to an extrusion of the CP190 from the insulator bodies containing Su(Hw), Mod(mdg4)-67.2, and dCTCF. In consistent with the role of the insulator bodies in assembly of protein complexes, EAST over-expression led to a striking decrease of the CP190 binding with the dCTCF and Su(Hw) dependent insulators and promoters. These results suggest that EAST is involved in the regulation of CP190 nuclear localization.  相似文献   

2.
3.
Insulator sequences guide the function of distantly located enhancer elements to the appropriate target genes by blocking inappropriate interactions. In Drosophila, five different insulator binding proteins have been identified, Zw5, BEAF-32, GAGA factor, Su(Hw) and dCTCF. Only dCTCF has a known conserved counterpart in vertebrates. Here we find that the structurally related factors dCTCF and Su(Hw) have distinct binding targets. In contrast, the Su(Hw) interacting factor CP190 largely overlapped with dCTCF binding sites and interacts with dCTCF. Binding of dCTCF to targets requires CP190 in many cases, whereas others are independent of CP190. Analysis of the bithorax complex revealed that six of the borders between the parasegment specific regulatory domains are bound by dCTCF and by CP190 in vivo. dCTCF null mutations affect expression of Abdominal-B, cause pharate lethality and a homeotic phenotype. A short pulse of dCTCF expression during larval development rescues the dCTCF loss of function phenotype. Overall, we demonstrate the importance of dCTCF in fly development and in the regulation of abdominal segmentation.  相似文献   

4.
Chromatin insulators of higher eukaryotes functionally divide the genome into active and inactive domains. Furthermore, insulators regulate enhancer/promoter communication, which is evident from the Drosophila bithorax locus in which a multitude of regulatory elements control segment specific gene activity. Centrosomal protein 190 (CP190) is targeted to insulators by CTCF or other insulator DNA-binding factors. Chromatin analyses revealed that insulators are characterized by open and nucleosome depleted regions. Here, we wanted to identify chromatin modification and remodelling factors required for an enhancer blocking function. We used the well-studied Fab-8 insulator of the bithorax locus to apply a genome-wide RNAi screen for factors that contribute to the enhancer blocking function of CTCF and CP190. Among 78 genes required for optimal Fab-8 mediated enhancer blocking, all four components of the NURF complex as well as several subunits of the dREAM complex were most evident. Mass spectrometric analyses of CTCF or CP190 bound proteins as well as immune precipitation confirmed NURF and dREAM binding. Both co-localise with most CP190 binding sites in the genome and chromatin immune precipitation showed that CP190 recruits NURF and dREAM. Nucleosome occupancy and histone H3 binding analyses revealed that CP190 mediated NURF binding results in nucleosomal depletion at CP190 binding sites. Thus, we conclude that CP190 binding to CTCF or to other DNA binding insulator factors mediates recruitment of NURF and dREAM. Furthermore, the enhancer blocking function of insulators is associated with nucleosomal depletion and requires NURF and dREAM.  相似文献   

5.
Insulators are DNA‐protein complexes that play a central role in chromatin organization and regulation of gene expression. In Drosophila different proteins, dCTCF, Su(Hw), and BEAF bind to specific subsets of insulators most of them having in common CP190. It has been shown that there are a number of CP190‐binding sites that are not shared with any other known insulator protein, suggesting that other proteins could cooperate with CP190 to regulate insulator activity. Here we report on the identification of two previously uncharacterized proteins as CP190‐interacting proteins, that we have named Ibf1 and Ibf2. These proteins localize at insulator bodies and associate with chromatin at CP190‐binding sites throughout the genome. We also show that Ibf1 and Ibf2 are DNA‐binding proteins that form hetero‐oligomers that mediate CP190 binding to chromatin. Moreover, Ibf1 and Ibf2 are necessary for insulator activity in enhancer‐blocking assays and Ibf2 null mutation cause a homeotic phenotype. Taken together our data reveal a novel pathway of CP190 recruitment to chromatin that is required for insulator activity.  相似文献   

6.

Background

The CCCTC-binding factor (CTCF) is a highly conserved insulator protein that plays various roles in many cellular processes. CTCF is one of the main architecture proteins in higher eukaryotes, and in combination with other architecture proteins and regulators, also shapes the three-dimensional organization of a genome. Experiments show CTCF partially remains associated with chromatin during mitosis. However, the role of CTCF in the maintenance and propagation of genome architectures throughout the cell cycle remains elusive.

Results

We performed a comprehensive bioinformatics analysis on public datasets of Drosophila CTCF (dCTCF). We characterized dCTCF-binding sites according to their occupancy status during the cell cycle, and identified three classes: interphase-mitosis-common (IM), interphase-only (IO) and mitosis-only (MO) sites. Integrated function analysis showed dCTCF-binding sites of different classes might be involved in different biological processes, and IM sites were more conserved and more intensely bound. dCTCF-binding sites of the same class preferentially localized closer to each other, and were highly enriched at chromatin syntenic and topologically associating domains boundaries.

Conclusions

Our results revealed different functions of dCTCF during the cell cycle and suggested that dCTCF might contribute to the establishment of the three-dimensional architecture of the Drosophila genome by maintaining local chromatin compartments throughout the whole cell cycle.

Electronic supplementary material

The online version of this article (doi:10.1186/s40659-015-0019-6) contains supplementary material, which is available to authorized users.  相似文献   

7.
Coordinated control of dCTCF and gypsy chromatin insulators in Drosophila   总被引:2,自引:0,他引:2  
CTCF plays a central role in vertebrate insulators and forms part of the Fab-8 insulator in Drosophila. dCTCF is present at hundreds of sites in the Drosophila genome, where it is located at the boundaries between bands and interbands in polytene chromosomes. dCTCF colocalizes with CP190, which is required for proper binding of dCTCF to chromatin, but not with the other gypsy insulator proteins Su(Hw) or Mod(mdg4)2.2. Mutations in the CP190 gene affect Fab-8 insulator activity, suggesting that CP190 is an essential component of both gypsy and dCTCF insulators. dCTCF is present at specific nuclear locations, forming large insulator bodies that overlap with those formed by Su(Hw), Mod(mdg4)2.2, and CP190. The results suggest that Su(Hw) and dCTCF may be the DNA-binding components of two different subsets of insulators that share CP190 and cooperate in the formation of insulator bodies to regulate the organization of the chromatin fiber in the nucleus.  相似文献   

8.
Insulators are DNA sequences that control the interactions among genomic regulatory elements and act as chromatin boundaries. A thorough understanding of their location and function is necessary to address the complexities of metazoan gene regulation. We studied by ChIP–chip the genome-wide binding sites of 6 insulator-associated proteins—dCTCF, CP190, BEAF-32, Su(Hw), Mod(mdg4), and GAF—to obtain the first comprehensive map of insulator elements in Drosophila embryos. We identify over 14,000 putative insulators, including all classically defined insulators. We find two major classes of insulators defined by dCTCF/CP190/BEAF-32 and Su(Hw), respectively. Distributional analyses of insulators revealed that particular sub-classes of insulator elements are excluded between cis-regulatory elements and their target promoters; divide differentially expressed, alternative, and divergent promoters; act as chromatin boundaries; are associated with chromosomal breakpoints among species; and are embedded within active chromatin domains. Together, these results provide a map demarcating the boundaries of gene regulatory units and a framework for understanding insulator function during the development and evolution of Drosophila.  相似文献   

9.
Chromatin insulators affect interactions between promoters and enhancers/silencers and function as barriers for the spreading of repressive chromatin. Drosophila insulator protein dCTCF marks active promoters and boundaries of many histone H3K27 trimethylation domains associated with repressed chromatin. In particular, dCTCF binds to such boundaries between the parasegment-specific regulatory domains of the Bithorax complex. Here we demonstrate that the evolutionarily conserved protein ENY2 is recruited to the zinc-finger domain of dCTCF and is required for the barrier activity of dCTCF-dependent insulators in transgenic lines. Inactivation of ENY2 by RNAi in BG3 cells leads to the spreading of H3K27 trimethylation and Pc protein at several dCTCF boundaries. The results suggest that evolutionarily conserved ENY2 is responsible for barrier activity mediated by the dCTCF protein.  相似文献   

10.
The homeotic Abdominal-B (Abd-B) gene expression depends on a modular cis-regulatory region divided into discrete functional domains (iab) that control the expression of the gene in a particular segment of the fly. These domains contain regulatory elements implicated in both initiation and maintenance of homeotic gene expression and elements that separate the different domains. In this paper we have performed an extensive analysis of the iab-6 regulatory region, which regulates Abd-B expression at abdominal segment A6 (PS11), and we have characterized two new polycomb response elements (PREs) within this domain. We report that PREs at Abd-B cis-regulatory domains present a particular chromatin structure which is nuclease accessible all along Drosophila development and both in active and repressed states. We also show that one of these regions contains a dCTCF and CP190 dependent activity in transgenic enhancer-blocking assays, suggesting that it corresponds to the Fab-6 boundary element of the Drosophila bithorax complex.  相似文献   

11.
12.
13.
《Epigenetics》2013,8(9):1261-1270
Chromatin insulators affect interactions between promoters and enhancers/silencers and function as barriers for the spreading of repressive chromatin. Drosophila insulator protein dCTCF marks active promoters and boundaries of many histone H3K27 trimethylation domains associated with repressed chromatin. In particular, dCTCF binds to such boundaries between the parasegment-specific regulatory domains of the Bithorax complex. Here we demonstrate that the evolutionarily conserved protein ENY2 is recruited to the zinc-finger domain of dCTCF and is required for the barrier activity of dCTCF-dependent insulators in transgenic lines. Inactivation of ENY2 by RNAi in BG3 cells leads to the spreading of H3K27 trimethylation and Pc protein at several dCTCF boundaries. The results suggest that evolutionarily conserved ENY2 is responsible for barrier activity mediated by the dCTCF protein.  相似文献   

14.
15.
16.
17.
18.
Changes in the physical interaction between cis-regulatory DNA sequences and proteins drive the evolution of gene expression. However, it has proven difficult to accurately quantify evolutionary rates of such binding change or to estimate the relative effects of selection and drift in shaping the binding evolution. Here we examine the genome-wide binding of CTCF in four species of Drosophila separated by between ∼2.5 and 25 million years. CTCF is a highly conserved protein known to be associated with insulator sequences in the genomes of human and Drosophila. Although the binding preference for CTCF is highly conserved, we find that CTCF binding itself is highly evolutionarily dynamic and has adaptively evolved. Between species, binding divergence increased linearly with evolutionary distance, and CTCF binding profiles are diverging rapidly at the rate of 2.22% per million years (Myr). At least 89 new CTCF binding sites have originated in the Drosophila melanogaster genome since the most recent common ancestor with Drosophila simulans. Comparing these data to genome sequence data from 37 different strains of Drosophila melanogaster, we detected signatures of selection in both newly gained and evolutionarily conserved binding sites. Newly evolved CTCF binding sites show a significantly stronger signature for positive selection than older sites. Comparative gene expression profiling revealed that expression divergence of genes adjacent to CTCF binding site is significantly associated with the gain and loss of CTCF binding. Further, the birth of new genes is associated with the birth of new CTCF binding sites. Our data indicate that binding of Drosophila CTCF protein has evolved under natural selection, and CTCF binding evolution has shaped both the evolution of gene expression and genome evolution during the birth of new genes.  相似文献   

19.
20.
Extracting isolated Drosophila centrosomes with 2 M KI generates salt-resistant scaffolds that lack the centrosomal proteins CP190, CP60, centrosomin, and γ-tubulin. To clarify the role of these proteins in microtubule nucleation by centrosomes and to identify additional centrosome components required for nucleation, we have developed an in vitro complementation assay for centrosome function. Centrosome aster formation is reconstituted when these inactive, salt-stripped centrosome scaffolds are supplemented with a soluble fraction of a Drosophila embryo extract. The CP60 and CP190 can be removed from this extract without effect, whereas removing the γ-tubulin destroys the complementing activity. Consistent with these results, we find no evidence that these three proteins form a complex together. Instead, γ-tubulin is found in two distinct protein complexes of 240,000 and ∼3,000,000 D. The larger complex, which is analogous to the Xenopus γ-tubulin ring complex (γTuRC) (Zheng, Y., M.L. Wong, B. Alberts, and T. Mitchison. 1995. Nature. 378:578–583), is necessary but not sufficient for complementation. An additional factor found in the extract is required. These results provide the first evidence that the γTuRC is required for microtubule nucleation at the centrosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号