首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
基因拷贝数异常(copy number variations,CNVs)是广泛存在于人体基因组的一种结构变异现象,主要包括拷贝数的缺失、插入、重组以及多位点的复杂变异等。最初是在病人的基因组中发现,后来的研究表明在正常人体中也普遍存在。有关CNVs的研究将随机个体之间的基因组差异估计值大大提高,极大的改变了人们的认识。目前,关于CNVs的研究多处在初步探索阶段,CNVs如何导致疾病,以及如何引起基因等的改变而诱发疾病的机理也需更进一步的研究加以验证和证实。该文主要就近年来关于CNVs的研究进展作一综述。  相似文献   

3.
NL Corrales  K Mrasek  M Voigt  T Liehr  N Kosyakova 《Gene》2012,506(2):377-379
Results from the analysis of copy number variations (CNVs) in human pluripotent cell-derived neuroprogenitor cell lines (hiPSC and hESC-derived NPC) are presented. Two different types of CNVs were detected: a) CNVs inherited from the original source of pluripotent cells (hESC and hiPSC) and b) CNVs detected either in the original source of pluripotent cells or in the derived NPC cell lines but not in both at the same time. Our data suggest that submicroscopic chromosomal changes happened during culture and manipulation of cells and those differentiation procedures could result in gains and losses of genomic regions in pluripotent cell-derived neuroprogenitors. Overall, the results indicate that even chromosomally stable stem cell lines would need to be analyzed in detail by high resolution methodologies before their clinical use.  相似文献   

4.
Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation   总被引:19,自引:0,他引:19  
  相似文献   

5.
Lee J  Lau J  Chong G  Chao SH 《Biotechnology letters》2007,29(12):1797-1802
The major immediate-early (MIE) promoter of human cytomegalovirus (CMV) is widely used to express recombinant proteins in mammalian cells. CMV MIE promoter contains a strong enhancer and an AT-rich unique region (UR). The UR can function as an insulator or a negative element of CMV MIE promoter, depending on the cellular proteins associated with it. To examine the effects of UR on recombinant protein expression in mammalian cells, we constructed two CMV MIE promoter-based expression plasmids for comparison to the conventional CMV MIE promoter by removing or adding UR. Addition of UR enhances transgene expression in HEK293 stable cells while removal of UR increases both transient and stably integrated expression in HeLa cells. Our results further demonstrate that the cell-specific effect of UR depends on the protein levels of UR-binding proteins, pancreatic-duodenal homeobox factor-1, special AT-rich sequence binding protein 1, and CCAAT displacement protein, in these cells. Collectively, these modified CMV expression plasmids can be utilized to improve recombinant protein production in specific mammalian cell lines.  相似文献   

6.
7.
8.
In recent years, characterization of a copy number variation (CNV) of the genomic DNA has provided evidence for the relationship of this type of genetic variation with the occurrence of a broad spectrum of diseases, including cancer lesions. Copy number variants (CNVs) also occur in the genomes of healthy individuals as a result of abnormal recombination processes in germ cells and have a hereditary character contributing to the natural genetic diversity. Recent image analysis methods and advanced computational techniques allow for identification of CNVs using SNPs genotyping microarrays based on the analysis of signal intensity observed for markers located in the specific genomic regions. In this study we used CanineHD BeadChip assay (Illumina) to identify both natural and cancer-induced CNVs in the genomes of different dog breeds and in different cancer types occurring in this species. The obtained results showed that structural aberrations are a common phenomenon arising during a tumor progression and are more complex and widespread in tumors of mesenchymal tissue origin than in epithelial tissue originating tumors. The tumor derived CNVs, in comparison to healthy samples, were characterized by larger sizes of regions, higher number of amplifications, and in some cases encompassed genes with potential effect on tumor progression.  相似文献   

9.
Ectopic recombination occurs between DNA sequences that are not in equivalent positions on homologous chromosomes and has beneficial as well as potentially deleterious consequences for the eukaryotic genome. In the present study, we have examined ectopic recombination in mammalian somatic (murine hybridoma) cells in which a deletion in the mu gene constant (Cmu) region of the endogenous chromosomal immunoglobulin mu gene is corrected by using as a donor an ectopic wild-type Cmu region. Ectopic recombination restores normal immunoglobulin M production in hybridomas. We show that (i) chromosomal mu gene deletions of 600 bp and 4 kb are corrected less efficiently than a deletion of only 2 bp, (ii) the minimum amount of homology required to mediate ectopic recombination is between 1.9 and 4.3 kb, (iii) the frequency of ectopic recombination does not depend on donor copy number, and (iv) the frequency of ectopic recombination in hybridoma lines in which the donor and recipient Cmu regions are physically connected to each other on the same chromosome can be as much as 4 orders of magnitude higher than it is for the same sequences located on homologous or nonhomologous chromosomes. The results are discussed in terms of a model for ectopic recombination in mammalian somatic cells in which the scanning mechanism that is used to locate a homologous partner operates preferentially in cis.  相似文献   

10.
11.
Two mechanisms of telomere length maintenance are known to date. The first includes the use of a special enzymatic telomerase complex to solve the problems that arise during the replication of linear DNA in a normal diploid and part of tumor cells. Alternative lengthening of telomeres (ALT), which is based on the homologous recombination of telomere DNA, represents the second mechanism. Until recently, ALT was assumed to be expressed only in 15–20% of tumors lacking active telomerase and,, together with telomerase reactivation represented one of two possibilities to overcome the replicative senescence observed in somatic mammalian cells due to aging or during cell culturing in vitro. Previously described sporadic cases of combinations of the two mechanisms of telomere length maintenance in several cell lines in vitro were attributed to the experimental design rather than to a real biological phenomenon, since active cellular division without active telomerase was considered to be the “gold standard” of ALT. The present review describes the morphological and functional reorganizations of mammalian telomeres observed with ALT activation, as well as recently observed and well-documented cases of combinations between ALT-like and telomerase-dependent mechanisms in mammalian cells. The possible role of telomere recombination in telomerase-dependent cells is discussed.  相似文献   

12.
13.

Background

Array comparative genomic hybridization (aCGH) to detect copy number variants (CNVs) in mammalian genomes has led to a growing awareness of the potential importance of this category of sequence variation as a cause of phenotypic variation. Yet there are large discrepancies between studies, so that the extent of the genome affected by CNVs is unknown. We combined molecular and aCGH analyses of CNVs in inbred mouse strains to investigate this question.

Principal Findings

Using a 2.1 million probe array we identified 1,477 deletions and 499 gains in 7 inbred mouse strains. Molecular characterization indicated that approximately one third of the CNVs detected by the array were false positives and we estimate the false negative rate to be more than 50%. We show that low concordance between studies is largely due to the molecular nature of CNVs, many of which consist of a series of smaller deletions and gains interspersed by regions where the DNA copy number is normal.

Conclusions

Our results indicate that CNVs detected by arrays may be the coincidental co-localization of smaller CNVs, whose presence is more likely to perturb an aCGH hybridization profile than the effect of an isolated, small, copy number alteration. Our findings help explain the hitherto unexplored discrepancies between array-based studies of copy number variation in the mouse genome.  相似文献   

14.
15.
Decidual cells are direct descendants of endometrial stromal cells and the ultimate progeny of bone marrow-derived precursors. In view of their bone marrow genealogy and demonstrated immunoregulatory role during pregnancy, this study attempted to identify a lineage-specific differentiation marker(s) on murine decidual cells with the hope of tracing their developmental pathway and exploring their familial relationship to other lymphomyeloid cells. Two protein A-binding, IgG2b isotype monoclonal antibodies (secreted by clones 16F12 and 2G4F8) were raised by immunizing virgin CBA mice with syngeneic decidual cells. The presence and the density of the antigenic marker(s) recognized by these antibodies were examined by radioautography on various cell types in single cell suspensions of the decidua, placenta, and lymphomyeloid organs after a sandwich labeling with hybridoma supernatants followed by 125I-protein A. Both antibodies appeared to recognize antigen(s) unique for the decidual cell lineage in mice, humans, and rats. The incidence of antigen-bearing decidual cells increased with gestational age in CBA, C3H, and CD1 mice between days 8 and 14, and in humans between 6 and 10.5 wk; in rats, however, some decline was noted between days 8 and 14. The binding was always higher with 16F12 than with 2G4F8 supernatants. No significant binding of either antibody to trophoblast cells of the placenta or leukocytes within the decidua was noted in any of the above mouse strains or species. Little or no labeling of any cell type was seen on lymphomyeloid cells of the virgin or pregnant CBA mice, but a consistent labeling of a rare blast-type cell in the blood was observed with both antibodies, raising the possibility that this cell may represent the circulating precursor of the decidual cell lineage. It remains to be investigated whether these antibodies are recognizing the same or different differentiation antigen(s) on the decidual cells, and whether a conservation of this antigen(s) during speciation signifies its functional importance.  相似文献   

16.
Specialized NK cells are recruited in high numbers to the mammalian embryo implantation sites, yet remain pregnancy compatible. It is not well understood whether uterine NK (uNK) cells become adversely activated and mediate fetal demise, a common complication of early pregnancy. In this study we show that mating of IL-10(-/-) mice resulted in fetal resorption or intrauterine growth restriction in response to very low doses of LPS. Pregnancy in congenic wild-type mice was normal even at 10-fold higher LPS doses. Fetal resorption in IL-10(-/-) mice was associated with a significant increase in uNK cell cytotoxic activation and invasion into the placenta. Depletion of uNK cells, TNF-alpha neutralization, or IL-10 administration rescued pregnancy in LPS-treated IL-10(-/-) animals. Our results identify an immune mechanism of fetal demise involving IL-10 deficiency, NK cells, and inflammation. These results may provide insight into adverse pregnancy outcomes in humans.  相似文献   

17.
Ultraconserved elements (UCEs) are strongly depleted from segmental duplications and copy number variations (CNVs) in the human genome, suggesting that deletion or duplication of a UCE can be deleterious to the mammalian cell. Here we address the process by which CNVs become depleted of UCEs. We begin by showing that depletion for UCEs characterizes the most recent large-scale human CNV datasets and then find that even newly formed de novo CNVs, which have passed through meiosis at most once, are significantly depleted for UCEs. In striking contrast, CNVs arising specifically in cancer cells are, as a rule, not depleted for UCEs and can even become significantly enriched. This observation raises the possibility that CNVs that arise somatically and are relatively newly formed are less likely to have established a CNV profile that is depleted for UCEs. Alternatively, lack of depletion for UCEs from cancer CNVs may reflect the diseased state. In support of this latter explanation, somatic CNVs that are not associated with disease are depleted for UCEs. Finally, we show that it is possible to observe the CNVs of induced pluripotent stem (iPS) cells become depleted of UCEs over time, suggesting that depletion may be established through selection against UCE-disrupting CNVs without the requirement for meiotic divisions.  相似文献   

18.
19.
20.
Array-based methods have enabled the detection of many genomic gains and losses. These are stated as copy number variants (CNVs) and comprise up to 13% of the human genome. Based on their breakpoints and modes of formation CNVs are termed recurrent or nonrecurrent. Recurrent CNVs are flanked by low copy repeats and are of a fixed size. They arise as a result of misalignment during meiosis by a mechanism named nonallelic homologous recombination. Several of such recurrent CNVs have been linked to human diseases. Nonrecurrent CNVs, which are not flanked by low copy repeats, are of variable size and may arise via mechanisms like nonhomologous end joining and replication-based mechanisms described by the fork stalling and template switching and microhomology-mediated break-induced replication models. It is becoming clear that most disease-causing CNVs are nonrecurrent and generally arise via replication-based mechanisms. Furthermore, it is now appreciated that genomic features other than low copy repeats play a role in the formation of nonrecurrent CNVs. This review will discuss the different mechanisms of CNV formation and how high resolution analyses of CNV breakpoints have added to our knowledge of their precise structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号