首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The multifunctional movement protein (MP) of Tomato mosaic tobamovirus (ToMV) is involved in viral cell-to-cell movement, symptom development, and resistance gene recognition. However, it remains to be elucidated how ToMV MP plays such diverse roles in plants. Here, we show that ToMV MP interacts with the Rubisco small subunit (RbCS) of Nicotiana benthamiana in vitro and in vivo. In susceptible N. benthamiana plants, silencing of NbRbCS enabled ToMV to induce necrosis in inoculated leaves, thus enhancing virus local infectivity. However, the development of systemic viral symptoms was delayed. In transgenic N. benthamiana plants harboring Tobacco mosaic virus resistance-22 (Tm-22), which mediates extreme resistance to ToMV, silencing of NbRbCS compromised Tm-22-dependent resistance. ToMV was able to establish efficient local infection but was not able to move systemically. These findings suggest that NbRbCS plays a vital role in tobamovirus movement and plant antiviral defenses.Plant viruses use at least one movement protein (MP) to facilitate viral spread between plant cells via plasmodesmata (PD; Lucas and Gilbertson, 1994; Ghoshroy et al., 1997). Among viral MPs, the MP of tobamoviruses, such as Tobacco mosaic virus (TMV) and its close relative Tomato mosaic virus (ToMV), is the best characterized. TMV MP specifically accumulates in PD and modifies the plasmodesmatal size exclusion limit in mature source leaves or tissues (Wolf et al., 1989; Deom et al., 1990; Ding et al., 1992). TMV MP and viral genomic RNA form a mobile ribonucleoprotein complex that is essential for cell-to-cell movement of viral infection (Watanabe et al., 1984; Deom et al., 1987; Citovsky et al., 1990, 1992; Kiselyova et al., 2001; Kawakami et al., 2004; Waigmann et al., 2007). TMV MP also enhances intercellular RNA silencing (Vogler et al., 2008) and affects viral symptom development, host range, and host susceptibility to virus (Dardick et al., 2000; Bazzini et al., 2007). Furthermore, ToMV MP is identified as an avirulence factor that is recognized by tomato (Solanum lycopersicum) resistance proteins Tobacco mosaic virus resistance-2 (Tm-2) and Tm-22 (Meshi et al., 1989; Lanfermeijer et al., 2004). Indeed, tomato Tm-22 confers extreme resistance against TMV and ToMV in tomato plants and even in heterologous tobacco (Nicotiana tabacum) plants (Lanfermeijer et al., 2003, 2004).To date, several host factors that interact with TMV MP have been identified. These TMV MP-binding host factors include cell wall-associated proteins such as pectin methylesterase (Chen et al., 2000), calreticulin (Meshi et al., 1989), ANK1 (Ueki et al., 2010), and the cellular DnaJ-like protein MPIP1 (Shimizu et al., 2009). Many cytoskeletal components such as actin filaments (McLean et al., 1995), microtubules (Heinlein et al., 1995), and the microtubule-associated proteins MPB2C (Kragler et al., 2003) and EB1a (Brandner et al., 2008) also interact with TMV MP. Most of these factors are involved in TMV cell-to-cell movement.Rubisco catalyzes the first step of CO2 assimilation in photosynthesis and photorespiration. The Rubisco holoenzyme is a heteropolymer consisting of eight large subunits (RbCLs) and eight small subunits (RbCSs). RbCL was reported to interact with the coat protein of Potato virus Y (Feki et al., 2005). Both RbCS and RbCL were reported to interact with the P3 proteins encoded by several potyviruses, including Shallot yellow stripe virus, Onion yellow dwarf virus, Soybean mosaic virus, and Turnip mosaic virus (Lin et al., 2011). Proteomic analysis of the plant-virus interactome revealed that RbCS participates in the formation of virus complexes of Rice yellow mottle virus (Brizard et al., 2006). However, the biological function of Rubisco in viral infection remains unknown.In this study, we show that RbCS plays an essential role in virus movement, host susceptibility, and Tm-22-mediated extreme resistance in the ToMV-host plant interaction.  相似文献   

9.
Abscisic acid (ABA) induces stomatal closure and inhibits light-induced stomatal opening. The mechanisms in these two processes are not necessarily the same. It has been postulated that the ABA receptors involved in opening inhibition are different from those involved in closure induction. Here, we provide evidence that four recently identified ABA receptors (PYRABACTIN RESISTANCE1 [PYR1], PYRABACTIN RESISTANCE-LIKE1 [PYL1], PYL2, and PYL4) are not sufficient for opening inhibition in Arabidopsis (Arabidopsis thaliana). ABA-induced stomatal closure was impaired in the pyr1/pyl1/pyl2/pyl4 quadruple ABA receptor mutant. ABA inhibition of the opening of the mutant’s stomata remained intact. ABA did not induce either the production of reactive oxygen species and nitric oxide or the alkalization of the cytosol in the quadruple mutant, in accordance with the closure phenotype. Whole cell patch-clamp analysis of inward-rectifying K+ current in guard cells showed a partial inhibition by ABA, indicating that the ABA sensitivity of the mutant was not fully impaired. ABA substantially inhibited blue light-induced phosphorylation of H+-ATPase in guard cells in both the mutant and the wild type. On the other hand, in a knockout mutant of the SNF1-related protein kinase, srk2e, stomatal opening and closure, reactive oxygen species and nitric oxide production, cytosolic alkalization, inward-rectifying K+ current inactivation, and H+-ATPase phosphorylation were not sensitive to ABA.The phytohormone abscisic acid (ABA), which is synthesized in response to abiotic stresses, plays a key role in the drought hardiness of plants. Reducing transpirational water loss through stomatal pores is a major ABA response (Schroeder et al., 2001). ABA promotes the closure of open stomata and inhibits the opening of closed stomata. These effects are not simply the reverse of one another (Allen et al., 1999; Wang et al., 2001; Mishra et al., 2006).A class of receptors of ABA was identified (Ma et al., 2009; Park et al., 2009; Santiago et al., 2009; Nishimura et al., 2010). The sensitivity of stomata to ABA was strongly decreased in quadruple and sextuple mutants of the ABA receptor genes PYRABACTIN RESISTANCE/PYRABACTIN RESISTANCE-LIKE/REGULATORY COMPONENT OF ABSCISIC ACID RECEPTOR (PYR/PYL/RCAR; Nishimura et al., 2010; Gonzalez-Guzman et al., 2012). The PYR/PYL/RCAR receptors are involved in the early ABA signaling events, in which a sequence of interactions of the receptors with PROTEIN PHOSPHATASE 2Cs (PP2Cs) and subfamily 2 SNF1-RELATED PROTEIN KINASES (SnRK2s) leads to the activation of downstream ABA signaling targets in guard cells (Cutler et al., 2010; Kim et al., 2010; Weiner et al., 2010). Studies of Commelina communis and Vicia faba suggested that the ABA receptors involved in stomatal opening are not the same as the ABA receptors involved in stomatal closure (Allan et al., 1994; Anderson et al., 1994; Assmann, 1994; Schwartz et al., 1994). The roles of PYR/PYL/RCAR in either stomatal opening or closure remained to be elucidated.Blue light induces stomatal opening through the activation of plasma membrane H+-ATPase in guard cells that generates an inside-negative electrochemical gradient across the plasma membrane and drives K+ uptake through voltage-dependent inward-rectifying K+ channels (Assmann et al., 1985; Shimazaki et al., 1986; Blatt, 1987; Schroeder et al., 1987; Thiel et al., 1992). Phosphorylation of the penultimate Thr of the plasma membrane H+-ATPase is a prerequisite for blue light-induced activation of the H+-ATPase (Kinoshita and Shimazaki, 1999, 2002). ABA inhibits H+-ATPase activity through dephosphorylation of the penultimate Thr in the C terminus of the H+-ATPase in guard cells, resulting in prevention of the opening (Goh et al., 1996; Zhang et al., 2004; Hayashi et al., 2011). Inward-rectifying K+ currents (IKin) of guard cells are negatively regulated by ABA in addition to through the decline of the H+ pump-driven membrane potential difference (Schroeder and Hagiwara, 1989; Blatt, 1990; McAinsh et al., 1990; Schwartz et al., 1994; Grabov and Blatt, 1999; Saito et al., 2008). This down-regulation of ion transporters by ABA is essential for the inhibition of stomatal opening.A series of second messengers has been shown to mediate ABA-induced stomatal closure. Reactive oxygen species (ROS) produced by NADPH oxidases play a crucial role in ABA signaling in guard cells (Pei et al., 2000; Zhang et al., 2001; Kwak et al., 2003; Sirichandra et al., 2009; Jannat et al., 2011). Nitric oxide (NO) is an essential signaling component in ABA-induced stomatal closure (Desikan et al., 2002; Guo et al., 2003; Garcia-Mata and Lamattina, 2007; Neill et al., 2008). Alkalization of cytosolic pH in guard cells is postulated to mediate ABA-induced stomatal closure in Arabidopsis (Arabidopsis thaliana) and Pisum sativum and Paphiopedilum species (Irving et al., 1992; Gehring et al., 1997; Grabov and Blatt, 1997; Suhita et al., 2004; Gonugunta et al., 2008). These second messengers transduce environmental signals to ion channels and ion transporters that create the driving force for stomatal movements (Ward et al., 1995; MacRobbie, 1998; Garcia-Mata et al., 2003).In this study, we examined the mobilization of second messengers, the inactivation of IKin, and the suppression of H+-ATPase phosphorylation evoked by ABA in Arabidopsis mutants to clarify the downstream signaling events of ABA signaling in guard cells. The mutants included a quadruple mutant of PYR/PYL/RCARs, pyr1/pyl1/pyl2/pyl4, and a mutant of a SnRK2 kinase, srk2e.  相似文献   

10.
11.
12.
The membrane-bound BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 (BAK1) is a common coreceptor in plants and regulates distinct cellular programs ranging from growth and development to defense against pathogens. BAK1 functions through binding to ligand-stimulated transmembrane receptors and activating their kinase domains via transphosphorylation. In the absence of microbes, BAK1 activity may be suppressed by different mechanisms, like interaction with the regulatory BIR (for BAK1-INTERACTING RECEPTOR-LIKE KINASE) proteins. Here, we demonstrated that BAK1 overexpression in Arabidopsis (Arabidopsis thaliana) could cause detrimental effects on plant development, including growth arrest, leaf necrosis, and reduced seed production. Further analysis using an inducible expression system showed that BAK1 accumulation quickly stimulated immune responses, even under axenic conditions, and led to increased resistance to pathogenic Pseudomonas syringae pv tomato DC3000. Intriguingly, our study also revealed that the plasma membrane-associated BAK1 ectodomain was sufficient to induce autoimmunity, indicating a novel mode of action for BAK1 in immunity control. We postulate that an excess of BAK1 or its ectodomain could trigger immune receptor activation in the absence of microbes through unbalancing regulatory interactions, including those with BIRs. Consistently, mutation of SUPPRESSOR OF BIR1-1, which encodes an emerging positive regulator of transmembrane receptors in plants, suppressed the effects of BAK1 overexpression. In conclusion, our findings unravel a new role for the BAK1 ectodomain in the tight regulation of Arabidopsis immune receptors necessary to avoid inappropriate activation of immunity.Plants rely on their innate immune system to detect microbes and mount an active defense against pathogens. The plant immune system is traditionally considered to be composed of two layers (Jones and Dangl, 2006). The first one is based on the activity of pattern-recognition receptors (PRRs) that can detect microbe-associated molecular patterns (MAMPs) and trigger what is termed pattern-triggered immunity (PTI; Boller and Felix, 2009). Many plant pathogens can suppress this basal defense response using virulence factors termed effectors. In a second layer of defense, plants can make use of resistance (R) proteins to recognize the presence of pathogen effectors resulting in effector-triggered immunity (ETI), which resembles an accelerated and amplified PTI response (Jones and Dangl, 2006).Plants utilize plasma membrane-associated receptor-like proteins (RLPs) or receptor-like kinases (RLKs) as PRRs to sense specific signals through their ectodomains (Böhm et al., 2014). RLPs and RLKs require the function of additional RLKs to form active receptor complexes and transfer the external signal to the inside of the cells (Zhang and Thomma, 2013; Cao et al., 2014; Liebrand et al., 2014). The best-known coreceptor is the leucine-rich repeat (LRR)-RLK BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 (BAK1), which was originally identified as a positive regulator and partner for the brassinosteroid (BR) receptor BRASSINOSTEROID INSENSITIVE1 (BRI1; Li et al., 2002; Nam and Li, 2002). BRs refer to phytohormones that promote plant growth and development (Fujioka and Yokota, 2003). Thus, loss-of-function mutations in BAK1 negatively impact Arabidopsis (Arabidopsis thaliana) growth due to improper cell elongation. In short, bak1 mutants display compact rosettes with round-shaped leaves and shorter petioles and phenocopy weak bri1 mutations (Li et al., 2002; Nam and Li, 2002). Conversely, certain mutants affected in the BAK1 ectodomain show increased activity in the BR signaling pathway and share phenotypic similarities with BRI1-overexpressing lines (Wang et al., 2001), including elongated hypocotyls, petioles, and leaf blades and an overall increase in height (Jaillais et al., 2011; Chung et al., 2012).Furthermore, BAK1 is involved in the containment of cell death, independently of its function in BR signaling. Arabidopsis bak1 knockout mutants exhibit extensive cell death spreading after microbial infection (Kemmerling et al., 2007). In addition, spontaneous cell death develops in Arabidopsis double mutant plants lacking both BAK1 (also named SOMATIC EMBRYOGENESIS RECEPTOR KINASE3 [SERK3]) and its closest homolog BAK1-LIKE1 (BKK1)/SERK4, causing seedling lethality even in the absence of microbes (He et al., 2007). Similar phenotypes are observed in Arabidopsis, rice (Oryza sativa), and Nicotiana benthamiana by lowering the expression of BAK1 and its homologs (Heese et al., 2007; Jeong et al., 2010; Park et al., 2011). Interestingly, typical defense responses, like the production of reactive oxygen species and constitutive callose deposition, are also detected in those plants, although the basis for this phenomenon remains poorly understood (He et al., 2007; Kemmerling et al., 2007; Park et al., 2011; Gao et al., 2013).On the other hand, BAK1 is widely studied as a key component of immune signaling pathways due to its known association with different PRRs, including RLKs and RLPs (Kim et al., 2013; Böhm et al., 2014). Upon MAMP perception, PRRs induce signaling and physiological defense responses like mitogen-activated protein kinase (MAPK) activation, reactive oxygen species and ethylene production, and modifications in gene expression, all of which contribute to PTI. Among the best-studied examples of BAK1-regulated PRRs are two LRR-receptor kinases, ELONGATION FACTOR Tu RECEPTOR (EFR), which senses the active epitope elf18 of the bacterial elongation factor Tu, and the flagellin receptor FLAGELLIN SENSING2 (FLS2), which senses the active epitope flg22 of bacterial flagellin (Gómez-Gómez and Boller, 2000; Chinchilla et al., 2006; Zipfel et al., 2006). Immediately after flg22 binding to its LRR ectodomain, FLS2 forms a tight complex with BAK1 (Chinchilla et al., 2007; Sun et al., 2013). This heteromerization step may bring the two kinase domains closer and thereby induce, within seconds, the phosphorylation of BAK1 and FLS2 (Schulze et al., 2010; Schwessinger et al., 2011). These steps are sufficient to initiate the immune signaling pathway, even if the ectodomains and kinase domains are switched between FLS2 and BAK1 (Albert et al., 2013).While PRRs, such as FLS2 and EFR, are extremely sensitive to even subnanomolar concentrations of their ligands, a tight control of these receptors is expected, since constitutive activation of defense responses in plants dramatically impairs fitness and growth (Tian et al., 2003; Korves and Bergelson, 2004). However, the mechanisms that underlie the attenuation of PRR activation or prevent these receptors from signaling constitutively remain largely unknown (Macho and Zipfel, 2014). Several independent observations indicate that BAK1 and FLS2 are present in close spatial proximity in preformed complexes at the plasma membrane (Chinchilla et al., 2007; Schulze et al., 2010; Roux et al., 2011). Negative regulation of immune signaling prior to ligand perception could happen within the PRR complex and depend on conformational changes following the association of FLS2 with flg22 (Meindl et al., 2000; Schulze et al., 2010; Mueller et al., 2012). Additionally, other partners might prevent the constitutive interaction of BAK1 with FLS2. Such could be the case for the LRR-RLK BAK1-INTERACTING RECEPTOR-LIKE KINASEs (BIRs): BIR2 was recently discovered as a substrate and negative regulator for BAK1, while the absence of BIR1 leads to the activation of defense induction and strong dwarfism (Gao et al., 2009; Halter et al., 2014b). Furthermore, MAMP signaling may be constrained by phosphatases, as suggested in earlier studies (Felix et al., 1994; Gómez-Gómez et al., 2001) and recently shown for the protein phosphatase 2A, which controls PRR activation likely by modulating the BAK1 phosphostatus (Segonzac et al., 2014). These examples illustrate the variety of mechanisms that may tightly control BAK1 activity.In this work, we show that regulation of BAK1 accumulation is crucial for Arabidopsis fitness, as its overexpression leads to dwarfism and premature death. The phenotype differs from BR mutants and is very reminiscent of or even identical to the autoimmune phenotype of plants showing constitutive activation of R proteins (Oldroyd and Staskawicz, 1998; Bendahmane et al., 2002; Zhang et al., 2003). BAK1 overexpression is associated with constitutive activation of defense pathway(s) involving the general coregulator of RLPs, SUPPRESSOR OF BIR1-1 (SOBIR1; Liebrand et al., 2013, 2014). To our knowledge, this is the first report and comprehensive characterization of such an autoimmunity phenotype for Arabidopsis plants overexpressing BAK1, and it highlights the importance of the regulation of PTI overactivation.  相似文献   

13.
14.
15.
16.
17.
Plant metabolism is characterized by a unique complexity on the cellular, tissue, and organ levels. On a whole-plant scale, changing source and sink relations accompanying plant development add another level of complexity to metabolism. With the aim of achieving a spatiotemporal resolution of source-sink interactions in crop plant metabolism, a multiscale metabolic modeling (MMM) approach was applied that integrates static organ-specific models with a whole-plant dynamic model. Allowing for a dynamic flux balance analysis on a whole-plant scale, the MMM approach was used to decipher the metabolic behavior of source and sink organs during the generative phase of the barley (Hordeum vulgare) plant. It reveals a sink-to-source shift of the barley stem caused by the senescence-related decrease in leaf source capacity, which is not sufficient to meet the nutrient requirements of sink organs such as the growing seed. The MMM platform represents a novel approach for the in silico analysis of metabolism on a whole-plant level, allowing for a systemic, spatiotemporally resolved understanding of metabolic processes involved in carbon partitioning, thus providing a novel tool for studying yield stability and crop improvement.Plants are of vital significance as a source of food (Grusak and DellaPenna, 1999; Rogalski and Carrer, 2011), feed (Lu et al., 2011), energy (Tilman et al., 2006; Parmar et al., 2011), and feedstocks for the chemical industry (Metzger and Bornscheuer, 2006; Kinghorn et al., 2011). Given the close connection between plant metabolism and the usability of plant products, there is a growing interest in understanding and predicting the behavior and regulation of plant metabolic processes. In order to increase crop quality and yield, there is a need for methods guiding the rational redesign of the plant metabolic network (Schwender, 2009).Mathematical modeling of plant metabolism offers new approaches to understand, predict, and modify complex plant metabolic processes. In plant research, the issue of metabolic modeling is constantly gaining attention, and different modeling approaches applied to plant metabolism exist, ranging from highly detailed quantitative to less complex qualitative approaches (for review, see Giersch, 2000; Morgan and Rhodes, 2002; Poolman et al., 2004; Rios-Estepa and Lange, 2007).A widely used modeling approach is flux balance analysis (FBA), which allows the prediction of metabolic capabilities and steady-state fluxes under different environmental and genetic backgrounds using (non)linear optimization (Orth et al., 2010). Assuming steady-state conditions, FBA has the advantage of not requiring the knowledge of kinetic parameters and, therefore, can be applied to model detailed, large-scale systems. In recent years, the FBA approach has been applied to several different plant species, such as maize (Zea mays; Dal’Molin et al., 2010; Saha et al., 2011), barley (Hordeum vulgare; Grafahrend-Belau et al., 2009b; Melkus et al., 2011; Rolletschek et al., 2011), rice (Oryza sativa; Lakshmanan et al., 2013), Arabidopsis (Arabidopsis thaliana; Poolman et al., 2009; de Oliveira Dal’Molin et al., 2010; Radrich et al., 2010; Williams et al., 2010; Mintz-Oron et al., 2012; Cheung et al., 2013), and rapeseed (Brassica napus; Hay and Schwender, 2011a, 2011b; Pilalis et al., 2011), as well as algae (Boyle and Morgan, 2009; Cogne et al., 2011; Dal’Molin et al., 2011) and photoautotrophic bacteria (Knoop et al., 2010; Montagud et al., 2010; Boyle and Morgan, 2011). These models have been used to study different aspects of metabolism, including the prediction of optimal metabolic yields and energy efficiencies (Dal’Molin et al., 2010; Boyle and Morgan, 2011), changes in flux under different environmental and genetic backgrounds (Grafahrend-Belau et al., 2009b; Dal’Molin et al., 2010; Melkus et al., 2011), and nonintuitive metabolic pathways that merit subsequent experimental investigations (Poolman et al., 2009; Knoop et al., 2010; Rolletschek et al., 2011). Although FBA of plant metabolic models was shown to be capable of reproducing experimentally determined flux distributions (Williams et al., 2010; Hay and Schwender, 2011b) and generating new insights into metabolic behavior, capacities, and efficiencies (Sweetlove and Ratcliffe, 2011), challenges remain to advance the utility and predictive power of the models.Given that many plant metabolic functions are based on interactions between different subcellular compartments, cell types, tissues, and organs, the reconstruction of organ-specific models and the integration of these models into interacting multiorgan and/or whole-plant models is a prerequisite to get insight into complex plant metabolic processes organized on a whole-plant scale (e.g. source-sink interactions). Almost all FBA models of plant metabolism are restricted to one cell type (Boyle and Morgan, 2009; Knoop et al., 2010; Montagud et al., 2010; Cogne et al., 2011; Dal’Molin et al., 2011), one tissue or one organ (Grafahrend-Belau et al., 2009b; Hay and Schwender, 2011a, 2011b; Pilalis et al., 2011; Mintz-Oron et al., 2012), and only one model exists taking into account the interaction between two cell types by specifying the interaction between mesophyll and bundle sheath cells in C4 photosynthesis (Dal’Molin et al., 2010). So far, no model representing metabolism at the whole-plant scale exists.Considering whole-plant metabolism raises the problem of taking into account temporal and environmental changes in metabolism during plant development and growth. Although classical static FBA is unable to predict the dynamics of metabolic processes, as the network analysis is based on steady-state solutions, time-dependent processes can be taken into account by extending the classical static FBA to a dynamic flux balance analysis (dFBA), as proposed by Mahadevan et al. (2002). The static (SOA) and dynamic optimization approaches introduced in this work provide a framework for analyzing the transience of metabolism by integrating kinetic expressions to dynamically constrain exchange fluxes. Due to the requirement of knowing or estimating a large number of kinetic parameters, so far dFBA has only been applied to a plant metabolic model once, to study the photosynthetic metabolism in the chloroplasts of C3 plants by a simplified model of five biochemical reactions (Luo et al., 2009). Integrating a dynamic model into a static FBA model is an alternative approach to perform dFBA.In this study, a multiscale metabolic modeling (MMM) approach was applied with the aim of achieving a spatiotemporal resolution of cereal crop plant metabolism. To provide a framework for the in silico analysis of the metabolic dynamics of barley on a whole-plant scale, the MMM approach integrates a static multiorgan FBA model and a dynamic whole-plant multiscale functional plant model (FPM) to perform dFBA. The performance of the novel whole-plant MMM approach was tested by studying source-sink interactions during the seed developmental phase of barley plants.  相似文献   

18.
Plant resistance to phytopathogenic microorganisms mainly relies on the activation of an innate immune response usually launched after recognition by the plant cells of microbe-associated molecular patterns. The plant hormones, salicylic acid (SA), jasmonic acid, and ethylene have emerged as key players in the signaling networks involved in plant immunity. Rhamnolipids (RLs) are glycolipids produced by bacteria and are involved in surface motility and biofilm development. Here we report that RLs trigger an immune response in Arabidopsis (Arabidopsis thaliana) characterized by signaling molecules accumulation and defense gene activation. This immune response participates to resistance against the hemibiotrophic bacterium Pseudomonas syringae pv tomato, the biotrophic oomycete Hyaloperonospora arabidopsidis, and the necrotrophic fungus Botrytis cinerea. We show that RL-mediated resistance involves different signaling pathways that depend on the type of pathogen. Ethylene is involved in RL-induced resistance to H. arabidopsidis and to P. syringae pv tomato whereas jasmonic acid is essential for the resistance to B. cinerea. SA participates to the restriction of all pathogens. We also show evidence that SA-dependent plant defenses are potentiated by RLs following challenge by B. cinerea or P. syringae pv tomato. These results highlight a central role for SA in RL-mediated resistance. In addition to the activation of plant defense responses, antimicrobial properties of RLs are thought to participate in the protection against the fungus and the oomycete. Our data highlight the intricate mechanisms involved in plant protection triggered by a new type of molecule that can be perceived by plant cells and that can also act directly onto pathogens.In their environment, plants are challenged by potentially pathogenic microorganisms. In response, they express a set of defense mechanisms including preformed structural and chemical barriers, as well as an innate immune response quickly activated after microorganism perception (Boller and Felix, 2009). Plant innate immunity is triggered after recognition by pattern recognition receptors of conserved pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs, respectively) or by plant endogenous molecules released by pathogen invasion and called danger-associated molecular patterns (Boller and Felix, 2009; Dodds and Rathjen, 2010). This first step of recognition leads to the activation of MAMP-triggered immunity (MTI). Successful pathogens can secrete effectors that interfere or suppress MTI, resulting in effector-triggered susceptibility. A second level of perception involves the direct or indirect recognition by specific receptors of pathogen effectors leading to effector-triggered immunity (ETI; Boller and Felix, 2009; Dodds and Rathjen, 2010). Whereas MTI and ETI are thought to involve common signaling network, ETI is usually quantitatively stronger than MTI and associated with more sustained and robust immune responses (Katagiri and Tsuda, 2010; Tsuda and Katagiri, 2010).The plant hormones, salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) have emerged as key players in the signaling networks involved in MTI and ETI (Robert-Seilaniantz et al., 2007; Tsuda et al., 2009; Katagiri and Tsuda, 2010; Mersmann et al., 2010; Tsuda and Katagiri, 2010; Robert-Seilaniantz et al., 2011). Interactions between these signal molecules allow the plant to activate and/or modulate an appropriate spectrum of responses, depending on the pathogen lifestyle, necrotroph or biotroph (Glazebrook, 2005; Koornneef and Pieterse, 2008). It is assumed that JA and ET signaling pathways are important for resistance to necrotrophic fungi including Botrytis cinerea and Alternaria brassicicola (Thomma et al., 2001; Ferrari et al., 2003; Glazebrook, 2005). Infection of Arabidopsis (Arabidopsis thaliana) with B. cinerea causes the induction of the JA/ET responsive gene PLANT DEFENSIN1.2 (PDF1.2; Penninckx et al., 1996; Zimmerli et al., 2001). Induction of PDF1.2 by B. cinerea is blocked in ethylene-insensitive2 (ein2) and coronatine-insensitive1 (coi1) mutants that are respectively defective in ET and JA signal transduction pathways. Moreover, ein2 and coi1 plants are highly susceptible to B. cinerea infection (Thomma et al., 1998; Thomma et al., 1999). JA/ET-dependent responses do not seem to be usually induced during resistance to biotrophs, but they can be effective if they are stimulated prior to pathogen challenge (Glazebrook, 2005). Plants impaired in SA signaling are highly susceptible to biotrophic and hemibiotrophic pathogens. Following pathogen infection, SA hydroxylase (NahG), enhanced disease susceptibility5 (eds5), or SA induction-deficient2 (sid2) plants are unable to accumulate high SA levels and they display heightened susceptibility to Pseudomonas syringae pv tomato (Pst), Hyaloperonospora arabidopsidis, or Erysiphe orontii (Delaney et al., 1994; Lawton et al., 1995; Wildermuth et al., 2001; Nawrath et al., 2002; Vlot et al., 2009). Mutants that are insensitive to SA, such as nonexpressor of PATHOGENESIS-RELATED (PR) genes1 (npr1), have enhanced susceptibility to these pathogens (Cao et al., 1994; Glazebrook et al., 1996; Shah et al., 1997; Dong, 2004). According to some reports, plant defense against necrotrophs also involves SA. Arabidopsis plants expressing the nahG gene and infected with B. cinerea show larger lesions compared with wild-type plants (Govrin and Levine, 2002). In tobacco (Nicotiana tabacum), acidic isoforms of PR3 and PR5 gene that are specifically induced by SA (Ménard et al., 2004) are up-regulated after challenge by B. cinerea (El Oirdi et al., 2010). Resistance to some necrotrophs like Fusarium graminearum involves both SA and JA signaling pathways (Makandar et al., 2010). It is assumed that SA and JA signaling can be antagonistic (Bostock, 2005; Koornneef and Pieterse, 2008; Pieterse et al., 2009; Thaler et al., 2012). In Arabidopsis, SA inhibits JA-dependent resistance against A. brassicicola or B. cinerea (Spoel et al., 2007; Koornneef et al., 2008). Recent studies demonstrated that ET modulates the NPR1-mediated antagonism between SA and JA (Leon-Reyes et al., 2009; Leon-Reyes et al., 2010a) and suppression by SA of JA-responsive gene expression is targeted at a position downstream of the JA biosynthesis pathway (Leon-Reyes et al., 2010b). Synergistic effects of SA- and JA-dependent signaling are also well documented (Schenk et al., 2000; van Wees et al., 2000; Mur et al., 2006) and induction of some defense responses after pathogen challenge requires intact JA, ET, and SA signaling pathways (Campbell et al., 2003).Isolated MAMPs trigger defense responses that also require the activation of SA, JA, and ET signaling pathways (Tsuda et al., 2009; Katagiri and Tsuda, 2010). For instance, treatment with the flagellin peptide flg22 induces many SA-related genes including SID2, EDS5, NPR1, and PR1 (Ferrari et al., 2007; Denoux et al., 2008), causes SA accumulation (Tsuda et al., 2008; Wang et al., 2009), and activates ET signaling (Bethke et al., 2009; Mersmann et al., 2010). Local application of lipopolysaccharides elevates the level of SA (Mishina and Zeier, 2007). The oomycete Pep13 peptide induces defense responses in potato (Solanum tuberosum) that require both SA and JA (Halim et al., 2009). Although signaling networks induced by isolated MAMPs are well documented, the contribution of SA, JA, and ET in MAMP- or PAMP-induced resistance to biotrophs and necrotrophs is poorly understood.Rhamnolipids (RLs) are glycolipids produced by various bacteria species including some Pseudomonas and Burkholderia species. They are essential for bacterial surface motility and biofilm development (Vatsa et al., 2010; Chrzanowski et al., 2012). RLs are potent stimulators of animal immunity (Vatsa et al., 2010). They have recently been shown to elicit plant defense responses and to induce resistance against B. cinerea in grapevine (Vitis vinifera; Varnier et al., 2009). They also participate to biocontrol activity of the plant beneficial bacteria Pseudomonas aeruginosa PNA1 against oomycetes (Perneel et al., 2008). However, the signaling pathways used by RLs to stimulate plant innate immunity are not known. To gain more insights into RL-induced MTI, we investigated RL-triggered defense responses and resistance to the necrotrophic fungus B. cinerea, the biotroph oomycete H. arabidopsidis, and the hemibiotroph bacterium Pst in Arabidopsis. Our results show that RLs trigger an innate immune response in Arabidopsis that protects the plant against these different lifestyle pathogens. We demonstrate that RL-mediated resistance involves separated signaling sectors that depend on the type of pathogen. In plants challenged by RLs, SA has a central role and participates to the restriction of the three pathogens. ET is fully involved in RL-induced resistance to the biotrophic oomycete and to the hemibiotrophic bacterium whereas JA is essential for the resistance to the necrotrophic fungus.  相似文献   

19.
The major plant polyamines (PAs) are the tetraamines spermine (Spm) and thermospermine (T-Spm), the triamine spermidine, and the diamine putrescine. PA homeostasis is governed by the balance between biosynthesis and catabolism; the latter is catalyzed by polyamine oxidase (PAO). Arabidopsis (Arabidopsis thaliana) has five PAO genes, AtPAO1 to AtPAO5, and all encoded proteins have been biochemically characterized. All AtPAO enzymes function in the back-conversion of tetraamine to triamine and/or triamine to diamine, albeit with different PA specificities. Here, we demonstrate that AtPAO5 loss-of-function mutants (pao5) contain 2-fold higher T-Spm levels and exhibit delayed transition from vegetative to reproductive growth compared with that of wild-type plants. Although the wild type and pao5 are indistinguishable at the early seedling stage, externally supplied low-dose T-Spm, but not other PAs, inhibits aerial growth of pao5 mutants in a dose-dependent manner. Introduction of wild-type AtPAO5 into pao5 mutants rescues growth and reduces the T-Spm content, demonstrating that AtPAO5 is a T-Spm oxidase. Recombinant AtPAO5 catalyzes the conversion of T-Spm and Spm to triamine spermidine in vitro. AtPAO5 specificity for T-Spm in planta may be explained by coexpression with T-Spm synthase but not with Spm synthase. The pao5 mutant lacking T-Spm oxidation and the acl5 mutant lacking T-Spm synthesis both exhibit growth defects. This study indicates a crucial role for T-Spm in plant growth and development.Polyamines (PAs) are low-molecular mass aliphatic amines that are present in almost all living organisms. Cellular PA concentrations are governed primarily by the balance between biosynthesis and catabolism. In plants, the major PAs are the diamine putrescine (Put), the triamine spermidine (Spd), and the tetraamines spermine (Spm) and thermospermine (T-Spm; Kusano et al., 2008; Alcázar et al., 2010; Mattoo et al., 2010; Takahashi and Kakehi, 2010; Tiburcio et al., 2014). Put is synthesized from Orn by Orn decarboxylase and/or from Arg by three sequential reactions catalyzed by Arg decarboxylase (ADC), agmatine iminohydrolase, and N-carbamoylputrescine amidohydrolase. Arabidopsis (Arabidopsis thaliana) does not contain an ORNITHINE DECARBOXYLASE gene (Hanfrey et al., 2001) and synthesizes Put from Arg via the ADC pathway. Put is further converted to Spd via an aminopropyltransferase reaction catalyzed by spermidine synthase (SPDS). In this reaction, an aminopropyl residue is transferred to Put from decarboxylated S-adenosyl-Met, which is synthesized by S-adenosyl-Met decarboxylase (SAMDC; Kusano et al., 2008). Spd is then converted to Spm or T-Spm, reactions catalyzed in Arabidopsis by spermine synthase (SPMS; encoded by SPMS) or thermospermine synthase (encoded by Acaulis5 [ACL5]), respectively (Hanzawa et al., 2000; Knott et al., 2007; Kakehi et al., 2008; Naka et al., 2010). A recent review reports that T-Spm is ubiquitously present in the plant kingdom (Takano et al., 2012).The PA catabolic pathway has been extensively studied in mammals. Spm and Spd acetylation by Spd/Spm-N1-acetyltransferase (Enzyme Commission no. 2.3.1.57) precedes the catabolism of PAs and is a rate-limiting step in the catabolic pathway (Wallace et al., 2003). A mammalian polyamine oxidase (PAO), which requires FAD as a cofactor, oxidizes N1-acetyl Spm and N1-acetyl Spd at the carbon on the exo-side of the N4-nitrogen to produce Spd and Put, respectively (Wang et al., 2001; Vujcic et al., 2003; Wu et al., 2003; Cona et al., 2006). Mammalian spermine oxidases (SMOs) perform oxidation of the carbon on the exo-side of the N4-nitrogen to produce Spd, 3-aminopropanal, and hydrogen peroxide (Vujcic et al., 2002; Cervelli et al., 2003; Wang et al., 2003). Thus, mammalian PAOs and SMOs are classified as back-conversion (BC)-type PAOs.In plants, Spm, T-Spm, and Spd are catabolized by PAO. Plant PAOs derived from maize (Zea mays) and barley (Hordeum vulgare) catalyze terminal catabolism (TC)-type reactions (Tavladoraki et al., 1998). TC-type PAOs oxidize the carbon at the endo-side of the N4-nitrogen of Spm and Spd to produce N-(3-aminopropyl)-4-aminobutanal and 4-aminobutanal, respectively, plus 1,3-diaminopropane and hydrogen peroxide (Cona et al., 2006; Angelini et al., 2008, 2010). The Arabidopsis genome contains five PAO genes, designated as AtPAO1 to AtPAO5. Four recombinant AtPAOs, AtPAO1 to AtPAO4, have been homogenously purified and characterized (Tavladoraki et al., 2006; Kamada-Nobusada et al., 2008; Moschou et al., 2008; Takahashi et al., 2010; Fincato et al., 2011, 2012). AtPAO1 to AtPAO4 possess activities that convert Spm (or T-Spm) to Spd, called partial BC, or they convert Spm (or T-Spm) first to Spd and subsequently to Put, called full BC. Ahou et al. (2014) report that recombinant AtPAO5 also catalyzes a BC-type reaction. Therefore, all Arabidopsis PAOs are BC-type enzymes (Kamada-Nobusada et al., 2008; Moschou et al., 2008; Takahashi et al., 2010; Fincato et al., 2011, 2012; Ahou et al., 2014). Four of the seven PAOs in rice (Oryza sativa; OsPAO1, OsPAO3, OsPAO4, and OsPAO5) catalyze BC-type reactions (Ono et al., 2012; Liu et al., 2014a), whereas OsPAO7 catalyzes a TC-type reaction (Liu et al., 2014b). OsPAO2 and OsPAO6 remain to be characterized, but may catalyze TC-type reactions based on their structural similarity with OsPAO7. Therefore, plants possess both TC-type and BC-type PAOs.PAs are involved in plant growth and development. Recent molecular genetic analyses in Arabidopsis indicate that metabolic blocks at the ADC, SPDS, or SAMDC steps lead to embryo lethality (Imai et al., 2004; Urano et al., 2005; Ge et al., 2006). Potato (Solanum tuberosum) plants with suppressed SAMDC expression display abnormal phenotypes (Kumar et al., 1996). It was also reported that hydrogen peroxide derived from PA catabolism affects root development and xylem differentiation (Tisi et al., 2011). These studies indicate that flux through metabolic and catabolic PA pathways is required for growth and development. The Arabidopsis acl5 mutant, which lacks T-Spm synthase activity, displays excessive differentiation of xylem tissues and a dwarf phenotype, especially in stems (Hanzawa et al., 2000; Kakehi et al., 2008, 2010). An allelic ACL5 mutant (thickvein [tkv]) exhibits a similar phenotype as that of acl5 (Clay and Nelson, 2005). These results indicate that T-Spm plays an important role in Arabidopsis xylem differentiation (Vera-Sirera et al., 2010; Takano et al., 2012).Here, we demonstrate that Arabidopsis pao5 mutants contain 2-fold higher T-Spm levels and exhibit aerial tissue growth retardation approximately 50 d after sowing compared with that of wild-type plants. Growth inhibition of pao5 stems and leaves at an early stage of development is induced by growth on media containing low T-Spm concentrations. Complementation of pao5 with AtPAO5 rescues T-Spm-induced growth inhibition. We confirm that recombinant AtPAO5 catalyzes BC of T-Spm (or Spm) to Spd. Our data strongly suggest that endogenous T-Spm levels in Arabidopsis are fine tuned, and that AtPAO5 regulates T-Spm homeostasis through a T-Spm oxidation pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号