首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ca2+-binding protein calmodulin (CaM) has been shown to bind directly to cytoplasmic domains of some G protein-coupled receptors, including the dopamine D2 receptor. CaM binds to the N-terminal portion of the long third intracellular loop of the D2 receptor, within an Arg-rich epitope that is also involved in the binding to Gi/o proteins and to the adenosine A2A receptor, with the formation of A2A-D2 receptor heteromers. In the present work, by using proteomics and bioluminescence resonance energy transfer (BRET) techniques, we provide evidence for the binding of CaM to the A2A receptor. By using BRET and sequential resonance energy transfer techniques, evidence was obtained for CaM-A2A-D2 receptor oligomerization. BRET competition experiments indicated that, in the A2A-D2 receptor heteromer, CaM binds preferentially to a proximal C terminus epitope of the A2A receptor. Furthermore, Ca2+ was found to induce conformational changes in the CaM-A2A-D2 receptor oligomer and to selectively modulate A2A and D2 receptor-mediated MAPK signaling in the A2A-D2 receptor heteromer. These results may have implications for basal ganglia disorders, since A2A-D2 receptor heteromers are being considered as a target for anti-parkinsonian agents.G-protein-coupled receptors are able to form homo- and hetero-oligomers with unique biochemical and functional characteristics (17), and they are easily detected in vitro by using biophysical techniques (810). Heteromers of adenosine A2A and dopamine D2 receptors were one of the first G-protein-coupled receptor heteromers to be described (11). A close physical interaction between both receptors was shown using co-immunoprecipitation and co-localization assays (11) and fluorescence and bioluminescence resonance energy transfer (FRET2 or BRET) techniques (1214). At the biochemical level, two types of antagonistic A2A-D2 receptor interactions have been discovered that may explain the A2A-D2 receptor interactions described both at the neuronal and behavioral level (11, 1518). First, by means of an allosteric interaction in the receptor heteromer, stimulation of A2A receptor decreases the affinity of D2 receptor for their agonists (12). Second, the stimulation of the Gi/o-protein-coupled D2 receptor inhibits the cAMP accumulation induced by the stimulation of the Gs/olf-protein-coupled A2A receptor (11, 17, 18). In view of the well known role of dopamine in Parkinson disease, schizophrenia, and drug addiction, it has been suggested that the A2A-D2 receptor interactions in the central nervous system may provide new therapeutic approaches to combat these disorders (16, 19).An epitope-epitope electrostatic interaction between an Arg-rich epitope of the N terminus of the third intracellular loop (3IL) of the D2 receptor and an epitope containing a phosphorylated Ser localized in the distal part of the C terminus of the A2A receptor is involved in A2A-D2 receptor heteromer interface (14, 20, 21). The same Arg-rich epitope of the D2 receptor is able to interact with CaM (2225). In the absence of phosphorylated residues, adjacent aspartates or glutamates, which are abundant in CaM, may also form non-covalent complexes with Arg-rich epitopes (26). Therefore, CaM can potentially convey a Ca2+ signal to the D2 receptor through direct binding to the 3IL of the D2 receptor (22). Mass spectrometry data have shown that bovine CaM can form multiple non-covalent complexes with an Arg-rich peptide corresponding to the N-terminal region of the 3IL of the D2 receptor (VLRRRRKRVN) (24) as well as a peptide from the proximal C terminus of the A2A receptor (24). This epitope, whose sequence is 291RIREFRQTFR300 in the human A2A receptor, also contains several Arg residues. Since the suspected interaction between the A2A receptor and CaM was awaiting confirmation by assays using complete proteins, the present study was undertaken to demonstrate the existence of interactions between the A2A receptor and CaM both in a recombinant protein expression cell system and in the brain. A proteomics approach was used for the discovery of protein-protein interactions between the A2A receptor and CaM in rat brain, whereas BRET in transfected cells demonstrated a direct interaction between CaM and this receptor. Furthermore, by using BRET and sequential resonance energy transfer (SRET) techniques and analyzing MAPK signaling in transfected cells, evidence was obtained for CaM-A2A-D2 receptor oligomerization and a selective Ca2+-mediated modulation of A2A and D2 receptor function in the A2A-D2 receptor heteromer.  相似文献   

2.
Activation of the 5-hydroxytryptamine receptor 2B (5-HT2B), a Gq/11 protein-coupled receptor, results in proliferation of various cell types. The 5-HT2B receptor is also expressed on the pacemaker cells of the gastrointestinal tract, the interstitial cells of Cajal (ICC), where activation triggers ICC proliferation. The goal of this study was to characterize the mitogenic signal transduction cascade activated by the 5-HT2B receptor. All of the experiments were performed on mouse small intestine primary cell cultures. Activation of the 5-HT2B receptor by its agonist BW723C86 induced proliferation of ICC. Inhibition of phosphatidylinositol 3-kinase by LY294002 decreased base-line proliferation but had no effect on 5-HT2B receptor-mediated proliferation. Proliferation of ICC through the 5-HT2B receptor was inhibited by the phospholipase C inhibitor U73122 and by the inositol 1,4,5-trisphosphate receptor inhibitor Xestospongin C. Calphostin C, the α, β, γ, and μ protein kinase C (PKC) inhibitor Gö6976, and the α, β, γ, δ, and ζ PKC inhibitor Gö6983 inhibited 5-HT2B receptor-mediated proliferation, indicating the involvement of PKC α, β, or γ. Of all the PKC isoforms blocked by Gö6976, PKCγ and μ mRNAs were found by single-cell PCR to be expressed in ICC. 5-HT2B receptor activation in primary cell cultures obtained from PKCγ−/− mice did not result in a proliferative response, further indicating the requirement for PKCγ in the proliferative response to 5-HT2B receptor activation. The data demonstrate that the 5-HT2B receptor-induced proliferative response of ICC is through phospholipase C, [Ca2+]i, and PKCγ, implicating this PKC isoform in the regulation of cellular proliferation.Tight control of cell proliferation is essential to maintain organ size and function. Proliferation needs to be tightly regulated to maintain a critical mass of a particular cell type while preventing dysplasia or malignancy. Cell proliferation is regulated by a complex interaction between extrinsic and intrinsic factors. Extrinsic factors usually signal through cell surface receptors such as various growth factor receptors. 5-Hydroxytryptamine (5-HT,2 serotonin) is well established as a neurotransmitter and a paracrine factor with over 90% of 5-HT produced by the gastrointestinal tract (1, 2). There is now substantial evidence that, together with these established functions, 5-HT is involved in the control of cell proliferation through various 5-HT receptors, in particular the 5-hydroxytryptamine receptor 2B (5-HT2B (39)). The 5-HT2B receptor is Gq/11 protein-coupled. Activation of the 5-HT2B receptor regulates cardiac function, smooth muscle contractility, vascular physiology, and mood control. Recently it was demonstrated that activation of the 5-HT2B receptor also induces proliferation of neurons, retinal cells (3, 4), hepatocytes (5), osteoblasts (8), and interstitial cells of Cajal (ICC) (9). ICC express the 5-HT2B receptor, and activation by 5-HT induces proliferation of ICC (9). ICC are specialized, mesoderm-derived mesenchymal cells in the gastrointestinal tract. Their best known function is the generation of slow waves (10), but they also conduct and amplify neuronal signals (11, 12), release carbon monoxide to set the intestinal smooth muscle membrane potential gradient (13), and act as mechanosensors (14, 15). Loss of ICC has been associated with pathological conditions such as gastroparesis (1618), infantile pyloric stenosis (19, 20), pseudo-obstruction (21, 22), and slow transit constipation (23), whereas increased proliferation of ICC or their precursors is associated with gastrointestinal stromal tumors (24).The mechanisms by which activation of the 5-HT2B receptor results in increased proliferation are not well understood. In cultured cardiomyocytes, stimulation of the 5-HT2B receptor activated both phosphatidylinositol 3-kinase (PI3′-K)/Akt and ERK1/2/mitogen-activated protein kinase (MAPK) signaling pathways to protect cardiomyocytes from apoptosis (25). On the other hand, the 5-HT2 subfamily of receptors are also known to couple to phospholipase C (PLC) (2628).The objective of this study was to utilize the known expression of the 5-HT2B receptor on ICC to determine whether proliferation through the 5-HT2B receptor required PI3′-K or PLC. This study demonstrates that proliferation mediated by the 5-HT2B receptor requires PLC, intracellular calcium release, and the ERK/MAPK signaling pathway and identifies the PKC isoform activated by the 5-HT2B receptor in ICC as PKCγ.  相似文献   

3.
The present study tests the hypothesis that the structure of extracellular domain Loop 2 can markedly affect ethanol sensitivity in glycine receptors (GlyRs) and γ-aminobutyric acid type A receptors (GABAARs). To test this, we mutated Loop 2 in the α1 subunit of GlyRs and in the γ subunit of α1β2γ2GABAARs and measured the sensitivity of wild type and mutant receptors expressed in Xenopus oocytes to agonist, ethanol, and other agents using two-electrode voltage clamp. Replacing Loop 2 of α1GlyR subunits with Loop 2 from the δGABAAR (δL2), but not the γGABAAR subunit, reduced ethanol threshold and increased the degree of ethanol potentiation without altering general receptor function. Similarly, replacing Loop 2 of the γ subunit of GABAARs with δL2 shifted the ethanol threshold from 50 mm in WT to 1 mm in the GABAA γ-δL2 mutant. These findings indicate that the structure of Loop 2 can profoundly affect ethanol sensitivity in GlyRs and GABAARs. The δL2 mutations did not affect GlyR or GABAAR sensitivity, respectively, to Zn2+ or diazepam, which suggests that these δL2-induced changes in ethanol sensitivity do not extend to all allosteric modulators and may be specific for ethanol or ethanol-like agents. To explore molecular mechanisms underlying these results, we threaded the WT and δL2 GlyR sequences onto the x-ray structure of the bacterial Gloeobacter violaceus pentameric ligand-gated ion channel homologue (GLIC). In addition to being the first GlyR model threaded on GLIC, the juxtaposition of the two structures led to a possible mechanistic explanation for the effects of ethanol on GlyR-based on changes in Loop 2 structure.Alcohol abuse and dependence are significant problems in our society, with ∼14 million people in the United States being affected (1, 2). Alcohol causes over 100,000 deaths in the United States, and alcohol-related issues are estimated to cost nearly 200 billion dollars annually (2). To address this, considerable attention has focused on the development of medications to prevent and treat alcohol-related problems (35). The development of such medications would be aided by a clear understanding of the molecular structures on which ethanol acts and how these structures influence receptor sensitivity to ethanol.Ligand-gated ion channels (LGICs)2 have received substantial attention as putative sites of ethanol action that cause its behavioral effects (612). Research in this area has focused on investigating the effects of ethanol on two large superfamilies of LGICs: 1) the Cys-loop superfamily of LGICs (13, 14), whose members include nicotinic acetylcholine, 5-hydroxytryptamine3, γ-aminobutyric acid type A (GABAA), γ-aminobutyric acid type C, and glycine receptors (GlyRs) (10, 11, 1520) and 2) the glutamate superfamily, including N-methyl d-aspartate, α-amino-3-hydroxyisoxazolepropionic acid, and kainate receptors (21, 22). Recent studies have also begun investigating ethanol action in the ATP-gated P2X superfamily of LGICs (2325).A series of studies that employed chimeric and mutagenic strategies combined with sulfhydryl-specific labeling identified key regions within Cys-loop receptors that appear to be initial targets for ethanol action that also can determine the sensitivity of the receptors to ethanol (712, 18, 19, 2630). This work provides several lines of evidence that position 267 and possibly other sites in the transmembrane (TM) domain of GlyRs and homologous sites in GABAARs are targets for ethanol action and that mutations at these sites can influence ethanol sensitivity (8, 9, 26, 31).Growing evidence from GlyRs indicates that ethanol also acts on the extracellular domain. The initial findings came from studies demonstrating that α1GlyRs are more sensitive to ethanol than are α2GlyRs despite the high (∼78%) sequence homology between α1GlyRs and α2GlyRs (32). Further work found that an alanine to serine exchange at position 52 (A52S) in Loop 2 can eliminate the difference in ethanol sensitivity between α1GlyRs and α2GlyRs (18, 20, 33). These studies also demonstrated that mutations at position 52 in α1GlyRS and the homologous position 59 in α2GlyRs controlled the sensitivity of these receptors to a novel mechanistic ethanol antagonist (20). Collectively, these studies suggest that there are multiple sites of ethanol action in α1GlyRs, with one site located in the TM domain (e.g. position 267) and another in the extracellular domain (e.g. position 52).Subsequent studies revealed that the polarity of the residue at position 52 plays a key role in determining the sensitivity of GlyRs to ethanol (20). The findings with polarity in the extracellular domain contrast with the findings at position 267 in the TM domain, where molecular volume, but not polarity, significantly affected ethanol sensitivity (9). Taken together, these findings indicate that the physical-chemical parameters of residues at positions in the extracellular and TM domains that modulate ethanol effects and/or initiate ethanol action in GlyRs are not uniform. Thus, knowledge regarding the physical-chemical properties that control agonist and ethanol sensitivity is key for understanding the relationship between the structure and the actions of ethanol in LGICs (19, 31, 3440).GlyRs and GABAARs, which differ significantly in their sensitivities to ethanol, offer a potential method for identifying the structures that control ethanol sensitivity. For example, α1GlyRs do not reliably respond to ethanol concentrations less than 10 mm (32, 33, 41). Similarly, γ subunit-containing GABAARs (e.g. α1β2γ2), the most predominantly expressed GABAARs in the central nervous system, are insensitive to ethanol concentrations less than 50 mm (42, 43). In contrast, δ subunit-containing GABAARs (e.g. α4β3δ) have been shown to be sensitive to ethanol concentrations as low as 1–3 mm (4451). Sequence alignment of α1GlyR, γGABAAR, and δGABAAR revealed differences between the Loop 2 regions of these receptor subunits. Since prior studies found that mutations of Loop 2 residues can affect ethanol sensitivity (19, 20, 39), the non-conserved residues in Loop 2 of GlyR and GABAAR subunits could provide the physical-chemical and structural bases underlying the differences in ethanol sensitivity between these receptors.The present study tested the hypothesis that the structure of Loop 2 can markedly affect the ethanol sensitivity of GlyRs and GABAARs. To accomplish this, we performed multiple mutations that replaced the Loop 2 region of the α1 subunit in α1GlyRs and the Loop 2 region of the γ subunit of α1β2γ2 GABAARs with corresponding non-conserved residues from the δ subunit of GABAAR and tested the sensitivity of these receptors to ethanol. As predicted, replacing Loop 2 of WT α1GlyRs with the homologous residues from the δGABAAR subunit (δL2), but not the γGABAAR subunit (γL2), markedly increased the sensitivity of the receptor to ethanol. Similarly, replacing the non-conserved residues of the γ subunit of α1β2γ2 GABAARs with δL2 also markedly increased ethanol sensitivity of GABAARs. These findings support the hypothesis and suggest that Loop 2 may play a role in controlling ethanol sensitivity across the Cys-loop superfamily of receptors. The findings also provide the basis for suggesting structure-function relationships in a new molecular model of the GlyR based on the bacterial Gloeobacter violaceus pentameric LGIC homologue (GLIC).  相似文献   

4.
Considerable insight has been garnered on initial mechanisms of endocytosis of plasma membrane proteins and their subsequent trafficking through the endosomal compartment. It is also well established that ligand stimulation of many plasma membrane receptors leads to their internalization. However, stimulus-induced regulation of endosomal trafficking has not received much attention. In previous studies, we showed that sustained stimulation of protein kinase C (PKC) with phorbol esters led to sequestration of recycling endosomes in a juxtanuclear region. In this study, we investigated whether G-protein-coupled receptors that activate PKC exerted effects on endosomal trafficking. Stimulation of cells with serotonin (5-hydroxytryptamine (5-HT)) led to sequestration of the 5-HT receptor (5-HT2AR) into a Rab11-positive juxtanuclear compartment. This sequestration coincided with translocation of PKC as shown by confocal microscopy. Mechanistically the observed sequestration of 5-HT2AR was shown to require continuous PKC activity because it was inhibited by pretreatment with classical PKC inhibitor Gö6976 and could be reversed by posttreatment with this inhibitor. In addition, classical PKC autophosphorylation was necessary for receptor sequestration. Moreover inhibition of phospholipase D (PLD) activity and inhibition of PLD1 and PLD2 using dominant negative constructs also prevented this process. Functionally this sequestration did not affect receptor desensitization or resensitization as measured by intracellular calcium increase. However, the PKC- and PLD-dependent sequestration of receptors resulted in co-sequestration of other plasma membrane proteins and receptors as shown for epidermal growth factor receptor and protease activated receptor-1. This led to heterologous desensitization of those receptors and diverted their cellular fate by protecting them from agonist-induced degradation. Taken together, these results demonstrate a novel role for sustained receptor stimulation in regulation of intracellular trafficking, and this process requires sustained stimulation of PKC and PLD.The protein kinase C (PKC)2 family of enzymes comprises 11 isoforms of serine/threonine kinases (1, 2) implicated in regulation of cell growth, differentiation, apoptosis, secretion, neurotransmission, and signal transduction (35). During the course of studying PKC, we showed that sustained stimulation of PKC with phorbol esters leads to translocation of classical PKC (cPKC) to a pericentrosomal region (6, 7). This sequestration was shown to be PLD-dependent (8, 9) and negatively regulated by ceramide formed from the salvage pathway (10). Ceramide inhibits autophosphorylation of cPKC, which was also found to be required for this novel translocation (11). Importantly sustained activation of cPKC also resulted in significant effects on recycling components and their sequestration to the same region, dubbed the pericentrion (defined as the cPKC-dependent subset of recycling endosomes). On the other hand, components and markers of the endolysosomal compartment were not sequestered to the pericentrion upon PKC stimulation (7). Functionally it was also shown that pericentrion formation and sequestration of PKC requires clathrin-dependent endocytosis. Most importantly, formation of the pericentrion is dynamic and reversible and requires continuous activation of PKC.G-protein-coupled receptors (GPCRs) are the largest family of integral membrane receptors. They contain seven transmembrane domains (12), are coupled to heterotrimeric G-proteins, and are activated by a vast number of ligands. They regulate many cellular processes and serve as targets for at least half of the therapeutics currently present on the market. Upon agonist binding, conformational changes in the receptor lead to coupling with G-proteins (composed of α, β, and γ subunits). This leads to dissociation of α and β/γ subunits that mediate downstream signaling (13). Interestingly PKC serves as one of the downstream targets of GPCRs. Thus, it became critical to determine whether persistent stimulation of receptors that couple to cPKC exerts effects on recycling endosomes. We focused on the serotonin (5-HT) 5-HT2A receptor (5-HT2AR) and the angiotensin II receptor (AT1AR) as two GPCRs that couple to Gq, which in turn activates phospholipase Cβ and then PKC (14, 15).In this study, we show that sustained stimulation of those receptors led to their sequestration in a PKC- and PLD-dependent manner. Most importantly, this led to global sequestration of endosomes with profound effects on other membrane receptors. Epidermal growth factor receptor (EGFR) and protease activated receptor-1 (PAR-1) are known to be targeted into a degradative pathway upon their agonist treatment (1618). Interestingly 5-HT induced co-sequestration of those receptors with 5-HT2AR and protected them from degradation upon their own agonist treatment. The implications of these results on regulation of trafficking by GPCRs are discussed.  相似文献   

5.
JC virus (JCV) is a human polyomavirus and the causative agent of the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). JCV infection of host cells is dependent on interactions with cell surface asparagine (N)-linked sialic acids and the serotonin 5-hydroxytryptamine2A receptor (5-HT2AR). The 5-HT2AR contains five potential N-linked glycosylation sites on the extracellular N terminus. Glycosylation of other serotonin receptors is essential for expression, ligand binding, and receptor function. Also, glycosylation of cellular receptors has been reported to be important for JCV infection. Therefore, we hypothesized that the 5-HT2AR N-linked glycosylation sites are required for JCV infection. Treatment of 5-HT2AR-expressing cells with tunicamycin, an inhibitor of N-linked glycosylation, reduced JCV infection. Individual mutation of each of the five N-linked glycosylation sites did not affect the capacity of 5-HT2AR to support JCV infection and did not alter the cell surface expression of the receptor. However, mutation of all five N-linked glycosylation sites simultaneously reduced the capacity of 5-HT2AR to support infection and altered the cell surface expression. Similarly, tunicamycin treatment reduced the cell surface expression of 5-HT2AR. Mutation of all five N-linked glycosylation sites or tunicamycin treatment of cells expressing wild-type 5-HT2AR resulted in an altered electrophoretic mobility profile of the receptor. Treatment of cells with PNGase F, to remove N-linked oligosaccharides from the cell surface, did not affect JCV infection in 5-HT2AR-expressing cells. These data affirm the importance of 5-HT2AR as a JCV receptor and demonstrate that the sialic acid component of the receptor is not directly linked to 5-HT2AR.The initial interaction between virus and host occurs via molecular interactions of viral attachment proteins and receptors on host cells. Therefore, receptor recognition is a critical host cell determinant and may play a key regulatory role in viral pathogenesis. The polyomavirus JC virus (JCV) is a ubiquitous human pathogen (21, 25, 32) that is initially subclinical yet establishes a persistent infection in the kidney (11). In immunosuppressed individuals JCV can become reactivated, leading to infection in the central nervous system (CNS) (13-15, 20), where the virus specifically targets glial cells, including astrocytes and the myelin-producing cells, oligodendrocytes (40, 48). JCV infection and cytolytic destruction of oligodendroglia cause the fatal disease progressive multifocal leukoencephalopathy (PML) (1, 22). The most common cause of PML is associated with human immunodeficiency virus (HIV) and AIDS (10, 23). However, in recent years PML has been reported in patients receiving immunosuppressive therapies for autoimmune diseases such as Crohn''s disease (44), multiple sclerosis (MS) (24, 26, 28, 47), systemic lupus erythematosus (5, 33), and rheumatoid arthritis (5, 19, 37). The prognosis of PML is bleak, as the disease progresses rapidly and usually proves fatal within 1 year of the onset of symptoms. While current treatment options for PML are limited (23), recent studies suggest that mirtazapine, a serotonin receptor antagonist, may be capable of slowing the progression of PML (6, 27, 45, 46).JCV has a nonenveloped, icosahedral capsid that encapsidates a circular double-stranded DNA (dsDNA) genome (39). JCV attachment to cells is mediated by an N-linked glycoprotein with either α(2,3)- or α(2,6)-linked sialic acid (16, 31), suggesting that N-linked glycosylation of cellular receptors is important for JCV infection. N-linked glycosylation is a posttranslational process by which oligosaccharides are added to asparagine residues, and this modification is important for protein processing, folding, expression, and function (43). Previous studies from our laboratory revealed that the JCV also requires the serotonin 5-hydroxytryptamine2A receptor (5-HT2AR) to mediate JCV infection (18, 35, 38), while others report that JCV infection can occur in the absence of 5-HT2AR (7, 8). 5-HT2AR is a seven-transmembrane-spanning G-protein-coupled receptor that belongs to a large family of 5-HT serotonin receptors. 5-HT2AR is abundantly expressed on cells in the brain (4), including glial cells (3), and in the kidney (4), which parallels the sites of JCV infection. N-linked glycosylation plays a key regulatory role in the function of serotonin receptors. Mutation of N-linked glycosylation sites in human 5-HT3AR and 5-HT5AR results in decreased expression at the plasma membrane, which is critical for receptor function (17, 34). N-linked glycosylation of murine 5-HT3AR regulates plasma membrane targeting, ligand binding, Ca2+ flux, and receptor trafficking (36), suggesting that glycosylation is essential for expression and function of serotonin receptors.While previous studies have concluded that JCV utilizes an N-linked glycoprotein with α(2,3)-linked sialic acid (31) or α(2,6)-linked sialic acid (16) and 5-HT2AR (18) to initiate infection in host cells, the mechanism(s) by which JCV engages its cellular receptors and the importance of receptor glycosylation remain unclear. 5-HT2AR contains potential asparagine (N)-linked glycosylation sites, five of which are predicted to be expressed in the extracellular amino-terminal region, where they could be accessible to the virus (2). The goal of this study was to determine whether potential N-linked glycosylation sites expressed in 5-HT2AR are required for JCV infection. We found that N-linked glycosylation of 5-HT2AR is important for receptor expression but not necessary for JCV infection.  相似文献   

6.
The 5-hydroxytryptamine 2A (5-HT2A) receptor is a member of the G protein-coupled receptor superfamily (GPCR) and plays a key role in transducing a variety of cellular signals elicited by 5-hydroxytryptamine in both peripheral and central tissues. Despite its broad physiological importance, our current understanding of 5-HT2A receptor regulation is incomplete. We recently reported the novel finding that the multifunctional ERK effector ribosomal S6 kinase 2 (RSK2) physically interacts with the 5-HT2A receptor third intracellular (i3) loop and modulates receptor signaling (Sheffler, D. J., Kroeze, W. K., Garcia, B. G., Deutch, A. Y., Hufeisen, S. J., Leahy, P., Bruning, J. C., and Roth, B. L. (2006) Proc. Natl. Acad. Sci. U. S. A. 103, 4717–4722). We report here that RSK2 directly phosphorylates the 5-HT2A receptor i3 loop at the conserved residue Ser-314, thereby modulating 5-HT2A receptor signaling. Furthermore, these studies led to the discovery that RSK2 is required for epidermal growth factor-mediated heterologous desensitization of the 5-HT2A receptor. We arrived at these conclusions via multiple lines of evidence, including in vitro kinase experiments, tandem mass spectrometry, and site-directed mutagenesis. Our findings were further validated using phospho-specific Western blot analysis, metabolic labeling studies, and whole-cell signaling experiments. These results support a novel regulatory mechanism in which a downstream effector of the ERK/MAPK pathway directly interacts with, phosphorylates, and modulates signaling of the 5-HT2A serotonin receptor. To our knowledge, these findings are the first to demonstrate that a downstream member of the ERK/MAPK cascade phosphorylates a GPCR as well as mediates cross-talk between a growth factor and a GPCR.The 5-HT2A 2receptor plays a key role in transducing a variety of cellular signals elicited by 5-HT in both peripheral and central tissues (75). These include the following: 1) platelet aggregation (1); 2) vascular and nonvascular smooth muscle contraction (2); 3) cognitive processes underlying working memory (3); 4) modulating sensory processing in the cortex (4); and 5) mediating the actions of most, but not all, hallucinogens that act as 5-HT2A receptor agonists (5, 6). Moreover, dysregulation of the 5-HT2A receptor has been linked to the etiology of several psychiatric disorders, including depression, anxiety, and schizophrenia, thus highlighting the importance of gaining a more thorough understanding of the precise regulation of 5-HT2A receptors (7).The 5-HT2A receptor belongs to the GPCR superfamily that encompasses molecular targets for an extreme diversity of endogenous and exogenous ligands that are essential for nearly every physiological process (8). Extensive studies focusing on the G protein-coupled receptor kinase-arrestin pathway and the second messenger-dependent protein kinase (cAMP-dependent protein kinase and protein kinase C (PKC)) pathways suggest that direct GPCR phosphorylation remains the predominant mechanism for rapidly attenuating the signaling of many GPCRs (9, 10). Additional kinases have also been shown to phosphorylate GPCRs, and it is likely that many yet to be discovered kinases regulate GPCR signaling (11).Several studies have demonstrated that PKC modulates 5-HT2A receptor signaling in vivo and in vitro. Our early studies (12) showed that activation of PKC by phorbol dibutyrate inhibited 5-HT2A-mediated signaling. Many subsequent studies in a variety of cellular contexts have replicated these observations (1318). In addition to PKC, recent reports suggest that calmodulin-dependent protein kinase II and G protein-coupled receptor kinase 2/3 regulate 5-HT2A signaling (18, 19), although the role of G protein-coupled receptor kinases is cell-specific (20). From these prior studies it is clear that selected kinases modulate 5-HT2A receptor function, although the site(s) of action and their mechanisms remain unknown.Recently we discovered that RSK2, a downstream effector of the ERK/MAPK pathway, regulates the signaling of several GPCRs, including 5-HT2A, P2Y-purinergic, PAR-1-thrombinergic, β1-adrenergic receptor, and bradykinin-B receptors (21). RSK2 is a well characterized member of the RSK family of multifunctional ERK effectors (RSK1–4), and RSK2 has been shown to phosphorylate a wide variety of cytoplasmic and nuclear proteins (22). We (21) recently showed that RSK2 interacts with the 5-HT2A i3 loop within a conserved region containing an RSK2-like consensus phosphorylation motif (275RAKLAS280) (23). Importantly, RSK2 modulated 5-HT2A receptor signaling independent of changes in 5-HT2A receptor subcellular distribution, global G protein function, and without altering the expression of any genes known to be involved in serotonergic signal transduction. Our findings implied that RSK2 acts proximal to receptor activation, at the level of receptor-G protein coupling, perhaps via direct phosphorylation of 5-HT2A receptors.Here we provide multiple lines of evidence demonstrating that activated RSK2 phosphorylates the 5-HT2A receptor i3 loop at the conserved residue Ser-314. We show that mutation of Ser-314 renders the 5-HT2A receptor insensitive to RSK2 regulation, thereby resulting in increased signaling mirroring observations in RSK2–/– fibroblasts (21). To our knowledge this is the first report that a downstream member of the ERK/MAPK cascade phosphorylates a GPCR. Moreover, these studies uncovered a novel regulatory mechanism whereby RSK2 is required for EGF-mediated heterologous desensitization of the 5-HT2A receptor. These data support the intriguing notion that 5-HT2A receptor responsiveness in cells is influenced by receptor tyrosine kinase (RTK) activation.Because null mutations of RSK2 lead to Coffin-Lowry syndrome, which is characterized by mental retardation, cardiovascular disorders, and a schizophrenia-like psychosis (24), these findings may explain, in part, some of the clinical manifestations of this syndrome.  相似文献   

7.
The orphan G-protein-coupled receptor GPR109B is the result of a recent gene duplication of the nicotinic acid and ketone body receptor GPR109A being found in humans but not in rodents. Like GPR109A, GPR109B is predominantly expressed in adipocytes and is supposed to mediate antilipolytic effects. Here we show that GPR109B serves as a receptor for the β-oxidation intermediate 3-OH-octanoic acid, which has antilipolytic activity on human but not on murine adipocytes. GPR109B is coupled to Gi-type G-proteins and is activated by 2- and 3-OH-octanoic acid with EC50 values of about 4 and 8 μm, respectively. Interestingly, 3-OH-octanoic acid plasma concentrations reach micromolar concentrations under conditions of increased β-oxidation rates, like in diabetic ketoacidosis or under a ketogenic diet. These data suggest that the ligand receptor pair 3-OH-octanoic acid/GPR109B mediates in humans a negative feedback regulation of adipocyte lipolysis to counteract prolipolytic influences under conditions of physiological or pathological increases in β-oxidation rates.Triacylglycerols stored in the white adipose tissue serve as the major energy reserve in higher eukaryotes (1). Although they are constantly turned over by lipolysis and re-esterification, their mobilization and storage are precisely balanced by various hormones and other factors depending on the nutritional state (2). The net rate of lipolysis is increased during fasting or periods of increased energy demand. Fatty acids generated via lipolysis undergo β-oxidation in the muscle and liver to serve directly as a source of energy or as a precursor for ketone bodies (3). The major intracellular regulator of lipolysis is cyclic AMP, which stimulates cAMP-dependent kinase to activate lipolytic enzymes (2, 46). This lipolytic pathway is induced, for example, via β-adrenergic receptors that couple to the G-protein Gs and thereby stimulate adenylyl cyclase (7, 8). To adjust lipolysis at the appropriate rate, the effects of prolipolytic stimuli are balanced by various antilipolytic influences. Besides insulin, which promotes the degradation of cAMP via activation of phosphodiesterase 3B (2, 5, 7), several antilipolytic stimuli decrease cAMP levels by activation of Gi-coupled receptors, which mediate an inhibition of adenylyl cyclase (5, 8). One of these receptors, GPR109A, has recently been shown to mediate the anti-lipolytic effects of high concentrations of the ketone body 3-OH-butyrate thereby providing a negative feedback mechanism during fasting (9, 10). GPR109A also binds nicotinic acid (1113) and mediates the anti-lipolytic effects of this anti-dyslipidemic drug (12).GPR109B, a close relative of GPR109A, is the result of a recent gene duplication being present in humans but not in rodents and most other mammals (14). GPR109B differs from GPR109A in an extended C-terminal tail as well as in 16 amino acids (11, 13). Despite its high homology to GPR109A, GPR109B does not bind nicotinic acid or 3-OH-butyrate with reasonable affinity (10, 11, 13). Because GPR109A and GPR109B have very similar expression patterns (11, 13, 15) and are likely to have the same basic signaling properties, agonists of GPR109B are expected to have physiological and pharmacological effects comparable with those of the GPR109A agonist 3-OH-butyrate and nicotinic acid, respectively. Recently, several synthetic compounds as well as various aromatic d-amino acids have been shown to be selective agonists at GPR109B (1618). However, endogenous physiological anti-lipolytic ligands of GPR109B are unknown.In this study we tested endogenous carboxylic acids for their ability to activate GPR109B. We found that the fatty acid β-oxidation intermediate 3-OH-octanoic acid is a highly specific agonist of GPR109B. 3-OH-octanoic acid has anti-lipolytic activity, and its plasma concentration in humans reflects the β-oxidation flux. Our data suggest that 3-OH-octanoic acid and GPR109B mediate a negative feedback regulation of adipocyte lipolysis.  相似文献   

8.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

9.
Although exosites 1 and 2 regulate thrombin activity by binding substrates and cofactors and by allosterically modulating the active site, it is unclear whether there is direct allosteric linkage between the two exosites. To begin to address this, we first titrated a thrombin variant fluorescently labeled at exosite 1 with exosite 2 ligands, HD22 (a DNA aptamer), γ′-peptide (an analog of the COOH terminus of the γ′-chain of fibrinogen) or heparin. Concentration-dependent and saturable changes in fluorescence were elicited, supporting inter-exosite linkage. To explore the functional consequences of this phenomenon, we evaluated the capacity of exosite 2 ligands to inhibit thrombin binding to γAA-fibrin, an interaction mediated solely by exosite 1. When γAA-fibrinogen was clotted with thrombin in the presence of HD22, γ′-peptide, or prothrombin fragment 2 there was a dose-dependent and saturable decrease in thrombin binding to the resultant fibrin clots. Furthermore, HD22 reduced the affinity of thrombin for γAA-fibrin 6-fold and accelerated the dissociation of thrombin from preformed γAA-fibrin clots. Similar responses were obtained when surface plasmon resonance was used to monitor the interaction of thrombin with γAA-fibrinogen or fibrin. There is bidirectional communication between the exosites, because exosite 1 ligands, HD1 (a DNA aptamer) or hirudin-(54–65) (an analog of the COOH terminus of hirudin), inhibited the exosite 2-mediated interaction of thrombin with immobilized γ′-peptide. These findings provide evidence for long range allosteric linkage between exosites 1 and 2 on thrombin, revealing further complexity to the mechanisms of thrombin regulation.As the central effector of hemostasis, thrombin is engaged in procoagulant, anticoagulant, and fibrinolytic processes. These seemingly contrasting roles are regulated, at least in part, by thrombin''s interactions with other factors in the blood and vasculature. The binding of ligands to thrombin is promoted by exosites 1 and 2, which are positively charged domains that flank the active site. These exosites facilitate the binding of substrates or cofactors and align them for optimal interaction with the active site (1).Exosite 1 is predominantly used to gain access to the active site by substrates such as fibrinogen (2), factors V (3) and VIII (4), and the protease-activated receptors (PARs)2 on platelets (5). Effectors that modulate thrombin activity, including thrombomodulin (6), hirudin (7), and heparin cofactor II (8), also utilize exosite 1. Thrombomodulin alters the specificity of thrombin by hindering access of other substrates to exosite 1 (9) and by providing new binding sites for protein C and thrombin-activable fibrinolysis inhibitor, thereby promoting anticoagulant and antifibrinolytic pathways, respectively (10, 11). Fewer processes are mediated by exosite 2, which serves largely as a tether that anchors thrombin for participation in other reactions. Thus, heparin binds exosite 2 (12) and catalyzes thrombin inhibition by antithrombin and heparin cofactor II (13, 14). Exosite 2 also is used by glycoprotein 1bα on platelets to localize thrombin for activation of PARs (1517).Although the prevailing role of the exosites is to bring substrates and cofactors into proximity with thrombin, there is evidence that the exosites also serve as allosteric regulators of thrombin activity. Crystallographic studies reveal that, when peptides derived from PAR1 or PAR3 are bound to exosite 1 on thrombin, an obstructing surface loop moves out of the active site pocket, thereby providing access to substrates (18). The binding of a thrombomodulin fragment to exosite 1 was shown to alter the environment of an active site fluorescent probe (19), which accelerates the rate of protein C and thrombin-activable fibrinolysis inhibitor activation in an allosteric fashion. In contrast, exosite 1-binding peptides from heparin cofactor II or fibrinogen decrease the rate of protein C activation (20). Additionally, the binding of ligands to exosite 1 alters the rates of chromogenic substrate hydrolysis (21, 22). Allosteric effects are not limited to exosite 1, because prothrombin fragment 2 (F2), a cleavage product of prothrombin, binds exosite 2 and decreases the rate at which thrombin converts fibrinogen to fibrin (23, 24) and is inhibited by antithrombin (25, 26). In support of the concept that these alterations are allosteric in origin, fluorescent probes bound to the active site of thrombin undergo a change in fluorescence intensity when exosite 2 is occupied (24, 27).Although there is good evidence for allosteric regulation of the active site by the exosites, it remains unclear whether there is direct allosteric connection between the exosites. Reciprocal effects between exosites 1 and 2 have been observed by some investigators (2830), but not by others (25, 31). The aim of the current study was to use different techniques and additional ligands to resolve this controversy. First, we examined the effect of exosite 2-directed ligands on the fluorescence intensity of a thrombin variant that was labeled in exosite 1. Next, we examined the effect of these ligands on thrombin binding to fibrin. To exploit the observation that thrombin binds γAA-fibrinogen exclusively via exosite 1 (2, 32), leaving exosite 2 accessible, this subpopulation was isolated (32). We used intact fibrin clots and surface plasmon resonance (SPR) to examine the influence of exosite 2-directed ligands on thrombin binding to γAA-fibrin. In addition, diffusion studies were performed to examine the effect of exosite-directed ligands on the rate of thrombin dissociation from preformed fibrin clots. Finally, we explored whether exosite 1-directed ligands modulate the binding of thrombin to an exosite 2-directed ligand.  相似文献   

10.
11.
12.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

13.
14.
15.
16.
17.
18.
19.
Olfactory receptors (ORs) are expressed not only in the sensory neurons of the olfactory epithelium, where they detect volatile substances, but also in various other tissues where their potential functions are largely unknown. Here, we report the physiological characterization of human OR51E2, also named prostate-specific G-protein-coupled receptor (PSGR) due to its reported up-regulation in prostate cancer. We identified androstenone derivatives as ligands for the recombinant receptor. PSGR can also be activated with the odorant β-ionone. Activation of the endogenous receptor in prostate cancer cells by the identified ligands evoked an intracellular Ca2+ increase. Exposure to β-ionone resulted in the activation of members of the MAPK family and inhibition of cell proliferation. Our data give support to the hypothesis that because PSGR signaling could reduce growth of prostate cancer cells, specific receptor ligands might therefore be potential candidates for prostate cancer treatment.Excessive signaling by G-protein-coupled receptors (GPCRs)3 such as endothelin A receptor (1), bradykinin 1 receptor (2), follicle-stimulating hormone receptor (3), and thrombin receptor (4, 5) is known to occur in prostate cancers due to strong overexpression of the respective receptors. Activation of some of these GPCRs results in androgen-independent androgen receptor activation, thus promoting the transition of prostate cancer cells from an androgen-dependent to an androgen-independent state (6, 7).The prostate-specific G-protein-coupled receptor (PSGR) is a class A GPCR that was initially identified as a prostate-specific tumor biomarker (810). It is specifically expressed in prostate epithelial cells, and its expression increases significantly in human prostate intraepithelial neoplasia and prostate tumors, suggesting that PSGR may play an important role in early prostate cancer development and progression (9, 11). Although expression of the human PSGR was found to be prostate-specific (10, 12), mRNA can also be detected in the olfactory zone and the medulla oblongata of the human brain (12). Human PSGR shares 93% amino acid homology to the respective mouse and rat homologues, which are also expressed in the brain (12). Interestingly, PSGR has numerous sequence motifs in common with the large superfamily of olfactory receptors (ORs), which build the largest class of human GPCRs and allow the recognition of a wide range of structurally diverse molecules in the nasal epithelium (1315). Recently, also the steroid hormones androstenone and androstadienone were identified as OR ligands (16). In addition to their role in the sensory neurons of the nose, ORs have been found in different tissues throughout the body (17, 18). Their function(s) in these extranasal locations are questionable except for in a few cases where functional studies have been performed in spermatozoa (19, 20) and in enterochromaffin cells of the gastrointestinal tract (21).Here, we report the identification of steroid ligands of heterologously expressed PSGR and investigate the functional relevance of PSGR expression in prostate tissue. Steroid hormones elicited rapid Ca2+ responses in the LNCaP prostate cancer cell line and in primary human prostate epithelial cells. Moreover, activated PSGR causes phosphorylation of p38 and stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) mitogen-activated protein kinases (MAPKs), resulting in reduced proliferation rates in prostate cancer cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号