首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inclusion of corn-dried distillers’ grains (DDG) could be an alternative supplement to increase animal performance, nitrogen efficiency usage (NEU), and decrease enteric methane (CH4) emissions. Our goal was to determine whether DDG could replace a traditional supplement (cottonseed meal) without affecting animal performance, N balance, and CH4 emissions. The experiment was conducted during the forage growing season (December to April), with 15 d adaptation, and a 112 d experimental period. The experimental design was completely randomized with four treatments: a mineral supplement (MS), cottonseed meal supplement (CS), 50% replacement of CS by DDG (50DDG), and 100% replacement of CS by DDG (100DDG). Cottonseed meal and DDG were used as protein supplement. A total of 12 paddocks, 3 per treatment, were used to measure forage mass: morphological and chemical composition of forage, forage allowance, and animal performance. Six animals per treatment were used to evaluate DM intake, digestibility, CH4 emissions, microbial protein production (MCP), and NEU of each treatment. Eighty-one Young Nellore bulls (48 testers, 12 per treatments and 33 adjusters) with initial BW of 255 ± 5 kg (10–12 months old) were supplemented with each supplement type at a level of 0.3% of BW. Pasture management was continuous stocking with a variable stocking rate (put-and-take). Enteric CH4 was measured using the gas tracer technique. The MCP was quantified using purine derivatives and the NEU mass balance. No differences were found in nutrient intake (P > 0.228). Individual animal performance and gain per area were higher in the treatments with concentrates compared with that of MS; however, there was no difference among treatments CS, 50DDG, and 100DDG. The ADG was 0.83 for MS and 1.08 kg/animal/d when supplemented (P < 0.05). Gain per hectare was 709 kg/ha for MS and 915 kg/ha when supplemented with concentrates (P < 0.05). There was no difference in CH4 production among treatments that average 180 g/animal/d; however, CH4 per kg of gain was reduced with CS. The CH4 conversion factor averaged 5.91%. There was no difference in the synthesis of MCP and NEU. Corn DDG can replace 100% of cottonseed meal as a protein source for supplementation of young Nellore bulls grazing in tropical pastures without affecting animal performance, NEU, MCP, and CH4 emissions.  相似文献   

2.
This study investigated the effect of forage type (grass or red clover) and harvesting time (primary growth or regrowth) of silage on energy and N utilisation by sheep fed at maintenance level. Specifically, the assumption of constant loss of energy of digestible organic matter from energy losses in urine and CH4 applied in evaluation of silage metabolisable energy (ME) was investigated. Urinary excretion of high-energy phenolic compounds related to solubilisation of lignin was assumed to affect urinary energy (UE) losses from sheep fed highly digestible grass silage (GS). A total of 25 primary growth and regrowth silages of timothy (Phleum pratense) and meadow fescue (Festuca pratensis) grass mixtures and red clover (Trifolium pratense) samples collected in digestibility trials with sheep, including faecal and urine samples, were used for energy and N determinations. Urinary concentration of monophenolic compounds and CH4 emissions in vitro were also analysed. Daily faecal N output, CH4 yield (MJ/kg DM intake), proportion of CH4 energy in digestible energy (DE) and proportion of UE in DE were greater (P ≤ 0.03) in sheep fed red clover silage (RCS) than GS. Furthermore, less (P = 0.01) energy was lost as UE of DE in sheep fed primary growth GS compared with the other treatments. The relationship between UE and silage N intake or urinary N output for both silage types (i.e. grass v. red clover) was strong, but the fit of the regressions was better for GS than RCS. The CH4/DE ratio decreased (P < 0.05) and the UE/DE ratio increased (P < 0.05) with increasing organic matter digestibility in RCS. These relationships were not significant (P < 0.05) for the GS diets. The regression coefficient was higher (P < 0.05) for GS than RCS when regressing ME concentration on digestible organic matter. The results of this study imply that ME/DE ratio is not constant across first-cut GS of different maturities. The ME production response may be smaller from highly digestible first-cut GS but could not be clearly related to urinary excretion of monophenols derived from solubilisation of lignin. Furthermore, energy lost in urine was not clearly defined for RCS and was much more predictable for GS from silage N concentration.  相似文献   

3.
Adding nitrate to or increasing the concentration of lipid in the diet are established strategies for reducing enteric methane (CH4) emissions, but their effectiveness when used in combination has been largely unexplored. This study investigated the effect of dietary nitrate and increased lipid included alone or together on CH4 emissions and performance traits of finishing beef cattle. The experiment was a 2×4 factorial design comprising two breeds (cross-bred Aberdeen Angus (AAx) and cross-bred Limousin (LIMx) steers) and four dietary treatments (each based on 550 g forage : 450 g concentrate/kg dry matter (DM)). The four dietary treatments were assigned according to a 2×2 factorial design where the control treatment contained rapeseed meal as the main protein source, which was replaced either with nitrate (21.5 g nitrate/kg DM); maize distillers dark grains (MDDG, which increased diet ether extract from 24 to 37 g/kg DM) or both nitrate and MDDG. Steers (n=20/dietary treatment) were allocated to each of the four treatments in equal numbers of each breed with feed offered ad libitum. After 28 days adaptation to dietary treatments, individual animal intake, performance and feed efficiency were recorded for 56 days. Thereafter, CH4 emissions were measured over 13 weeks (six steers/week). Increasing dietary lipid did not adversely affect animal performance and showed no interactions with dietary nitrate. In contrast, addition of nitrate to diets resulted in poorer live-weight gain (P<0.01) and increased feed conversion ratio (P<0.05) compared with diets not containing nitrate. Daily CH4 output was lower (P<0.001) on nitrate-containing diets but increasing dietary lipid resulted in only a non-significant reduction in CH4. There were no interactions associated with CH4 emissions between dietary nitrate and lipid. Cross-bred Aberdeen Angus steers achieved greater live-weight gains (P<0.01), but had greater DM intakes (P<0.001), greater fat depth (P<0.01) and poorer residual feed intakes (P<0.01) than LIMx steers. Cross-bred Aberdeen Angus steers had higher daily CH4 outputs (P<0.001) but emitted less CH4 per kilogram DM intake than LIMx steers (P<0.05). In conclusion, inclusion of nitrate reduced CH4 emissions in growing beef cattle although the efficacy of nitrate was less than in previous work. When increased dietary lipid and nitrate inclusion were combined there was no evidence of an interaction between treatments and therefore combining different nutritional treatments to mitigate CH4 emissions could be a useful means of achieving reductions in CH4 while minimising any adverse effects.  相似文献   

4.
Rubber seed oil (RO) that is rich in polyunsaturated fatty acids (FA) can improve milk production and milk FA profiles of dairy cows; however, the responses of digestion and ruminal fermentation to RO supplementation in vivo are still unknown. This experiment was conducted to investigate the effect of RO and flaxseed oil (FO) supplementation on nutrients digestibility, rumen fermentation parameters and rumen FA profile of dairy cows. Forty-eight mid-lactation Holstein dairy cows were randomly assigned to one of four treatments for 8 weeks, including basal diet (CON) or the basal dietary supplemented with 4% RO, 4% FO or 2% RO plus 2% FO on a DM basis. Compared with CON, dietary oil supplementation improved the total tract apparent digestibility of DM, neutral detergent fibre and ether extracts ( P < 0.05). Oil treatment groups had no effects on ruminal digesta pH value, ammonia N and microbial crude protein ( P > 0.05), whereas oil groups significantly changed the volatile fatty acid (VFA) profile by increasing the proportion of propionate whilst decreasing total VFA concentration, the proportion of acetate and the ratio of acetate to propionate ( P < 0.05). However, there were no differences in VFA proportions between the three oil groups (P > 0.05). In addition, dietary oil supplementation increased the total unsaturated FA proportion in the rumen by enhancing the proportion of trans-11 C18:1 vaccenic acid (VA), cis-9, trans-11 conjugated linoleic acid (CLA) and α-linolenic acid (ALA) ( P < 0.05). These results indicate that dietary supplementation with RO and FO could improve nutrients digestibility, ruminal fermentation and ruminal FA profile by enhancing the VA, cis-9, trans-11 CLA and ALA composition of lactating dairy cows. These findings provide a theoretical basis for the application of RO in livestock production.  相似文献   

5.
The reaction of the ruthenium complexes RuCl2(PPh3)3, RuCl2(PPh3)4, RuCl2(PMe3)4, RuCl2(Me2SO)4, or RuBr2(PPh3)3 with the tripod tetrakis(tertiary) phosphine P(CH2CH2CH2PMe2)3 gave the compounds cis-RuCl2 [P(CH2CH2CH2PMe2)3] (1) and cis-RuBr2[P(CH2CH2CH2PMe2)3] (2). The coordination geometry of 1 and 2 was derived from the ABX2 type 31P NMR patterns of the complexes, as well as from an X-ray structure determination for the chloride 1. Crystals of 1 were found to be monoclinic, space group P21/n (Z = 4), with a = 942.0(3), b = 1446.2(4), c = 1680(1) pm, and β = 104.99(4)°. Anisotropic refinement of the structure converged at R = 0.040 and Rw = 0.034 (3318 data). Selected bond lengths are (in pm): RuP(CH2−)Me2 (trans-atom P), 235.8(1) and 239.3(1); RuP(CH2−)Me2 (trans-atom Cl), 227.9(1); RuP(CH2−)3, 225.3(1); RuCl (trans-group P(CH2−)3), 252.1(1); and RuCl (trans-group P(CH2)Me2), 250.5(1). Reaction of 1 with LiAlH4 yielded the hydro derivatives cis-Ru(H)Cl[P(CH2CH2CH2PMe2)3] (3) and cis-RuH2[P(CH2CH2CH2PMe2)3] (4), which were characterized by IR and 1H and 31p NMR spectroscopy.  相似文献   

6.
There is a growing demand for beef products across developing countries. Formulating rations to include locally available waste products has the potential to increase the live weight gain (LWG) of cattle and improve the livelihoods of smallholder farmers; however, upper limit inclusion levels of cassava peel products require investigation. An experiment evaluated the effect of using cassava peel silage (CPS) at the DM inclusion levels of 30, 40, 50, 60 and 70% (with the remainder protein meals and maize stover in the diet) on the LWG of crossbred Limousin × Ongole bulls (269 ± 48.8 kg). Thirty bulls, approximately two years of age, were allocated in a completely randomised block design with six blocks based on initial live weight (LW) and five treatments based on level of CPS. The combination of CPS (with 2% urea of the CPS) and protein meals significantly affected LWG with the highest values obtained at levels of 30 and 50% inclusion of CPS (1.16–1.35 kg/day) (P < 0.05). Polynomial analysis of LWG data revealed the optimal LWG is theoretically achieved at 37% CPS with a LWG of 1.31 kg/day; however, LWG was similar from 30 to 50% inclusion levels and then declined. There was little significant difference at CPS inclusion levels of 30–60%, for DM intake (DMI) which ranged from 2.3 to 2.6% LW, organic matter (OM) digestibility (77.8–81.6%), feed conversion ratio (FCR) (6.56–7.56 kg DM/kg LWG) and feed cost of gain (Indonesia rupiah (IDR)/kg LW 18 612 – 21 398). At a high (70%) level of CPS inclusion, these values were markedly changed when compared to the 30% inclusion level of CPS. Feed treatments did not affect rumen pH, NH3-N, concentration or molar percentage of volatile fatty acids or protozoal population (P < 0.05). Rumen pH measured three hours after morning feed ranged from 6.7 to 6.8 and NH3-N ranged from 14.1 to 19.3 mg NH3-N/dl. It was concluded that inclusion of CPS up to 60% mixed with protein meals and urea and 20% maize stover maximised LWG and profitability of the production system.  相似文献   

7.
This study was undertaken to further develop our understanding of the links between breed, diet and the rumen microbial community and determine their effect on production characteristics and methane (CH4) emissions from beef cattle. The experiment was of a 2×2 factorial design, comprising two breeds (crossbred Charolais (CHX); purebred Luing (LU)) and two diets (concentrate-straw or silage-based). In total, 80 steers were used and balanced for sire within each breed, farm of origin and BW across diets. The diets (fed as total mixed rations) consisted of (g/kg dry matter (DM)) forage to concentrate ratios of either 500 : 500 (Mixed) or 79 : 921 (Concentrate). Steers were adapted to the diets over a 4-week period and performance and feed efficiency were then measured over a 56-day test period. Directly after the 56-day test, CH4 and carbon dioxide (CO2) emissions were measured (six steers/week) over a 13-week period. Compared with LU steers, CHX steers had greater average daily gain (ADG; P<0.05) and significantly (P<0.001) lower residual feed intake. Crossbred Charolais steers had superior conformation and fatness scores (P<0.001) than LU steers. Although steers consumed, on a DM basis, more Concentrate than Mixed diet (P<0.01), there were no differences between diets in either ADG or feed efficiency during the 56-day test. At slaughter, however, Concentrate-fed steers were heavier (P<0.05) and had greater carcass weights than Mixed-fed steers (P<0.001). Breed of steer did not influence CH4 production, but it was substantially lower when the Concentrate rather than Mixed diet was fed (P<0.001). Rumen fluid from Concentrate-fed steers contained greater proportions of propionic acid (P<0.001) and lower proportions of acetic acid (P<0.001), fewer archaea (P<0.01) and protozoa (P=0.09), but more Clostridium Cluster XIVa (P<0.01) and Bacteroides plus Prevotella (P<0.001) than Mixed-fed steers. When the CH4 to CO2 molar ratio was considered as a proxy method for CH4 production (g/kg DM intake), only weak relationships were found within diets. In conclusion, although feeding Concentrate and Mixed diets produced substantial differences in CH4 emissions and rumen characteristics, differences in performance were influenced more markedly by breed.  相似文献   

8.
Moringa oleifera seeds are currently being used as a livestock feed across tropical regions of the world due to its availability and palatability. However, limited knowledge exists on the effects of the raw seeds on ruminant metabolism. As such, the rumen stimulation technique was used to evaluate the effects of substituting increasing concentrations of ground Moringa seeds (0, 100, 200 and 400 g/kg concentrate dry matter (DM)) in the diet on rumen fermentation and methane production. Two identical, Rusitec apparatuses, each with eight fermenters were used with the first 8 days used for adaptation and days 9 to 16 used for measurements. Fermenters were fed a total mixed ration with Urochloa brizantha as the forage. Disappearance of DM, CP, NDF and ADF linearly decreased (P<0.01) with increasing concentrations of Moringa seeds in the diet. Total volatile fatty acid production and the acetate to propionate ratio were also linearly decreased (P<0.01). However, only the 400 g/kg (concentrate DM basis) treatment differed (P<0.01) from the control. Methane production (%), total microbial incorporation of 15N and total production of microbial N linearly decreased (P<0.01) as the inclusion of Moringa seeds increased. Though the inclusion of Moringa seeds in the diet decreased CH4 production, this arose from an unfavourable decrease in diet digestibility and rumen fermentation parameters.  相似文献   

9.
Protein supplements are expensive and not easily accessible under small-scale livestock production systems in Ethiopia and other developing countries, which necessitates investigating the alternative protein sources for cost-effective livestock production. Pigeon pea (Cajanus cajan L. Millsp) leaves (PPLs) are rich in protein and are well-suited for feeding small ruminants; however, the effect of inclusion of PPL in the concentrate mixture (CM) on the performance of dairy cows was not well documented. This experiment was conducted to evaluate the effect of supplementation of PPL and CM to native pasture hay-based rations on feed intake, milk yield and composition, and blood metabolites of crossbred dairy cows (Holstein × Zebu). A 4 × 4 Latin square design with three replications, balanced for carryover effects, was used for this study. The treatments included native pasture hay provided ad libitum as a basal diet, supplemented with a CM alone (T1), the inclusion of 10% of PPL in the CM (T2), 20% PPL in the CM (T3), or 30% PPL in the CM (T4). Supplements were isocaloric and isonitrogenous. Total DM intake (hay + supplement intake) was similar (P > 0.05) among treatments. Hay intake was greater (P = 0.05) for T1 and T2 than for T4, while supplement intake was the least for T1 (P < 0.05). The treatment groups T2, T3, and T4, where PPL was included, had similar (P > 0.05) supplement intake. Feed intake, milk yield and composition, feed conversion efficiency, body condition score, serum total protein, albumin, globulin, glucose, triglyceride, urea N, creatinine, and cholesterol were similar (P > 0.05) among treatments. The inclusion of up to 30% of PPL in the CM resulted in a comparable performance of crossbred dairy cows as supplementation with CM under the conditions of the current experiment. Therefore, further study is required to evaluate the effect of the inclusion of a higher level of PPL in the concentrate mixture on the performance of lactating crossbred dairy cows.  相似文献   

10.
This study was conducted to evaluate the effect of dietary addition of cinnamon oil (CIN), cinnamaldehyde (CDH), or monensin (MON) on enteric methane (CH4) emission in dairy cows. Eight multiparous lactating Holstein cows fitted with ruminal cannulas were used in a replicated 4×4 Latin square design (28-day periods). Cows were fed (ad libitum) a total mixed ration ((TMR); 60 : 40 forage : concentrate ratio, on a dry matter (DM) basis) not supplemented (CTL), or supplemented with CIN (50 mg/kg DM intake), CDH (50 mg/kg DM intake), or monensin (24 mg/kg of DM intake). Dry matter intake (DMI), nutrient digestibility, N retention, and milk performance were measured over 6 consecutive days. Ruminal degradability of the basal diet (with no additive) was assessed using in sacco incubations (0, 2, 4, 8, 16, 24, 48, 72 and 96 h). Ruminal fermentation characteristics (pH, volatile fatty acids (VFA), and ammonia (NH3)) and protozoa were determined over 2 days. Enteric CH4 emissions were measured over 6 consecutive days using the sulfur hexafluoride (SF6) tracer gas technique. Adding CIN, CDH or MON to the diet had no effects on DMI, N retention, in sacco ruminal degradation and nutrient digestibility of the diet. Ruminal fermentation characteristics and protozoa numbers were not modified by including the feed additives in the diet. Enteric CH4 emission and CH4 energy losses averaged 491 g/day and 6.59% of gross energy intake, respectively, and were not affected by adding CIN, CDH or MON to the diet. Results of this study indicate that CIN, CDH and MON are not viable CH4 mitigation strategies in dairy cows.  相似文献   

11.
Pasture management that considers pasture growth dynamics remains an open question. Conceptually, such management must allow for grazing only after the recuperation of the pasture between two separate timely grazing periods when pasture reaches optimum recovery, as per the first law of Voisin’s rational grazing system. The optimum recovery period not only implies a pasture with better nutritional value and higher biomass yield but one that also reduces the production of enteric methane (CH4) to improve the grazing efficiency of cattle. Therefore, this study aimed to evaluate three different recovery periods (RP) of mixed grasses on the grazing behaviour of heifers, as well as herbage selectivity, herbage yield and nutritional value, in vitro degradability and CH4 production. Based on these criteria, three pasture RPs of 24 (RP24), 35 (RP3) and 46 (RP46) days were evaluated in six blocks using a randomized block design. At each predetermined RP, samples of the pasture were taken before the animals were allowed to graze. Right after collecting the pasture samples, heifers accessed the pasture during 4 h consecutively for grazing simulation and behavioural observations. We also measured the bite rate of each animal. The pasture growing for 24 days had the highest biomass production, best nutritional value, best efficiency of in vitro CH4 relative emission (ml) per DM degraded (g) and bite rate of the three RPs. Heifers all selected their herbage, irrespective of RP, but with different nutritional value and higher in vitro degradability. However, this did not change the production of in vitro CH4. Considering the growth conditions of the area where the study was performed, we recommend the shorter RP24 as the most suitable during the summer season. The study’s findings support the idea of management intervention to increase the quality of grazing systems.  相似文献   

12.
In the current economic and environmental context, the selection of livestock phenotypes combining high feed efficiency (FE) and low greenhouse gas emissions is interesting. This study aimed to quantify methane (CH4) emissions and other gas flows (carbon dioxide (CO2) and dihydrogen (H2) emissions, oxygen (O2) consumption) in growing bulls fed with two contrasting diets in order to (i) evaluate the persistence of individual variability in gas flows through time, and (ii) assess the inter-individual relationship between gas flows and FE across diets. Charolais bulls were fattened for 6 months during two consecutive years in two independent batches (50–51 per year). In each batch, half of the animals received a total mixed ad libitum ration either based on maize silage (62% dietary DM) or high-starch concentrate (MS-S), and half based on grass silage (59% dietary DM) and high-fibre concentrate (GS-F). The absolute gas flows (g/d) were individually measured with 2 GreenFeed systems during 88 days (group 1) and 64 days (group 2). All gas flows were also expressed in g/kg DM intake (gas yield), in g/kg average daily gain (CH4 intensity) and residual of daily emissions for CH4 (R CH4). Different FE metrics (residual feed intake (RFI), residual gain (RG) and feed conversion efficiency (FCE)) were investigated during the same period. The relationships between gas flows and FE metrics were tested by linear regression with the diet as fixed effect. For both diets, we observed a consistent individual variability over the measurement period for absolutes values (g/d) of CH4, CO2, and O2 (repeatability >0.7 for GS-F and >0.6 for MS-S). Gas flows (g/d) were positively correlated with RFI with both diets: animals that ingested food in excess of their theoretical maintenance and growth requirements emitted more CH4, CO2 and consumed more O2. The positive relationship between absolute CH4 emissions and RFI highlighted the interest for low-CH4 emitters and efficient growing bulls when fed with high-energy diets rich in starch or fibre. For both diets, RCH4, CH4 yield and CH4 intensity were not related to RFI whereas a significant negative relationship was reported between CH4 intensity and RG, and FCE. These data suggest that intake is the main driver of the phenotypic relationships between CH4 traits and RFI. Further studies including larger numbers of animals on highly contrasting energy diets are needed to investigate the underlying biological regulatory mechanisms of the methanogenic potential of an animal in relation to production traits.  相似文献   

13.
It remains unknown whether dairy cows with more reactive temperament produce more enteric methane (CH4) and are less bioenergetically efficient than the calmer ones. The objectives of this study were (a) to evaluate the relationship between cattle temperament assessed by traditionally used tests with energetic metabolism and enteric CH4 emissions by crossbred dairy cows; (b) to assess how cows’ restlessness in respiration chambers affects energetic metabolism and enteric CH4 emissions. Temperament indicators were evaluated for 28 primiparous F1 Holstein-Gyr cows tested singly in the handling corral (entrance time, crush score, flight speed, and flight distance) and during milking (steps, kicks, defecation, rumination, and kick the milking cluster off). Cows’ behaviors within respiration chambers were also recorded for each individual kept singly. Digestibility and calorimetry trials were performed to obtain energy partitioning and CH4 measures. Cows with more reactive temperament in milking (the ones that kicked the milking cluster off more frequently) spent 25.24% less net energy on lactation (P = 0.04) and emitted 36.77% more enteric CH4/kg of milk (P = 0.03). Furthermore, cows that showed a higher frequency of rumination at milking parlor allocated 57.93% more net energy for milk production (P < 0.01), spent 50.00% more metabolizable energy for milk production (P < 0.01) and 37.10% less CH4/kg of milk (P = 0.04). Regarding the handling temperament, most reactive cows according to flight speed, lost 29.16% less energy as urine (P = 0.05) and tended to have 14.30% more enteric CH4 production (P = 0.08), as well as cows with a lower entrance time (most reactive) that also lost 13.29% more energy as enteric CH4 (P = 0.04). Temperament and restless behavior of Holstein-Gyr cows were related to metabolic efficiency and enteric CH4 emissions. Cows’ reactivity and rumination in the milking parlor, in addition to flight speed and entrance time in the squeeze chute during handling in the corral, could be useful measures to predict animals more prone to metabolic inefficiency, which could negatively affect the sustainability of dairy systems.  相似文献   

14.
The adaptation of dairy cows to methane (CH4)-mitigating feed additives was evaluated using the in vitro gas production (GP) technique. Nine rumen-fistulated lactating Holstein cows were grouped into three blocks and within blocks randomly assigned to one of three experimental diets: Control (CON; no feed additive), Agolin RuminantR (AR; 0.05 g/kg dry matter (DM)) or lauric acid (LA; 30 g/kg DM). Total mixed rations composed of maize silage, grass silage and concentrate were fed in a 40 : 30 : 30 ratio on DM basis. Rumen fluid was collected from each cow at days −4, 1, 4, 8, 15 and 22 relative to the introduction of the additives in the diets. On each of these days, a 48-h GP experiment was performed in which rumen fluid from each individual donor cow was incubated with each of the three substrates that reflected the treatment diets offered to the cows. DM intake was on average 19.8, 20.1 and 16.2 kg/day with an average fat- and protein-corrected milk production of 30.7, 31.7 and 26.2 kg/day with diet CON, AR and LA, respectively. In general, feed additives in the donor cow diet had a larger effect on gas and CH4 production than the same additives in the incubation substrate. Incubation substrate affected asymptotic GP, half-time of asymptotic CH4 production, total volatile fatty acid (VFA) concentration, molar proportions of propionate and butyrate and degradation of organic matter (OMD), but did not affect CH4 production. No substrate×day interactions were observed. A significant diet×day interaction was observed for in vitro gas and CH4 production, total VFA concentration, molar proportions of VFA and OMD. From day 4 onwards, the LA diet persistently reduced gas and CH4 production, total VFA concentration, acetate molar proportion and OMD, and increased propionate molar proportion. In vitro CH4 production was reduced by the AR diet on day 8, but not on days 15 and 22. In line with these findings, the molar proportion of propionate in fermentation fluid was greater, and that of acetate smaller, for the AR diet than for the CON diet on day 8, but not on days 15 and 22. Overall, the data indicate a short-term effect of AR on CH4 production, whereas the CH4-mitigating effect of LA persisted.  相似文献   

15.
In ruminants, methane (CH4) is a by-product of digestion and contributes significantly to the greenhouse gas emissions attributed to agriculture. Grazed grass is a relatively cheap and nutritious feed but herbage species and nutritional quality vary between pastures, with management, land type and season all potentially impacting on animal performance and CH4 production. The objective of this study was to evaluate performance and compare CH4 emissions from cattle of dairy and beef origin grazing two grassland ecosystems: lowland improved grassland (LG) and upland semi-natural grassland (UG). Forty-eight spring-born beef cattle (24 Holstein–Friesian steers, 14 Charolais crossbred steers and 10 Charolais crossbred heifers of 407 (s.d. 29), 469 (s.d. 36) and 422 (s.d. 50) kg BW, respectively), were distributed across two balanced groups that grazed the UG and LG sites from 1 June to 29 September at stocking rates (number of animals per hectare) of 1.4 and 6.7, respectively. Methane emissions and feed dry matter (DM) intake were estimated by the SF6 tracer and n-alkane techniques, respectively, and BW was recorded across three experimental periods that reflected the progression of the grazing season. Overall, cattle grazed on UG had significantly lower (P<0.001) mean daily DM intake (8.68 v. 9.55 kg/day), CH4 emissions (176 v. 202 g/day) and BW gain (BWG; 0.73 v. 1.08 kg/day) than the cattle grazed on LG but there was no difference (P>0.05) in CH4 emissions per unit of feed intake when expressed either on a DM basis (20.7 and 21.6 g CH4 per kg DM intake for UG and LG, respectively) or as a percentage of the gross energy intake (6.0% v. 6.5% for UG and LG, respectively). However, cattle grazing UG had significantly (P<0.001) greater mean daily CH4 emissions than those grazing LG when expressed relative to BWG (261 v. 197 g CH4/kg, respectively). The greater DM intake and BWG of cattle grazing LG than UG reflected the poorer nutritive value of the UG grassland. Although absolute rates of CH4 emissions (g/day) were lower from cattle grazing UG than LG, cattle grazing UG would be expected to take longer to reach an acceptable finishing weight, thereby potentially off-setting this apparent advantage. Methane emissions constitute an adverse environmental impact of grazing by cattle but the contribution of cattle to ecosystem management (i.e. promoting biodiversity) should also be considered when evaluating the usefulness of different breeds for grazing semi-natural or unimproved grassland.  相似文献   

16.
The objectives of this study were to determine the effect and mode of action of Saccharomyces cerevisiae (YST2) on enteric methane (CH4) mitigation in pigs. A total of 12 Duroc×Landrace×Yorkshire male finisher pigs (60±1 kg), housed individually in open-circuit respiration chambers, were randomly assigned to two dietary groups: a basal diet (control); and a basal diet supplemented with 3 g/YST2 (1.8×1010 live cells/g) per kg diet. At the end of 32-day experiment, pigs were sacrificed and redox potential (Eh), pH, volatile fatty acid concentration, densities of methanogens and acetogens, and expression of methyl coenzyme-M reductase subunit A gene were determined in digesta contents from the cecum, colon and rectum. Results showed that S. cerevisiae YST2 decreased (P<0.05) the average daily enteric CH4 production by 25.3%, lowered the pH value from 6.99 to 6.69 in the rectum, and increased the Eh value in cecum and colon by up to −55 mV (P<0.05). Fermentation patterns were also altered by supplementation of YST2 as reflected by the lower acetate, and higher propionate molar proportion in the cecum and colon (P<0.05), resulting in lower acetate : propionate ratio (P<0.05). Moreover, there was a 61% decrease in Methanobrevibacter species in the upper colon (P<0.05) and a 19% increase in the acetogen community in the cecum (P<0.05) of treated pigs. Results of our study concluded that supplementation of S. cerevisiae YST2 at 3 g/kg substantially decreased enteric CH4 production in pigs.  相似文献   

17.
Livestock grazing plays a significant role in maintaining grasslands and promoting animal production globally. To understand the livestock performance in sown pasture (SP) vs native pasture (NP) is important to ensure more effective grassland-livestock interactions with minimal environmental impact. A 2 (treatment) * 2 (period) Latin Square design experiment was conducted with 10 growing Hu sheep ♂ × thin-tailed Han sheep ♀ rams grazed perennially SP vs NP in an inland arid region of China. The objectives were to evaluate the effects of grazing management on nutrient digestibility, nitrogen (N) and energy utilisation and methane (CH4) emission. The N intake, N retained and energy intake (gross energy (GE), and digestible and metabolisable energy) of sheep grazing in SP were significantly increased compared with those grazing in NP. There were significant linear relationships between DM intake (DMI) (g/kg BW or g/kg BW0.75) or CH4 (g/kg BW or g/kg BW0.75) emissions and forage nutrient and GE concentrations within each grassland type. The linear regression analysis indicated that forage CP or ether extract concentration was a good predictor for DMI (g/kg BW or g/kg BW0.75) (R2 = 0.756 or 0.752), and CH4 emission could be predicted using forage nutrient and GE concentrations (R2 = 0.381–0.503). These results suggest that DMI and CH4 emissions per unit metabolic BW were accurately predicted by multiple-factor combinations of forage nutrients, including ether extract and CP paired with GE. The present output could provide useful information for the development of sustainable sheep grazing systems in the inland arid regions of the world.  相似文献   

18.
Flax seed meal (FSM) is rich in various nutrients, especially CP and energy, and can be used as animal protein feed. In animal husbandry production, it is a long-term goal to replace soybean meal (SBM) in animal feed with other plant protein feed. However, studies on the effects of replacing SBM with FSM in fattening sheep are limited. The aim of this experiment was to study the effects of replacing a portion of SBM with FSM on nutrient digestibility, rumen microbial protein synthesis and growth performance in sheep. Thirty-six Dorper × Small Thin-Tailed crossbred rams (BW = 40.4 ± 1.73 kg, mean ± SD) were randomly assigned into four groups. The dietary treatments (forage/concentrate, 45 : 55) were isocaloric according to the nutrient requirements of rams. Soybean meal was replaced with FSM at different levels (DM basis): (1) 18% SBM (18SBM), (2) 12% SBM and 6% FSM (6FSM), (3) 6% SBM and 12% FSM (12FSM) and (4) 18% FSM (18FSM). The rams were fed in individual pens for 60 days, with the first 10 days for adaptation to diets, and then the digestibility of nutrients was determined. There was no significant difference in DM intake, but quadratic (P < 0.001) effects on the average daily gain and feed efficiency were detected, with the highest values in the 6FSM and 12FSM groups. For DM and NDF digestibility, quadratic effects were observed with the higher values in the 6FSM and 12FSM groups, but the digestibility of CP linearly decreased with the increase in FSM in the diet (P = 0.043). There was a quadratic (P < 0.001) effect of FSM inclusion rate on the estimated microbial CP yield. However, the values of intestinally absorbable dietary protein decreased linearly (P < 0.001). For the supply of metabolisable protein, both the linear (P = 0.001) and quadratic (P = 0.044) effects were observed with the lowest value in the 18FSM group. Overall, the results indicated that SBM can be effectively replaced by FSM in the diets of fattening sheep and the optimal proportion was 12.0% under the conditions of this experiment.  相似文献   

19.
Condensed tannins (CTs) are phenolic compounds derived from secondary plant metabolism that act as part of the plant's chemical defense system against pathogen invasion and herbivorous attack. This study aimed to evaluate the intake, digestibility, nitrogen (N) balance, production and composition of milk from goats fed cassava silage with added levels of CTs. Eight Anglo-Nubian goats with a mean BW of 40 ± 2.0 kg were distributed in a double Latin square design with four levels of CTs (0, 25, 50 and 75 g/kg DM) with four 20-day periods with 15 days of adaptation and five evaluation days for each period. No differences were observed in DM, NDF, CP intake and feed conversion (grams of DM intake (DMI) per gram of milk produced); however, when expressed as percent of BW, DMI showed a quadratic increase to 29.1 g/kg. As the level of supplemented CTs increased in the diet, the CP digestibility (P = 0.023), NDF (P = 0.044), non-fiber carbohydrates (NFC; P = 0.032) and total digestible nutrients (P = 0.033) exhibited a linear decrease. Furthermore, the addition of CTs to cassava silage induced a linear increase in N-fecal excretion (P = 0.014) and a positive quadratic effect on N-retained (P = 0.014) and N-balance (P = 0.024) as well as a positive quadratic trend in N-digested (P = 0.092). Milk urea N (P = 0.023) decreased linearly. The addition of CTs to cassava silage had a positive quadratic effect on ruminating time (P = 0.011). In addition, comparing the use or non-use from the orthogonal contrast test, the inclusion of CTs in goat diet increased water and N-intake, CP and NDF digestibility, spent time eating and ruminating and N-balance and decreased milk production corrected3.5%, fat milk content, milk urea N and dry defatted extract of milk. Thus, adding CTs to cassava silage at 25 g/kg total DM promoted goats' greater use of the diet without impairing feed conversion and the quality of goat milk produced. Dietary levels of 50 and 75 g/kg total DM are not recommended because under the conditions of this study, they reduced the productive efficiency of dairy goats.  相似文献   

20.
Dehydrated lucerne is used as a protein source in dairy cow rations, but little is known about the effects of lucerne on greenhouse gas production by animals. Eight Holstein dairy cows (average weight: 582 kg) were used in a replicated 4×4 Latin square design. They received diets based on either maize silage (M) or grass silage (G) (45% of diet on dry matter (DM) basis), with either soya bean meal (15% of diet DM) completed with beet pulp (15% of diet DM) (SP) or dehydrated lucerne (L) (30% of diet DM) as protein sources; MSP, ML, GSP and GL diets were calculated to meet energy requirements for milk production by dairy cows and degradable protein for rumen microbes. Dry matter intake (DMI) did not differ among diets (18.0 kg/day DMI); milk production was higher with SP diets than with L diets (26.0 v. 24.1 kg/day), but milk production did not vary with forage type. Milk fatty-acid (FA) composition was modified by both forage and protein sources: L and G diets resulted in less saturated FA, less linoleic acid, more trans-monounsaturated FA, and more linolenic acid than SP and M diets, respectively. Enteric methane (CH4) production, measured by the SF6 tracer method, was higher for G diets than for M diets, but did not differ with protein source. The same effects were observed when CH4 was expressed per kg milk. Minor effects of diets on rumen fermentation pattern were observed. Manure CH4 emissions estimated from faecal organic matter were negatively related to diet digestibility and were thus higher for L than SP diets, and higher for M than G diets; the resulting difference in total CH4 production was small. Owing to diet formulation constraints, N intake was higher for SP than for L diets; interaction between forage type and protein source was significant for N intake. The same statistical effects were found for N in milk. Faecal and urinary N losses were determined from total faeces and urine collection. Faecal N output was lower for M than for G diets but did not differ between protein sources. Urinary N output did not differ between forage types, but was lower for cows fed L diets than for cows fed SP diets, potentially resulting in lower ammonia emissions with L diets. Replacing soya bean meal plus beet pulp with dehydrated lucerne did not change CH4 production, but resulted in more N in faeces and less N in urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号