首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The abundance and functional activity of proteins involved in the formation of the SNARE complex are tightly regulated for efficient exocytosis. Tomosyn proteins are negative regulators of exocytosis. Tomosyn causes an attenuation of insulin secretion by limiting the formation of the SNARE complex. We hypothesized that glucose-dependent stimulation of insulin secretion from β-cells must involve reversing the inhibitory action of tomosyn. Here, we show that glucose increases tomosyn protein turnover. Within 1 h of exposure to 15 mm glucose, ∼50% of tomosyn was degraded. The degradation of tomosyn in response to high glucose was blocked by inhibitors of the proteasomal pathway. Using 32P labeling and mass spectrometry, we showed that tomosyn-2 is phosphorylated in response to high glucose, phorbol esters, and analogs of cAMP, all key insulin secretagogues. We identified 11 phosphorylation sites in tomosyn-2. Site-directed mutagenesis was used to generate phosphomimetic (Ser → Asp) and loss-of-function (Ser → Ala) mutants. The Ser → Asp mutant had enhanced protein turnover compared with the Ser → Ala mutant and wild type tomosyn-2. Additionally, the Ser → Asp tomosyn-2 mutant was ineffective at inhibiting insulin secretion. Using a proteomic screen for tomosyn-2-binding proteins, we identified Hrd-1, an E3-ubiquitin ligase. We showed that tomosyn-2 ubiquitination is increased by Hrd-1, and knockdown of Hrd-1 by short hairpin RNA resulted in increased abundance in tomosyn-2 protein levels. Taken together, our results reveal a mechanism by which enhanced phosphorylation of a negative regulator of secretion, tomosyn-2, in response to insulin secretagogues targets it to degradation by the Hrd-1 E3-ubiquitin ligase.  相似文献   

2.
Incubation of cells with insulin leads to a transient rise in Tyr phosphorylation of insulin receptor substrate (IRS) proteins, accompanied by elevation in their Ser(P)/Thr(P) content and their dissociation from the insulin receptor (IR). Wortmannin, a phosphatidylinositol 3-kinase inhibitor, selectively prevented the increase in Ser(P)/Thr(P) content of IRS-1, its dissociation from IR, and the decrease in its Tyr(P) content following 60 min of insulin treatment. Four conserved phosphorylation sites within the phosphotyrosine binding/SAIN domains of IRS-1 and IRS-2 served as in vitro substrates for protein kinase B (PKB), a Ser/Thr kinase downstream of phosphatidylinositol 3-kinase. Furthermore, PKB and IRS-1 formed stable complexes in vivo, and overexpression of PKB enhanced Ser phosphorylation of IRS-1. Overexpression of PKB did not affect the acute Tyr phosphorylation of IRS-1; however, it significantly attenuated its rate of Tyr dephosphorylation following 60 min of treatment with insulin. Accordingly, overexpression of IRS-1(4A), lacking the four potential PKB phosphorylation sites, markedly enhanced the rate of Tyr dephosphorylation of IRS-1, while inclusion of vanadate reversed this effect. These results implicate a wortmannin-sensitive Ser/Thr kinase, different from PKB, as the kinase that phosphorylates IRS-1 and acts as the feedback control regulator that turns off insulin signals by inducting the dissociation of IRS proteins from IR. In contrast, insulin-stimulated PKB-mediated phosphorylation of Ser residues within the phosphotyrosine binding/SAIN domain of IRS-1 protects IRS-1 from the rapid action of protein-tyrosine phosphatases and enables it to maintain its Tyr-phosphorylated active conformation. These findings implicate PKB as a positive regulator of IRS-1 functions.  相似文献   

3.
4.

Background

Low birth weight (LBW) is associated with increased future risk of insulin resistance and type 2 diabetes mellitus. The underlying molecular mechanisms remain poorly understood. We have previously shown that young LBW men have reduced skeletal muscle expression of PI3K p85α regulatory subunit and p110β catalytic subunit, PKCζ and GLUT4 in the fasting state. The aim of this study was to determine whether insulin activation of the PI3K/Akt and MAPK signalling pathways is altered in skeletal muscle of young adult men with LBW.

Methods

Vastus lateralis muscle biopsies were obtained from 20 healthy 19-yr old men with BW</ = 10th percentile for gestational age (LBW) and 20 normal birth weight controls (NBW), matched for physical fitness and whole-body glucose disposal, prior to (fasting state) and following a 4-hr hyperinsulinemic euglycemic clamp (insulin stimulated state). Expression and phosphorylation of selected proteins was determined by Western blotting.

Principal Findings

Insulin stimulated expression of aPKCζ (p<0.001) and Akt1 (p<0.001) was decreased in muscle of LBW men when compared to insulin stimulated controls. LBW was associated with increased insulin stimulated levels of IRS1 (p<0.05), PI3K p85α (p<0.001) and p110β (p<0.05) subunits, while there was no significant change in these proteins in insulin stimulated control muscle. In addition LBW had reduced insulin stimulated phospho-Akt (Ser 473) (p<0.01), indicative of reduced Akt signalling. Insulin stimulated expression/phosphorylation of all the MAPK proteins studied [p38 MAPK, phospho-p38 MAPK (Thr180/Tyr182), phospho-ERK (Thr 202/Tyr204), JNK1, JNK2 and phospho-JNK (Thr 183/Tyr185)] was not different between groups.

Conclusions

We conclude that altered insulin activation of the PI3K/Akt but not the MAPK pathway precedes and may contribute to development of whole-body insulin resistance and type 2 diabetes in men with LBW.  相似文献   

5.
The ubiquitous phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates many cellular functions. However, the mechanism by which G protein-coupled receptors (GPCRs) signal to activate PI3K is poorly understood. We have used ovarian granulosa cells as a model to investigate this pathway, based on evidence that the GPCR agonist follicle-stimulating hormone (FSH) promotes the protein kinase A (PKA)-dependent phosphorylation of insulin receptor substrate 1 (IRS1) on tyrosine residues that activate PI3K. We report that in the absence of FSH, granulosa cells secrete a subthreshold concentration of insulin-like growth factor-1 (IGF-1) that primes the IGF-1 receptor (IGF-1R) but fails to promote tyrosine phosphorylation of IRS1. FSH via PKA acts to sensitize IRS1 to the tyrosine kinase activity of the IGF-1R by activating protein phosphatase 1 (PP1) to promote dephosphorylation of inhibitory Ser/Thr residues on IRS1, including Ser789. Knockdown of PP1β blocks the ability of FSH to activate PI3K in the presence of endogenous IGF-1. Activation of PI3K thus requires both PKA-mediated relief of IRS1 inhibition and IGF-1R-dependent tyrosine phosphorylation of IRS1. Treatment with FSH and increasing concentrations of exogenous IGF-1 triggers synergistic IRS1 tyrosine phosphorylation at PI3K-activating residues that persists downstream through protein kinase B (AKT) and FOXO1 (forkhead box protein O1) to drive synergistic expression of genes that underlies follicle maturation. Based on the ability of GPCR agonists to synergize with IGFs to enhance gene expression in other cell types, PP1 activation to relieve IRS1 inhibition may be a more general mechanism by which GPCRs act with the IGF-1R to activate PI3K/AKT.  相似文献   

6.
Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors including obesity, diabetes, and dyslipidemia, and insulin resistance (IR) is the central feature of MetS. Recent studies suggest that MetS is a risk factor for Alzheimer disease (AD). AMP-activated kinase (AMPK) is an evolutionarily conserved fuel-sensing enzyme and a key player in regulating energy metabolism. In this report, we examined the role of IR on the regulation of AMPK phosphorylation and AMPK-mediated Tau phosphorylation. We found that AMPKSer-485, but not AMPKThr-172, phosphorylation is increased in the cortex of db/db and high fat diet-fed obese mice, two mouse models of IR. In vitro, treatment of human cortical stem cell line (HK-5320) and primary mouse embryonic cortical neurons with the AMPK activator, 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR), induced AMPK phosphorylation at both Thr-172 and Ser-485. AMPK activation also triggered Tau dephosphorylation. When IR was mimicked in vitro by chronically treating the cells with insulin, AICAR specifically induced AMPKSer-485, but not AMPKThr-172, hyperphosphorylation whereas AICAR-induced Tau dephosphorylation was inhibited. IR also resulted in the overactivation of Akt by AICAR treatment; however, preventing Akt overactivation during IR prevented AMPKSer-485 hyperphosphorylation and restored AMPK-mediated Tau dephosphorylation. Transfection of AMPKS485A mutant caused similar results. Therefore, our results suggest the following mechanism for the adverse effect of IR on AD pathology: IR → chronic overactivation of Akt → AMPKSer-485 hyperphosphorylation → inhibition of AMPK-mediated Tau dephosphorylation. Together, our results show for the first time a possible contribution of IR-induced AMPKSer-485 phosphorylation to the increased risk of AD in obesity and diabetes.  相似文献   

7.
Hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) and its effector kinase S6 kinase 1 (S6K1) is known to trigger multisite seryl phosphorylation of insulin receptor substrate 1 (IRS1), leading to its ubiquitination and degradation. This negative feedback inhibition functions to restrain PI3K activity and plays critical roles in the pathogenesis of cancer and type II diabetes. Recent work has implicated a role for cullin-RING E3 ubiquitin ligase 7 (CRL7) in targeting IRS1 for mTORC1/S6K1-dependent degradation. In the present study we have employed both cell-based degradation and reconstituted ubiquitination approaches to define molecular features associated with IRS1 critical for CRL7-mediated ubiquitination and degradation. We have mapped IRS1 degradation signal sequence to its N-terminal 574 amino acid residues, of which the integrity of Ser-307/Ser-312 and Ser-527, each constituting a S6K1 phosphorylation consensus site, was indispensible for supporting CRL7-forced degradation. In vitro, S6K1 was able to support the ubiquitination of bacterially expressed IRS1 N-terminal fragment by CRL7 but at low levels. In contrast, CRL7 supported efficient ubiquitination of IRS1 N-terminal fragment in hyperphosphorylated form, which was isolated from infected insect cells, suggesting requirement of additional phosphorylation by kinases yet to be identified. Finally, removal of IRS1 amino acids 1–260 led to substantial reduction of ubiquitination efficiency, suggesting a role for this region in mediating productive interactions with CRL7. The requirement of multisite phosphorylation and the N terminus of IRS1 for its turnover may ensure that complete IRS1 degradation occurs only when mTORC1 and S6K1 reach exceedingly high levels.  相似文献   

8.
The mechanisms of free fatty acid (FFA)-induced peripheral insulin resistance remain elusive. This study aimed to investigate the effect of palmitate, a saturated fatty acid, on glucose metabolism in C2C12 myotubes, and to explore the underlying mechanisms. In it, palmitate decreased insulin-stimulated glucose uptake and consumption in a dose-dependent manner, and it reduced the insulin-stimulated phosphorylation of Akt at Thr308 and Ser473, but had no effect on the protein expression of PI3K-p85 or the activity of PI3K. Additionally, it inhibited the insulin-stimulated phosphorylation of Src at Tyr416, causing a reduction in the Src-mediated phosphorylation of Akt. Inhibition of Src by PP2 resulted in decreases in insulin-stimulated glucose uptake and phosphorylation of Src at Tyr416 and Akt at Thr308 and Ser473. The findings indicate that palmitate contributes to insulin resistance by inhibiting the Src-mediated phosphorylation of Akt in C2C12 myotubes, and this provides insight into the molecular mechanisms of FFA-induced insulin resistance.  相似文献   

9.
10.
Dishevelled (Dvl) proteins are intracellular effectors of Wnt signaling that have essential roles in both canonical and noncanonical Wnt pathways. It has long been known that Wnts stimulate Dvl phosphorylation, but relatively little is known about its functional significance. We have previously reported that both Wnt3a and Wnt5a induce Dvl2 phosphorylation that is associated with an electrophoretic mobility shift and loss of recognition by monoclonal antibody 10B5. In the present study, we mapped the 10B5 epitope to a 16-amino acid segment of human Dvl2 (residues 594–609) that contains four Ser/Thr residues. Alanine substitution of these residues (P4m) eliminated the mobility shift induced by either Wnt3a or Wnt5a. The Dvl2 P4m mutant showed a modest increase in canonical Wnt/β-catenin signaling activity relative to wild type. Consistent with this finding, Dvl2 4Pm preferentially localized to cytoplasmic puncta. In contrast to wild-type Dvl2, however, the P4m mutant was unable to rescue Wnt3a-dependent neurite outgrowth in TC-32 cells following suppression of endogenous Dvl2/3. Earlier work has implicated casein kinase 1δ/ϵ as responsible for the Dvl mobility shift, and a CK1δ in vitro kinase assay confirmed that Ser594, Thr595, and Ser597 of Dvl2 are CK1 targets. Alanine substitution of these three residues was sufficient to abrogate the Wnt-dependent mobility shift. Thus, we have identified a cluster of Ser/Thr residues in the C-terminal domain of Dvl2 that are Wnt-induced phosphorylation (WIP) sites. Our results indicate that phosphorylation at the WIP sites reduces Dvl accumulation in puncta and attenuates β-catenin signaling, whereas it enables noncanonical signaling that is required for neurite outgrowth.  相似文献   

11.
12.
Multisite phosphorylation of Irs1 on serine and threonine residues regulates insulin signaling that can contribute to insulin resistance. We identified by mass spectrometry the phosphorylation of Ser522 in rat Irs1 (S522(Irs1)). The functional effects of this phosphorylation site were investigated in cultured cells using a sequence-specific phosphoserine antibody. Insulin stimulated the phosphorylation of S522(Irs1) in L6 myoblasts and myotubes. S522(Irs1) phosphorylation was inhibited by wortmannin, whereas PD98059, rapamycin, or glucose-starvation had no effect. Reducing Akt expression with small interfering RNA inhibited insulin-stimulated phosphorylation of S522(Irs1), suggesting the involvement of the phosphatidylinositol 3-kinase--> Akt cascade. A S522(Irs1)-->A522(Irs1) substitution increased insulin-stimulated tyrosine phosphorylation of Irs1 and signaling, whereas a S522(Irs1)-->E522(Irs1) substitution reduced insulin-stimulated Irs1 tyrosine phosphorylation. Together, these results suggest the phosphatidylinositol 3-kinase-->Akt cascade can inhibit insulin signaling through the phosphorylation of S522(Irs1).  相似文献   

13.
Obesity and latent inflammation in adipose tissue significantly contribute to the development of insulin resistance (IR) and type 2 diabetes. Here we studied whether the antiinflammatory interleukin-4 (IL-4) can restore insulin sensitivity in cultured 3T3-L1 adipocytes. The activity of key components of the insulin signaling cascade was assessed by immunoblotting using phospho-specific antibodies to insulin receptor substrate IRS1 (Tyr612), Akt (Thr308 and Ser473), and AS160 (Ser318) protein that regulates translocation of the GLUT4 glucose transporter to the plasma membrane. IR was induced in mature adipocytes with albumin-conjugated palmitate. IR significantly reduced phosphorylation levels of all the above-mentioned proteins. Addition of IL-4 to the culturing medium during IR induction led to a dose-dependent stimulation of the insulin-promoted phosphorylation of IRS1, Akt, and AS160. At the optimal concentration of 50 ng/ml, IL-4 fully restored activation of the insulin cascade in IR cells, but it did not affect insulin signaling activation in the control cells. IL- 4 neither upregulated expression of key adipogenesis markers GLUT4 and PPARγ nor caused lipid accumulation in the adipocytes. These results demonstrate that IL-4 can restore insulin sensitivity in adipocytes via mechanisms not associated with induced adipogenesis or de novo formation of lipid depots.  相似文献   

14.
Cyclin B1-CDK1 complex plays an important role in the regulation of cell cycle. Activation of Cyclin B1 and CDK1 and the formation of the complex in G2/M are under multiple regulations involving many regulators such as isoforms of 14-3-3 and CDC25 and Wee1. Abnormal expression of Cyclin B1 and CDK1 has been detected in various tumors. However, to our knowledge no previous study has investigated Cyclin B1 and CDK1 in vulvar cancer. Therefore, we evaluated the statuses of CDK1Tyr15, pCDK1Thr161, Cyclin B1 (total) and pCyclin B1Ser126 in 297 cases of vulvar squamous cell carcinomas by immunohistochemistry. Statistical analyses were performed to explore their clinicopathological and prognostic values. In at least 25% of tumor cases high expression of CDK1Tyr15, pCDK1Thr161, Cyclin B1 (total) and pCyclin B1Ser126 was observed, compared to the low levels in normal vulvar squamous epithelium. Elevated levels of CDK1Tyr15, pCDK1Thr161, Cyclin B1 (total) and pCyclin B1Ser126 were correlated with advanced tumor behaviors and aggressive features. Although CDK1Tyr15, pCDK1Thr161, Cyclin B1 (total) and pCyclin B1Ser126 could not be identified as prognostic factors, combinations of (pCDK1Thr161 C+N + 14-3-3σN), (pCDK1Thr161 C+N + 14-3-3ηC), (pCDK1Thr161 C+N + Wee1C) and (pCDK1Thr161 C+N + 14-3-3σN + 14-3-3ηC + Wee1C) were correlated with disease-specific survival (p = 0.036, p = 0.029, p = 0.042 and p = 0.007, respectively) in univariate analysis. The independent prognostic significance of (pCDK1Thr161 C+N + 14-3-3σN + 14-3-3ηC + Wee1C) was confirmed by multivariate analysis. In conclusion, CDK1Tyr15, pCDK1Thr161, Cyclin B1 (total) and pCyclin B1Ser126 may be involved in progression of vulvar squamous cell carcinoma. The combination of pCDK1Thr161, 14-3-3σ, 14-3-3η and Wee1 was a statistically independent prognostic factor.  相似文献   

15.
16.
Cofilin plays an essential role in cell migration and morphogenesis by enhancing actin filament dynamics via its actin filament-severing activity. Slingshot-1 (SSH1) is a protein phosphatase that plays a crucial role in regulating actin dynamics by dephosphorylating and reactivating cofilin. In this study, we identified insulin receptor substrate (IRS)-4 as a novel SSH1-binding protein. Co-precipitation assays revealed the direct endogenous binding of IRS4 to SSH1. IRS4, but not IRS1 or IRS2, was bound to SSH1. IRS4 was bound to SSH1 mainly through the unique region (amino acids 335–400) adjacent to the C terminus of the phosphotyrosine-binding domain of IRS4. The N-terminal A, B, and phosphatase domains of SSH1 were bound to IRS4 independently. Whereas in vitro phosphatase assays revealed that IRS4 does not directly affect the cofilin phosphatase activity of SSH1, knockdown of IRS4 increased cofilin phosphorylation in cultured cells. Knockdown of IRS4 decreased phosphatidylinositol 3-kinase (PI3K) activity, and treatment with an inhibitor of PI3K increased cofilin phosphorylation. Akt preferentially phosphorylated SSH1 at Thr-826, but expression of a non-phosphorylatable T826A mutant of SSH1 did not affect insulin-induced cofilin dephosphorylation, and an inhibitor of Akt did not increase cofilin phosphorylation. These results suggest that IRS4 promotes cofilin dephosphorylation through sequential activation of PI3K and SSH1 but not through Akt. In addition, IRS4 co-localized with SSH1 in F-actin-rich membrane protrusions in insulin-stimulated cells, which suggests that the association of IRS4 with SSH1 contributes to localized activation of cofilin in membrane protrusions.  相似文献   

17.
The insulin receptor substrate (IRS) proteins are key mediators of insulin and insulinlike growth factor 1 (IGF-1) signaling. Protein tyrosine phosphatase (PTP)-1B dephosphorylates and inactivates both insulin and IGF-1 receptors. IRS2-deficient mice present altered hepatic insulin signaling and β-cell failure and develop type 2–like diabetes. In addition, IRS2 deficiency leads to developmental defects in the nervous system. IGF1 gene mutations cause syndromic sensorineural hearing loss in humans and mice. However, the involvement of IRS2 and PTP1B, two IGF-1 downstream signaling mediators, in hearing onset and loss has not been studied. Our objective was to study the hearing function and cochlear morphology of Irs2-null mice and the impact of PTP1B deficiency. We have studied the auditory brainstem responses and the cochlear morphology of systemic Irs2−/−Ptpn1+/+, Irs2+/+Ptpn1−/−and Irs2−/−Ptpn1−/− mice at different postnatal ages. The results indicated that Irs2−/−Ptpn1+/+ mice present a profound congenital sensorineural deafness before the onset of diabetes and altered cochlear morphology with hypoinnervation of the cochlear ganglion and aberrant stria vascularis, compared with wild-type mice. Simultaneous PTP1B deficiency in Irs2−/−Ptpn1−/− mice delays the onset of deafness. We show for the first time that IRS2 is essential for hearing and that PTP1B inhibition may be useful for treating deafness associated with hyperglycemia and type 2 diabetes.  相似文献   

18.
Low-intensity electrical current (or mild electrical stimulation; MES) influences signal transduction and activates phosphatidylinositol-3 kinase (PI3K)/Akt pathway. Because insulin resistance is characterized by a marked reduction in insulin-stimulated PI3K-mediated activation of Akt, we asked whether MES could increase Akt phosphorylation and ameliorate insulin resistance. In addition, it was also previously reported that heat shock protein 72 (Hsp72) alleviates hyperglycemia. Thus, we applied MES in combination with heat shock (HS) to in vitro and in vivo models of insulin resistance. Here we show that 10-min treatment with MES at 5 V (0.1 ms pulse duration) together with HS at 42°C increased the phosphorylation of insulin signaling molecules such as insulin receptor substrate (IRS) and Akt in HepG2 cells maintained in high-glucose medium. MES (12 V)+mild HS treatment of high fat-fed mice also increased the phosphorylation of insulin receptor β subunit (IRβ) and Akt in mice liver. In high fat-fed mice and db/db mice, MES+HS treatment for 10 min applied twice a week for 12–15 weeks significantly decreased fasting blood glucose and insulin levels and improved insulin sensitivity. The treated mice showed significantly lower weight of visceral and subcutaneous fat, a markedly improved fatty liver and decreased size of adipocytes. Our findings indicated that the combination of MES and HS alleviated insulin resistance and improved fat metabolism in diabetes mouse models, in part, by enhancing the insulin signaling pathway.  相似文献   

19.
The identity of specific serine phosphorylation residues of insulin receptor substrate (IRS)-2 and their impact on insulin signal transduction are largely unknown. Ser(675) and Ser(907) of mouse IRS-2 are adjacent to PI 3-kinase or Grb2 binding domains, respectively. Using monoclonal phosphosite-specific antibodies, we demonstrated the phosphorylation of both serines after stimulation of Fao hepatoma cells with insulin, anisomycin, or phorbol esters. Phosphorylation of both sites was a late and prolonged event during insulin treatment and was also detected in liver tissue of insulin-treated as well as refed mice. Inhibition and siRNA-mediated knockdown of ERK1/2 indicated that the insulin-induced phosphorylation of Ser(907) was ERK dependent. Phosphorylation of Ser(907) did not prevent the insulin-induced association of IRS-2 with Grb2, but phosphorylation of the adjacent Tyr(911) was proved to be crucial in HEK 293 cells expressing IRS-2 Ala mutants. The insulin-induced phosphorylation of Ser(675) was prevented by inhibition and siRNA-mediated knockdown of mTOR but not of p70(S6K1). Mutation of Ser(675) to Ala did not affect downstream insulin signaling but increased the half-life of the protein, suggesting an involvement of phospho-Ser(675) in an accelerated degradation of IRS-2. Moreover, the insulin-induced degradation of IRS-2 was blocked by inhibition of mTOR. We conclude that the two novel insulin-dependent serine phosphorylation sites of IRS-2 were not involved in the regulation of the adjacent PI 3-kinase and Grb2 binding domains but might be implicated in the ERK- and mTOR-mediated negative feedback control.  相似文献   

20.
Caffeine decreases insulin sensitivity and insulin-stimulated glucose transport in skeletal muscle; however, the precise mechanism responsible for this deleterious effect is not understood fully. We investigated the effects of incubation with caffeine on insulin signaling in rat epitrochlearis muscle. Caffeine (≥1 mM, ≥15 min) suppressed insulin-stimulated insulin receptor substrate (IRS)-1 Tyr(612) phosphorylation in a dose- and time-dependent manner. These responses were associated with inhibition of the insulin-stimulated phosphorylation of phosphatidylinositol 3-kinase (PI3K) Tyr(458), Akt Ser(473), and glycogen synthase kinase-3β Ser(9) and with inhibition of insulin-stimulated 3-O-methyl-d-glucose (3MG) transport but not with inhibition of the phosphorylation of insulin receptor-β Tyr(1158/62/63). Furthermore, caffeine enhanced phosphorylation of IRS-1 Ser(307) and an IRS-1 Ser(307) kinase, inhibitor-κB kinase (IKK)-α/β Ser(176/180). Blockade of IKK/IRS-1 Ser(307) by caffeic acid ameliorated the caffeine-induced downregulation of IRS-1 Tyr(612) phosphorylation and 3MG transport. Caffeine also increased the phosphorylation of IRS-1 Ser(789) and an IRS-1 Ser(789) kinase, 5'-AMP-activated protein kinase (AMPK). However, inhibition of IRS-1 Ser(789) and AMPK phosphorylation by dantrolene did not rescue the caffeine-induced downregulation of IRS-1 Tyr(612) phosphorylation or 3MG transport. In addition, caffeine suppressed the phosphorylation of insulin-stimulated IRS-1 Ser(636/639) and upstream kinases, including the mammalian target of rapamycin and p70S6 kinase. Intravenous injection of caffeine at a physiological dose (5 mg/kg) in rats inhibited the phosphorylation of insulin-stimulated IRS-1 Tyr(612) and Akt Ser(473) in epitrochlearis muscle. Our results indicate that caffeine inhibits insulin signaling partly through the IKK/IRS-1 Ser(307) pathway, via a Ca(2+)- and AMPK-independent mechanism in skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号