首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to identify the candidate causal single nucleotide polymorphisms (SNPs) and candidate causal mechanisms that contribute to bone mineral density (BMD) and to generate a SNP to gene to pathway hypothesis using an analytical pathway-based approach. We used hip BMD GWAS data of the genotypes of 301,019 SNPs in 5,715 Europeans. ICSNPathway (identify candidate causal SNPs and pathways) analysis was applied to the BMD GWAS dataset. The first stage involved the pre-selection of candidate causal SNPs by linkage disequilibrium analysis and the functional SNP annotation of the most significant SNPs found. The second stage involved the annotation of biological mechanisms for the pre-selected candidate causal SNPs using improved-gene set enrichment analysis. ICSNPathway analysis identified seven candidate SNPs, eight candidate pathways, and seven hypothetical biological mechanisms. Eight pathways are as follows; gamma-hexachlorocyclohexane degradation (nominal p-value < 0.001, false discovery rate (FDR) <0.001), regulation of the smoothened signaling pathway (nominal p-value < 0.001, FDR = 0.016), TACI and BCMA stimulation of B cell immune response (nominal p-value < 0.001, FDR = 0.021), endonuclease activity (nominal p-value = 0.001, FDR = 0,026), regulation of defense response to virus (nominal p-value = 0.001, FDR = 0.028), serine_type_endopeptidase_inhibitor_activity (nominal p-value = 0.001, FDR = 0.044), endoribonuclease activity (nominal p-value = 0.002, FDR = 0.045), and myeloid leukocyte differentiation (nominal p-value = 0.001, FDR = 0.050). The most significant causal pathway was gamma-hexachlorocyclohexane degradation. CYP3A5, PON2, PON3, CMBL, PON1, ALPL, CYP3A43, CYP3A7, ACP6, ACPP, and ALPI (p < 0.05) are involved in the pathway of gamma-hexachlorocyclohexane degradation. Further examination of the gene contents revealed that DBR1, DICER1, EXO1, FEN1, POP1, POP4, RPP30, and RPP38 were involved in 2 of the 8 pathways (p < 0.05). By applying ICSNPathway analysis to BMD GWAS data, we identified seven candidate SNPs and eight pathways involving gamma-hexachlorocyclohexane degradation, which may contribute to low BMD.  相似文献   

2.
3.
The aim of this study was to identify candidate causal single nucleotide polymorphisms (SNPs) and candidate causal mechanisms of psoriasis and Behcets’s disease (BD) and to generate an SNP → gene → pathway hypothesis. A psoriasis genome-wide association study (GWAS) dataset that included 436,192 SNPs in 1,409 psoriasis cases and 1,436 controls of European descent and a BD GWAS dataset that contained 310,324 SNPs in 1,215 BD cases and 1,278 controls were used in this study. Identify candidate causal SNPs and pathways (ICSNPathway) analysis was applied to the GWAS datasets. ICSNPathway analysis identified 15 candidate causal SNPs and 28 candidate causal pathways. The top five candidate causal SNPs were rs1063478 (P = 1.45E−10), rs8084 (P = 2.20E−08), rs7192 (P = 5.18E−08), rs20541 (P = 5.30E−06), and rs1130838 (P = 5.65E−06), which with the exception of rs20541 [interleukin (IL)-13] are at human leukocyte antigen (HLA) loci. These candidate causal SNPs and pathways provided ten hypothetical biological mechanisms. The most strongly associated pathway concerned HLA. When HLA loci were excluded, ICSNPathway analysis provided one hypothetical biological mechanism. rs20541 (non_synonymous_coding) → IL-13 → dendritic cell involvement in the regulation of Th1 and Th2 development, and the GATA3 pathway. ICSNPathway analysis identified four candidate causal SNPs, eleven candidate causal pathways, and three hypothetical biological mechanisms. One of them was as follows: rs2072895 (non_synonymous_coding & splice-site) and rs2735059 (non_synonymous_coding) → HLA-F → type I diabetes mellitus, antigen processing and presentation, and autoimmune thyroid disease. The application of ICSNPathway analysis to GWAS dataset of psoriasis and BD resulted in the identification of candidate causal SNPs and candidate pathways that might contribute to psoriasis susceptibility.  相似文献   

4.
Recent technological progress has permitted the efficient performance of genome-wide association studies (GWAS) to map genetic variants associated with common diseases. Here, we analyzed 2,893 single nucleotide polymorphisms (SNPs) that have been identified in 593 published GWAS as associated with a disease phenotype with respect to their genomic location. In absolute numbers, most significant SNPs are located in intergenic regions and introns. When compared to their representation on the chips, there is essentially overrepresentation of nonsynonymous coding SNPs (nsSNPs), synonymous coding SNPs, and SNPs in untranscribed regions upstream of genes among the disease associated SNPs. A Gene Ontology term analysis showed that genes putatively causing a phenotype often code for membrane associated proteins or signal transduction genes.  相似文献   

5.

Background

Emerging studies demonstrate that single nucleotide polymorphisms (SNPs) resided in the microRNA recognition element seed sites (MRESSs) in 3′UTR of mRNAs are putative biomarkers for human diseases and cancers. However, exhaustively experimental validation for the causality of MRESS SNPs is impractical. Therefore bioinformatics have been introduced to predict causal MRESS SNPs. Genome-wide association study (GWAS) provides a way to detect susceptibility of millions of SNPs simultaneously by taking linkage disequilibrium (LD) into account, but the multiple-testing corrections implemented to suppress false positive rate always sacrificed the sensitivity. In our study, we proposed a method to identify candidate causal MRESS SNPs from 12 GWAS datasets without performing multiple-testing corrections. Alternatively, we used biological context to ensure credibility of the selected SNPs.

Results

In 11 out of the 12 GWAS datasets, MRESS SNPs were over-represented in SNPs with p-value ≤ 0.05 (odds ratio (OR) ranged from 1.1 to 2.4). Moreover, host genes of susceptible MRESS SNPs in each of the 11 GWAS dataset shared biological context with reported causal genes. There were 286 MRESS SNPs identified by our method, while only 13 SNPs were identified by multiple-testing corrections with a given threshold of 1 × 10−5, which is a common cutoff used in GWAS. 27 out of the 286 candidate SNPs have been reported to be deleterious while only 2 out of 13 multiple-testing corrected SNPs were documented in PubMed. MicroRNA-mRNA interactions affected by the 286 candidate SNPs were likely to present negatively correlated expression. These SNPs introduced greater alternation of binding free energy than other MRESS SNPs, especially when grouping by haplotypes (4210 vs. 4105 cal/mol by mean, 9781 vs. 8521 cal/mol by mean, respectively).

Conclusions

MRESS SNPs are promising disease biomarkers in multiple GWAS datasets. The method of integrating GWAS p-value and biological context is stable and effective for selecting candidate causal MRESS SNPs, it reduces the loss of sensitivity compared to multiple-testing corrections. The 286 candidate causal MRESS SNPs provide researchers a credible source to initialize their design of experimental validations in the future.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-669) contains supplementary material, which is available to authorized users.  相似文献   

6.
The aim of this study was to explore candidate single nucleotide polymorphisms (SNPs) and candidate mechanisms of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Two SLE genome-wide association studies (GWASs) datasets were included in this study. Meta-analysis was conducted using 737,984 SNPs in 1,527 SLE cases and 3,421 controls of European ancestry, and 4,429 SNPs that met a threshold of p?<?0.01 in a Korean RA GWAS dataset was used. ICSNPathway (identify candidate causal SNPs and pathways) analysis was applied to the meta-analysis results of the SLE GWAS datasets, and a RA GWAS dataset. The most significant result of SLE GWAS meta-analysis concerned rs2051549 in the human leukocyte antigen (HLA) region (p?=?3.36E?22). In the non-HLA region, meta-analysis identified 6 SNPs associated with SLE with genome-wide significance (STAT4, TNPO3, BLK, FAM167A, and IRF5). ICSNPathway identified five candidate causal SNPs and 13 candidate causal pathways. This pathway-based analysis provides three hypotheses of the biological mechanism involved. First, rs8084 and rs7192?→?HLA-DRA?→?bystander B cell activation. Second, rs1800629?→?TNF?→?cytokine network. Third, rs1150752 and rs185819?→?TNXB?→?collagen metabolic process. ICSNPathway analysis identified three candidate causal non-HLA SNPs and four candidate causal pathways involving the PADI4, MTR, PADI2, and TPH2 genes of RA. We identified five candidate SNPs and thirteen pathways, involving bystander B cell activation, cytokine network, and collagen metabolic processing, which may contribute to SLE susceptibility, and we revealed candidate causal non-HLA SNPs, genes, and pathways of RA.  相似文献   

7.

Objective

The aim of this study was to identify the candidate single nucleotide polymorphisms (SNPs) and candidate mechanisms that contribute to schizophrenia susceptibility and to generate a SNP to gene to pathway hypothesis using an analytical pathway-based approach.

Methods

We used schizophrenia GWAS data of the genotypes of 660,259 SNPs in 1378 controls and 1351 cases of European descent after quality control filtering. ICSNPathway (Identify candidate Causal SNPs and Pathways) analysis was applied to the schizophrenia GWAS dataset. The first stage involved the pre-selection of candidate SNPs by linkage disequilibrium analysis and the functional SNP annotation of the most significant SNPs found. The second stage involved the annotation of biological mechanisms for the pre-selected candidate SNPs using improved-gene set enrichment analysis.

Results

ICSNPathway analysis identified fifteen candidate SNPs, ten candidate pathways, and nine hypothetical biological mechanisms. The most strongly associated potential pathways were as follows. First, rs1644731 and rs1644730 to RDH8 to estrogen biosynthetic process (p < 0.001, FDR < 0.001). The genes involved in this pathway are RDH8 and HSD3B1 (p < 0.05). All-trans-retinol dehydrogenase (RDH8) is a visual cycle enzyme that reduces all-trans-retinal to all-trans-retinol in the presence of NADPH. The chemical reactions and pathways involved result in the formation of estrogens, which are C18 steroid hormones that can stimulate the development of female sexual characteristics. Second, rs1146031 to ACVR1 to mesoderm formation and activin binding (p < 0.001, FDR = 0.032, 0.034). Two of 15 candidate genes are known genes associated with schizophrenia: KCNQ2 and APOL2. One of the 10 candidate pathways, estrogen biosynthetic process, is known to be associated with schizophrenia (p < 0.001, FDR < 0.001). However, 13 of candidate genes (RDH8, ACVR1, PSMD9, KCNAB1, SLC17A3, ARCN1, COG7, STAB2, LRPAP1, STAB1, CXCL16, COL4A4, EXOSC3) and 9 of candidate pathways were novel.

Conclusion

By applying ICSNPathway analysis to schizophrenia GWAS data, we identified candidate SNPs, genes like KCNQ2 and APOL2 and pathways involving the estrogen biosynthetic process may contribute to schizophrenia susceptibility. Further analyses are needed to validate the results of this analysis.  相似文献   

8.
罗旭红刘志芳  董长征 《遗传》2013,35(9):1065-1071
全基因组关联研究(Genome wide association study, GWAS)已经在国内外的医学遗传学研究中得到广泛应用, 但是GWAS数据中所蕴含的与多基因复杂性状疾病机制相关的丰富信息尚未得到深度挖掘。近年来, 研究者采用生物网络分析和生物通路分析等生物信息学和生物统计学手段分析GWAS数据, 并探索潜在的疾病机制。生物网络分析和生物通路分析主要是以基因为单位进行的, 因此必须在分析前将基因上全部或者部分单个单核苷酸多态性(Single nucleotide polymorphism, SNP)的遗传关联结果综合起来, 即基因水平的关联分析。基因水平的关联分析需要考虑单个SNP的遗传关联、基因上SNP数量和SNP之间的连锁不平衡结构等多种因素, 因此不仅在遗传学的概念上也在统计方法方面具有一定的复杂性和挑战性。文章对基因水平的关联分析的研究进展、原理和应用进行了综述。  相似文献   

9.

Background  

Recently we have witnessed a surge of interest in using genome-wide association studies (GWAS) to discover the genetic basis of complex diseases. Many genetic variations, mostly in the form of single nucleotide polymorphisms (SNPs), have been identified in a wide spectrum of diseases, including diabetes, cancer, and psychiatric diseases. A common theme arising from these studies is that the genetic variations discovered by GWAS can only explain a small fraction of the genetic risks associated with the complex diseases. New strategies and statistical approaches are needed to address this lack of explanation. One such approach is the pathway analysis, which considers the genetic variations underlying a biological pathway, rather than separately as in the traditional GWAS studies. A critical challenge in the pathway analysis is how to combine evidences of association over multiple SNPs within a gene and multiple genes within a pathway. Most current methods choose the most significant SNP from each gene as a representative, ignoring the joint action of multiple SNPs within a gene. This approach leads to preferential identification of genes with a greater number of SNPs.  相似文献   

10.
The first genome wide association study (GWAS) for childhood asthma identified a novel major susceptibility locus on chromosome 17q21 harboring the ORMDL3 gene, but the role of previous asthma candidate genes was not specifically analyzed in this GWAS. We systematically identified 89 SNPs in 14 candidate genes previously associated with asthma in >3 independent study populations. We re-genotyped 39 SNPs in these genes not covered by GWAS performed in 703 asthmatics and 658 reference children. Genotyping data were compared to imputation data derived from Illumina HumanHap300 chip genotyping. Results were combined to analyze 566 SNPs covering all 14 candidate gene loci. Genotyped polymorphisms in ADAM33, GSTP1 and VDR showed effects with p-values <0.0035 (corrected for multiple testing). Combining genotyping and imputation, polymorphisms in DPP10, EDN1, IL12B, IL13, IL4, IL4R and TNF showed associations at a significance level between p = 0.05 and p = 0.0035. These data indicate that (a) GWAS coverage is insufficient for many asthma candidate genes, (b) imputation based on these data is reliable but incomplete, and (c) SNPs in three previously identified asthma candidate genes replicate in our GWAS population with significance after correction for multiple testing in 14 genes.  相似文献   

11.
Single nucleotide polymorphisms (SNPs) are increasingly used to tag genetic loci associated with phenotypes such as risk of complex diseases. Technically, this is done genome-wide without prior restriction or knowledge of biological feasibility in scans referred to as genome-wide association studies (GWAS). Depending on the linkage disequilibrium (LD) structure at a particular locus, such tagSNPs may be surrogates for many thousands of other SNPs, and it is difficult to distinguish those that may play a functional role in the phenotype from those simply genetically linked. Because a large proportion of tagSNPs have been identified within non-coding regions of the genome, distinguishing functional from non-functional SNPs has been an even greater challenge. A strategy was recently proposed that prioritizes surrogate SNPs based on non-coding chromatin and epigenomic mapping techniques that have become feasible with the advent of massively parallel sequencing. Here, we introduce an R/Bioconductor software package that enables the identification of candidate functional SNPs by integrating information from tagSNP locations, lists of linked SNPs from the 1000 genomes project and locations of chromatin features which may have functional significance. Availability: FunciSNP is available from Bioconductor (bioconductor.org).  相似文献   

12.
Braun R  Buetow K 《PLoS genetics》2011,7(6):e1002101
Genome-wide association studies (GWAS) have become increasingly common due to advances in technology and have permitted the identification of differences in single nucleotide polymorphism (SNP) alleles that are associated with diseases. However, while typical GWAS analysis techniques treat markers individually, complex diseases (cancers, diabetes, and Alzheimers, amongst others) are unlikely to have a single causative gene. Thus, there is a pressing need for multi-SNP analysis methods that can reveal system-level differences in cases and controls. Here, we present a novel multi-SNP GWAS analysis method called Pathways of Distinction Analysis (PoDA). The method uses GWAS data and known pathway-gene and gene-SNP associations to identify pathways that permit, ideally, the distinction of cases from controls. The technique is based upon the hypothesis that, if a pathway is related to disease risk, cases will appear more similar to other cases than to controls (or vice versa) for the SNPs associated with that pathway. By systematically applying the method to all pathways of potential interest, we can identify those for which the hypothesis holds true, i.e., pathways containing SNPs for which the samples exhibit greater within-class similarity than across classes. Importantly, PoDA improves on existing single-SNP and SNP-set enrichment analyses, in that it does not require the SNPs in a pathway to exhibit independent main effects. This permits PoDA to reveal pathways in which epistatic interactions drive risk. In this paper, we detail the PoDA method and apply it to two GWAS: one of breast cancer and the other of liver cancer. The results obtained strongly suggest that there exist pathway-wide genomic differences that contribute to disease susceptibility. PoDA thus provides an analytical tool that is complementary to existing techniques and has the power to enrich our understanding of disease genomics at the systems-level.  相似文献   

13.
Genome-wide association studies (GWAS) have identified 14 tagging single nucleotide polymorphisms (tagSNPs) that are associated with the risk of colorectal cancer (CRC), and several of these tagSNPs are near bone morphogenetic protein (BMP) pathway loci. The penalty of multiple testing implicit in GWAS increases the attraction of complementary approaches for disease gene discovery, including candidate gene- or pathway-based analyses. The strongest candidate loci for additional predisposition SNPs are arguably those already known both to have functional relevance and to be involved in disease risk. To investigate this proposition, we searched for novel CRC susceptibility variants close to the BMP pathway genes GREM1 (15q13.3), BMP4 (14q22.2), and BMP2 (20p12.3) using sample sets totalling 24,910 CRC cases and 26,275 controls. We identified new, independent CRC predisposition SNPs close to BMP4 (rs1957636, P = 3.93×10(-10)) and BMP2 (rs4813802, P = 4.65×10(-11)). Near GREM1, we found using fine-mapping that the previously-identified association between tagSNP rs4779584 and CRC actually resulted from two independent signals represented by rs16969681 (P = 5.33×10(-8)) and rs11632715 (P = 2.30×10(-10)). As low-penetrance predisposition variants become harder to identify-owing to small effect sizes and/or low risk allele frequencies-approaches based on informed candidate gene selection may become increasingly attractive. Our data emphasise that genetic fine-mapping studies can deconvolute associations that have arisen owing to independent correlation of a tagSNP with more than one functional SNP, thus explaining some of the apparently missing heritability of common diseases.  相似文献   

14.
In spite of the success of genome-wide association studies (GWASs), only a small proportion of heritability for each complex trait has been explained by identified genetic variants, mainly SNPs. Likely reasons include genetic heterogeneity (i.e., multiple causal genetic variants) and small effect sizes of causal variants, for which pathway analysis has been proposed as a promising alternative to the standard single-SNP-based analysis. A pathway contains a set of functionally related genes, each of which includes multiple SNPs. Here we propose a pathway-based test that is adaptive at both the gene and SNP levels, thus maintaining high power across a wide range of situations with varying numbers of the genes and SNPs associated with a trait. The proposed method is applicable to both common variants and rare variants and can incorporate biological knowledge on SNPs and genes to boost statistical power. We use extensively simulated data and a WTCCC GWAS dataset to compare our proposal with several existing pathway-based and SNP-set-based tests, demonstrating its promising performance and its potential use in practice.  相似文献   

15.
Recently, single nucleotide polymorphisms (SNPs) located in specific loci or genes have been identified associated with susceptibility to colorectal cancer (CRC) in Genome-Wide Association Studies (GWAS). However, in different ethnicities and regions, the genetic variations and the environmental factors can widely vary. Therefore, here we propose a post-GWAS analysis method to investigate the CRC susceptibility SNPs in Taiwan by conducting a replication analysis and bioinformatics analysis. One hundred and forty-four significant SNPs from published GWAS results were collected by a literature survey, and two hundred and eighteen CRC samples and 385 normal samples were collected for post-GWAS analysis. Finally, twenty-six significant SNPs were identified and reported as associated with susceptibility to colorectal cancer, other cancers, obesity, and celiac disease in a previous GWAS study. Functional analysis results of 26 SNPs indicate that most biological processes identified are involved in regulating immune responses and apoptosis. In addition, an efficient prediction model was constructed by applying Jackknife feature selection and ANOVA testing. As compared to another risk prediction model of CRC for European Caucasians population, which performs 0.616 of AUC by using 54 SNPs, the proposed model shows good performance in predicting CRC risk within the Taiwanese population, i.e., 0.724 AUC by using 16 SNPs. We believe that the proposed risk prediction model is highly promising for predicting CRC risk within the Taiwanese population. In addition, the functional analysis results could be helpful to explore the potential associated regulatory mechanisms that may be involved in CRC development.  相似文献   

16.
Many candidate genes have been studied for asthma, but replication has varied. Novel candidate genes have been identified for various complex diseases using genome-wide association studies (GWASs). We conducted a GWAS in 492 Mexican children with asthma, predominantly atopic by skin prick test, and their parents using the Illumina HumanHap 550 K BeadChip to identify novel genetic variation for childhood asthma. The 520,767 autosomal single nucleotide polymorphisms (SNPs) passing quality control were tested for association with childhood asthma using log-linear regression with a log-additive risk model. Eleven of the most significantly associated GWAS SNPs were tested for replication in an independent study of 177 Mexican case–parent trios with childhood-onset asthma and atopy using log-linear analysis. The chromosome 9q21.31 SNP rs2378383 (p = 7.10×10−6 in the GWAS), located upstream of transducin-like enhancer of split 4 (TLE4), gave a p-value of 0.03 and the same direction and magnitude of association in the replication study (combined p = 6.79×10−7). Ancestry analysis on chromosome 9q supported an inverse association between the rs2378383 minor allele (G) and childhood asthma. This work identifies chromosome 9q21.31 as a novel susceptibility locus for childhood asthma in Mexicans. Further, analysis of genome-wide expression data in 51 human tissues from the Novartis Research Foundation showed that median GWAS significance levels for SNPs in genes expressed in the lung differed most significantly from genes not expressed in the lung when compared to 50 other tissues, supporting the biological plausibility of our overall GWAS findings and the multigenic etiology of childhood asthma.  相似文献   

17.
Long non-coding RNAs are a new class of non-coding RNAs that are at the crosshairs in many human diseases such as cancers, cardiovascular disorders, inflammatory and autoimmune disease like Inflammatory Bowel Disease (IBD) and Type 1 Diabetes (T1D). Nearly 90% of the phenotype-associated single-nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) lie outside of the protein coding regions, and map to the non-coding intervals. However, the relationship between phenotype-associated loci and the non-coding regions including the long non-coding RNAs (lncRNAs) is poorly understood. Here, we systemically identified all annotated IBD and T1D loci-associated lncRNAs, and mapped nominally significant GWAS/ImmunoChip SNPs for IBD and T1D within these lncRNAs. Additionally, we identified tissue-specific cis-eQTLs, and strong linkage disequilibrium (LD) signals associated with these SNPs. We explored sequence and structure based attributes of these lncRNAs, and also predicted the structural effects of mapped SNPs within them. We also identified lncRNAs in IBD and T1D that are under recent positive selection. Our analysis identified putative lncRNA secondary structure-disruptive SNPs within and in close proximity (+/−5 kb flanking regions) of IBD and T1D loci-associated candidate genes, suggesting that these RNA conformation-altering polymorphisms might be associated with diseased-phenotype. Disruption of lncRNA secondary structure due to presence of GWAS SNPs provides valuable information that could be potentially useful for future structure-function studies on lncRNAs.  相似文献   

18.
Genome-wide association studies (GWAS) have successfully identified many genetic variants associated with complex diseases and traits. However, functional consequence of genetic variants studied in GWAS is not yet fully investigated, which would hinder the application of GWAS. We therefore performed a systematic functional analysis of HapMap SNPs, which have been most commonly used as the reference panel for GWAS. Our study highlights several characteristics of HapMap SNPs and identifies subsets of genetic variants with interesting functional implication. The results show that HapMap SNPs have good coverage within RefSeq genes, especially within known disease-related genes. On the other hand, only a small percentage of SNPs are non-synonymous SNPs while many SNPs are actually located at gene deserts. Moreover, many functionally important variants are not yet still interrogated. A redesigned SNP reference panel with additional functionally important variants would be useful to identify disease-causal variants in the future genome-wide studies.  相似文献   

19.
Flowering time adaptation is a major breeding goal in the allopolyploid species Brassica napus. To investigate the genetic architecture of flowering time, a genome-wide association study (GWAS) of flowering time was conducted with a diversity panel comprising 523 B. napus cultivars and inbred lines grown in eight different environments. Genotyping was performed with a Brassica 60K Illumina Infinium SNP array. A total of 41 single-nucleotide polymorphisms (SNPs) distributed on 14 chromosomes were found to be associated with flowering time, and 12 SNPs located in the confidence intervals of quantitative trait loci (QTL) identified in previous researches based on linkage analyses. Twenty-five candidate genes were orthologous to Arabidopsis thaliana flowering genes. To further our understanding of the genetic factors influencing flowering time in different environments, GWAS was performed on two derived traits, environment sensitivity and temperature sensitivity. The most significant SNPs were found near Bn-scaff_16362_1-p380982, just 13 kb away from BnaC09g41990D, which is orthologous to A. thaliana CONSTANS (CO), an important gene in the photoperiod flowering pathway. These results provide new insights into the genetic control of flowering time in B. napus and indicate that GWAS is an effective method by which to reveal natural variations of complex traits in B. napus.  相似文献   

20.
《Genomics》2019,111(6):1583-1589
Growth and fat deposition are important economic traits due to the influence on production in pigs. In this study, a dataset of 1200 pigs with 345,570 SNPs genotyped by sequencing (GBS) was used to conduct a GWAS with single-marker regression method to identify SNPs associated with body weight and backfat thickness (BFT) and to search for candidate genes in Landrace and Yorkshire pigs. A total of 27 and 13 significant SNPs were associated with body weight and BFT, respectively. In the region of 149.85–149.89 Mb on SSC6, the SNP (SSC6: 149876737) for body weight and the SNP (SSC6: 149876507) for BFT were in the same locus region (a gap of 230 bp). Two SNPs were located in the DOCK7 gene, which is a protein-coding gene that plays an important role in pigmentation. Two SNPs located on SSC8: 54567459 and SSC11: 33043081 were found to overlap weight and BFT; however, no candidate gene was found in these regions. In addition, based on other significant SNPs, two positional candidate genes, NSRP1 and CADPS, were proposed to influence weight. In conclusion, this is the first study report using GBS data to identify the significant SNPs for weight and BFT. A total of four particularly interesting SNPs and one potential candidate genes (DOCK7) were found for these traits in domestic pigs. This study improves our knowledge to better understand the complex genetic architecture of weight and BFT, but further validation studies of these candidate loci and genes are recommended in pigs  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号