首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Greenshields DL  Liu G  Selvaraj G  Wei Y 《Planta》2005,222(5):867-875
At least two types of quinone reductases are present in plants: (1) the ζ-crystallin-like quinone reductases (QR1, EC 1.6.5.5) that catalyze the univalent reduction of quinones to semiquinone radicals, and (2) the DT-diaphorase-like quinone reductases (QR2, EC 1.6.99.2) that catalyze the divalent reduction of quinones to hydroquinones. QR2s protect cells from oxidative stress by making the quinones available for conjugation, thereby releasing them from the superoxide-generating one electron redox cycling, catalyzed by QR1s. Two genes, putatively encoding a QR1 and a QR2, respectively, were isolated from an expressed sequence tag collection derived from the epidermis of a diploid wheat Triticum monococcum L. 24 h after inoculation with the powdery mildew fungus Blumeria graminis (DC) EO Speer f. sp. tritici Em. Marchal. Northern analysis and tissue-specific RT-PCR showed that TmQR1 was repressed while TmQR2 was induced in the epidermis during powdery mildew infection. Heterologous expression of TmQR2 in Escherichia coli confirmed that the gene encoded a functional, dicumarol-inhibitable QR2 that could use either NADH or NADPH as an electron donor. The localization of dicumarol-inhibitable QR2 activity around powdery mildew infection sites was accomplished using a histochemical technique, based on tetrazolium dye reduction.  相似文献   

2.
《Free radical research》2013,47(10):1184-1195
Abstract

NRH:quinone oxidoreductase 2 (QR2) is a cytosolic enzyme that catalyzes the reduction of quinones, such as menadione and co-enzymes Q. With the aim of understanding better the mechanisms of action of QR2, we approached this enzyme catalysis via electron paramagnetic resonance (EPR) measurements of the by-products of the QR2 redox cycle. The variation in the production of oxidative species such as H2O2, and subsequent hydroxyl radical generation, was measured during the course of QR2 activity under aerobic conditions and using pure human enzyme. The effects on the activity of the following were compared: (i) synthetic (N-benzyldihydronicotinamide, BNAH) or natural (nicotinamide riboside, NRH) co-substrates; (ii) synthetic (menadione) or natural (co-enzyme Q0, Q2) substrates; (iii) QR2 modulators and inhibitors (melatonin, resveratrol and S29434); (iv) a pro-drug activated via a redox cycle [CB1954, 5-(aziridin-1-yl)-2,4-dinitrobenzamide]. The results were also compared with those obtained with human QR1. The production of hydroxyl radicals is: (i) observed whatever the substrate/co-substrate used; ii) quenched by adding catalase; (iii) not observed with the specific QR2 inhibitor S29434; (iv) observed with the pro-drug CB1954. While QR2 produced free radicals with this pro-drug, QR1 gave no EPR signal showing the strong reducing capacity of QR2. In conclusion, EPR analysis of QR2 enzyme activity through free radical production enables modulators and effective inhibitors to be distinguished.  相似文献   

3.
Lichens produce various oxidoreductases including heme-containing peroxidases and the copper-containing phenol oxidases tyrosinase and laccase. Our earlier findings suggested that significant oxidoreductase activity occurs mainly in lichens from the order Peltigerales. Here we show that the non-Peltigeralean lichen Usnea can display significant activities of peroxidases and laccases. Strong evidence for the involvement of peroxidases and laccases in saprotrophic activities comes from the observation that their activities are induced by “starvation” due to prolonged dark storage, and also by treatment with soluble cellulose and lignin breakdown products. We also show that, given a quinone and chelated Fe, Usnea can produce hydroxyl radicals; these radicals contribute to the break down of carbohydrates or lignin. However, hydroxyl radical production is independent of laccase and peroxidase activity. Laccases and peroxidases are involved in other aspects of lichen biology; here we show that peroxidases, but not laccases, can break down lichen substances. Reduction in the amounts of lichen substances will reduce photoprotection, which will increase the photosynthetic capacity of thalli during winter when light intensities are low.  相似文献   

4.
Using a tolerance index based on metal-induced reductions inphotosynthesis, members of the lichen genus Peltigera, sampledfrom a range of sites with contrasting metal status, were demonstratedto possess Zn tolerance directly proportional to the Zn contentof the thallus. Tolerance was not related to the concentrationof other cations present in the thallus or weight of thallusper unit surface area. Although differences in Cu tolerancewere found, these were not related to the Cu content of thethallus but rather to the Zn content. In the laboratory, pretreatmentof P. membranacea with low concentrations of Zn significantlydecreased the inhibition of photosynthesis caused when subsequentlysupplied with high levels of Zn compared to water pretreatedplants. Increased resistance to Cd but not Cu was also found,although it was not possible to increase either Cu or Zn resistanceby pretreatment with Cu. Peltigera membranacea, lichen, heavy metal tolerance, zinc, copper, cadmium  相似文献   

5.
NRH:quinone oxidoreductase 2 (QR2) is a cytosolic enzyme that catalyzes the reduction of quinones, such as menadione and co-enzymes Q. With the aim of understanding better the mechanisms of action of QR2, we approached this enzyme catalysis via electron paramagnetic resonance (EPR) measurements of the by-products of the QR2 redox cycle. The variation in the production of oxidative species such as H(2)O(2), and subsequent hydroxyl radical generation, was measured during the course of QR2 activity under aerobic conditions and using pure human enzyme. The effects on the activity of the following were compared: (i) synthetic (N-benzyldihydronicotinamide, BNAH) or natural (nicotinamide riboside, NRH) co-substrates; (ii) synthetic (menadione) or natural (co-enzyme Q0, Q2) substrates; (iii) QR2 modulators and inhibitors (melatonin, resveratrol and S29434); (iv) a pro-drug activated via a redox cycle [CB1954, 5-(aziridin-1-yl)-2,4-dinitrobenzamide]. The results were also compared with those obtained with human QR1. The production of hydroxyl radicals is: (i) observed whatever the substrate/co-substrate used; ii) quenched by adding catalase; (iii) not observed with the specific QR2 inhibitor S29434; (iv) observed with the pro-drug CB1954. While QR2 produced free radicals with this pro-drug, QR1 gave no EPR signal showing the strong reducing capacity of QR2. In conclusion, EPR analysis of QR2 enzyme activity through free radical production enables modulators and effective inhibitors to be distinguished.  相似文献   

6.
The formation of reactive oxygen intermediates (ROI) during redox cycling of newly synthesized potential antitumor 2,5-bis (1-aziridinyl)-1,4-benzoquinone (BABQ) derivatives has been studied by assaying the production of ROI (superoxide, hydroxyl radical, and hydrogen peroxide) by xanthine oxidase in the presence of BABQ derivatives. At low concentrations (< 10 microM) some BABQ derivatives turned out to inhibit the production of superoxide and hydroxyl radicals by xanthine oxidase, while the effect on the xanthine-oxidase-induced production of hydrogen peroxide was much less pronounced. Induction of DNA strand breaks by reactive oxygen species generated by xanthine oxidase was also inhibited by BABQ derivatives. The DNA damage was comparable to the amount of hydroxyl radicals produced. The inhibiting effect on hydroxyl radical production can be explained as a consequence of the lowered level of superoxide, which disrupts the Haber-Weiss reaction sequence. The inhibitory effect of BABQ derivatives on superoxide formation correlated with their one-electron reduction potentials: BABQ derivatives with a high reduction potential scavenge superoxide anion radicals produced by xanthine oxidase, leading to reduced BABQ species and production of hydrogen peroxide from reoxidation of reduced BABQ. This study, using a unique series of BABQ derivatives with an extended range of reduction potentials, demonstrates that the formation of superoxide and hydroxyl radicals by bioreductively activated antitumor quinones can in principle be uncoupled from alkylating activity.  相似文献   

7.
NAD(P)H:quinone reductase 1 (QR1) belongs to a class of enzymes called cytoprotective enzymes. It exhibits its cancer protective activity mainly by inhibiting the formation of intracellular semiquinone radicals, and by generating α-tocopherolhydroquinone, which acts as a free radical scavenger. It is therefore believed that QR1 inducers can act as cancer chemopreventive agents. Resveratrol (1) is a naturally occurring stilbene derivative that requires a concentration of 21 μM to double QR1 activity (CD = 21 μM). The stilbene double bond of resveratrol was replaced with a thiadiazole ring and the phenols were eliminated to provide a more potent and selective derivative 2 (CD = 2.1 μM). Optimizing the substitution pattern of the two phenyl rings and the central heterocyclic linker led to a highly potent and selective QR1 inducer 9o with a CD value of 0.087 μM.  相似文献   

8.
Using the spin trap, 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) we have demonstrated that hydroxyl radicals are generated indirectly from purified preparations of rat liver microsomal NADPH-cytochrome c (P-450) reductase during NADPH oxidation. Hydroxyl radical formation is completely inhibited by p-chloromercuribenzoate, but not by metyrapone. In addition, hydroxyl radical DMPO adduct formation is blocked by added linolenic acid which, in turn, is peroxidatively degraded into malondialdehyde, suggesting that hydroxyl radicals formed from purified NADPH-cytochrome c (P-450) reductase are capable of initiating lipid peroxidation. A mechanism for the indirect production of hydroxyl radicals from NADPH-cytochrome P-450 reductase is discussed.  相似文献   

9.
Detection of free radicals in biological systems is challenging due to their short half-lives. We have applied electron spin resonance (ESR) spectroscopy combined with spin traps using the probes PBN (N-tert-butyl-α-phenylnitrone) and DMPO (5,5-dimethyl-1-pyrroline N-oxide) to assess free radical formation in the human pathogen Staphylococcus aureus treated with a bactericidal antibiotic, vancomycin or ciprofloxacin. While we were unable to detect ESR signals in bacterial cells, hydroxyl radicals were observed in the supernatant of bacterial cell cultures. Surprisingly, the strongest signal was detected in broth medium without bacterial cells present and it was mitigated by iron chelation or by addition of catalase, which catalyzes the decomposition of hydrogen peroxide to water and oxygen. This suggests that the signal originates from hydroxyl radicals formed by the Fenton reaction, in which iron is oxidized by hydrogen peroxide. Previously, hydroxyl radicals have been proposed to be generated within bacterial cells in response to bactericidal antibiotics. We found that when S. aureus was exposed to vancomycin or ciprofloxacin, hydroxyl radical formation in the broth was indeed increased compared to the level seen with untreated bacterial cells. However, S. aureus cells express catalase, and the antibiotic-mediated increase in hydroxyl radical formation was correlated with reduced katA expression and catalase activity in the presence of either antibiotic. Therefore, our results show that in S. aureus, bactericidal antibiotics modulate catalase expression, which in turn influences the formation of free radicals in the surrounding broth medium. If similar regulation is found in other bacterial species, it might explain why bactericidal antibiotics are perceived as inducing formation of free radicals.  相似文献   

10.
The methanol extract of the lichen Lasallia pustulata was tested for genotoxic, antioxidant, antimicrobial and anticancer activities. We did this using a cytokinesis block micronucleus (MN) assay on peripheral blood lymphocytes, by measuring free radical and superoxide anion scavenging activity, reducing power, determining of total phenolic compounds and determining the total flavonoid content, measuring the minimal inhibitory concentration by the broth microdilution method against five species of bacteria and five species of fungi and by using the microculture tetrazolium test on FemX (human melanoma) and LS174 (human colon carcinoma) cell lines. As a result of this study, we found that the methanol extract of L. pustulata did not modify the frequency of the MN and nuclear division index in comparison to untreated cells (p > 0.05). These results revealed that the methanol extract had moderate free radical scavenging activity with IC50 values of 395.56 μg/mL. Moreover, the extract tested had effective reducing power and superoxide anion radical scavenging. The values of the minimum inhibitory concentration against the tested microorganisms ranged from 0.625 to 20 mg/mL. In addition, the extract tested had strong anticancer activity against both cell lines with IC50 values of 46.67 and 71.71 μg/mL.  相似文献   

11.
We purified a novel antioxidant peptide from Ruditapes philippinarum (R. philippinarum) and investigated its free radical scavenging activities. To prepare the peptide, eight proteases were tested for enzymatic hydrolysis. α-chymotrypsin hydrolysate, which showed clearly superior hydroxyl radical scavenging activity (p < 0.05), were further purified using a flow filtration system and consecutive chromatographic methods. Finally, a novel antioxidant peptide was obtained, and the sequence was identified as Ser-Val-Glu-Ile-Gln-Ala-Leu-Cys-Asp-Met. The peptide from R. philippinarum effectively scavenged hydroxyl, DPPH, alkyl and superoxide radicals, with observed IC50 values of 0.042, 0.091, 0.107 and 0.372 mg/ml, respectively. This is the first report of an antioxidant peptide derived from the hydrolysates of R. philippinarum which, further, possesses competitive free radical quenching potential.  相似文献   

12.
Quinone reductase 2 is a cytosolic enzyme which catalyses the reduction of quinones, such as menadione and coenzymes Q. Despite a relatively close sequence-based resemblance to NAD(P)H:quinone oxidoreductase 1 (QR1), it has many different features. QR2 is the third melatonin binding site (MT3). It is inhibited in the micromolar range by melatonin, and does not accept conventional phosphorylated nicotinamides as hydride donors. QR2 has a powerful capacity to activate quinones leading to unexpected toxicity situations. In the present paper, we report the characterization of three QR2 modulators: melatonin, resveratrol and S29434. The latter compound inhibits QR2 activity with an IC50 in the low nanomolar range. The potency of the modulators ranged as follows, from the least to the most potent: melatonin < resveratrol < S29434. These molecular tools might permit to explore and better understand the relationship existing between QR2 catalytic activity and the various pathological situations in which QR2 has a key role.  相似文献   

13.
A molecular study was undertaken to clarify the identity of the photobiont in colourmorphs of the lichen,Peltigera membranaceaTwo strains of cyanobacteria, identified asNostocsp. by morphology, were cultivated from each of two lichen specimens. Prokaryotic (16S) ribosomal RNA gene fragments were amplified by the polymerase chain reaction (PCR) from DNA extracted from the isolated strains and the lichens, and sequenced directly. Sequences were 98·1% identical between lichen specimens, TDI#AR94 and TDI#AR95, and highly similar to sequences published, or generated in this study from a type culture, forNostocThe 16S ribosomal RNA gene sequences (‘ 16S rDNA ’) of all four lichen-derived cyanobacteria appeared the same, even though the lichen specimens from which they originated had different sequences. The 16S rDNA from strains 9A and 9B were different from that of specimen TDI#AR94, the thallus from which they were isolated, and instead were the same as that of strains 10A and 10B, and their source, specimen TDI#AR95. When primers selective for the strain 9A sequence were used, however, a small amount of PCR product corresponding to the 16S rDNA of strain 9A was obtained from lichen TDI#AR94. The results confirm that the photobionts ofP. membranaceabelong toNostocand suggest that genetic differences in the photobiont may be a factor in the occurrence of colourmorphs among cyanolichens.  相似文献   

14.
The existence of concentric bodies in the lichen species: Parmelia conspersa, Rhizocarpon geographicum and Umbilicaria pustulata is reported. By first time the presence of these structures in the ascospores of the lichen R. geographicum is described.  相似文献   

15.
Edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one) is a neuroprotective drug that has been used for brain ischemia injury treatment. Because its activity is speculated to be due to free radical scavenging activity, we carried out a quantitative determination of edaravone’s free radical scavenging activity against multiple free radical species. Electron spin resonance (ESR) spin trapping-based multiple free-radical scavenging (MULTIS) method was employed, where target free radicals were hydroxyl radical, superoxide anion, alkoxyl radical, alkylperoxyl radical, methyl radical, and singlet oxygen. Edaravone showed relatively high scavenging abilities against hydroxyl radical (scavenging rate constant k = 2.98 × 1011 M−1 s−1), singlet oxygen (k = 2.75 × 107 M−1 s−1), and methyl radical (k = 3.00 × 107 M−1 s−1). Overall, edaravone’s scavenging activity against multiple free radical species is as robust as other known potent antioxidant such as uric acid, glutathione, and trolox. A radar chart illustration of the MULTIS activity relative to uric acid, glutathione, and trolox indicates that edaravone has a high and balanced antioxidant activity with low specificity.  相似文献   

16.
Various quaternized chitosans (QCSs) were synthesized according to previous method. Their reducing power and antioxidant potency against hydroxyl radicals (OH) and hydrogen peroxide (H2O2) were explored by the established systems in vitro. The QCSs exhibited markedly antioxidant activity, especially TCEDMCS, whose IC50 on hydroxyl radicals was 0.235 mg/mL. They showed 65–80% scavenging effect on hydrogen peroxide at a dose of 0.5 mg/mL. Generally, the antioxidant activity decreased in the order TCEDMCS > TBEDMCS > EDMCS > PDMCS > IBDMCS > Chitosan. Furthermore, the order of their OH and H2O2 scavenging activity was consistent with the electronegativity of different substituted groups in the QCSs. The QCSs showed much stronger antioxidant activity than that of chitosan may be due to the positive charge density of the nitrogen atoms in QCSs strengthened by the substituted groups.  相似文献   

17.

The natural antioxidant agent is urgently needed to prevent the negative effects of newly generated free radicals and chronic disorders. Recently, the microbial exopolysaccharide (EPS) is currently used as a potential biopolymer due to its unique biological characteristics. In this study, the biological potential was carried out on the EPSs produced by Lactobacillus reuteri SHA101 (EPS-lr) and Lactobacillus vaginalis SHA110 (EPS-lvg) isolated from gut cecum samples of healthy poultry birds (hen). As results, the EPS-lr and EPS-lvg showed the emulsifying activity of 37.8 ± 1.6% and 27.8 ± 0.5% after the 360 h, respectively. The scanning electron microscopy analysis of EPS-lr and EPS-lvg demonstrated a smooth surface with a compact structure. The both EPSs exhibited strong antibacterial activity against E. coli and Salmonella typhimurium in vitro. In additions, at 4 mg/mL concentration, the EPS-lr and EPS-lvg samples showed potent antioxidant activity regarding hydroxyl radical DPPH (2,2-diphenyl-1-picrylhydrazyl) radical, superoxide anion radical and reducing power at OD700 nm. Furthermore, the EPS-lr and EPS-lvg (600 μg/mL) possessed antitumor activity against colon cancer (Caco-2) cell after 72 h. The results suggested that these EPSs would have great potential in the application of antitumor and antioxidant foods, biomedicine, and pharmaceutics.

  相似文献   

18.
The brown rot fungus Gloeophyllum trabeum uses an extracellular hydroquinone-quinone redox cycle to reduce Fe3+ and produce H2O2. These reactions generate extracellular Fenton reagent, which enables G. trabeum to degrade a wide variety of organic compounds. We found that G. trabeum secreted two quinones, 2,5-dimethoxy-1,4-benzoquinone (2,5-DMBQ) and 4,5-dimethoxy-1,2-benzoquinone (4,5-DMBQ), that underwent iron-dependent redox cycling. Experiments that monitored the iron- and quinone-dependent cleavage of polyethylene glycol by G. trabeum showed that 2,5-DMBQ was more effective than 4,5-DMBQ in supporting extracellular Fenton chemistry. Two factors contributed to this result. First, G. trabeum reduced 2,5-DMBQ to 2,5-dimethoxyhydroquinone (2,5-DMHQ) much more rapidly than it reduced 4,5-DMBQ to 4,5-dimethoxycatechol (4,5-DMC). Second, although both hydroquinones reduced ferric oxalate complexes, the predominant form of Fe3+ in G. trabeum cultures, the 2,5-DMHQ-dependent reaction reduced O2 more rapidly than the 4,5-DMC-dependent reaction. Nevertheless, both hydroquinones probably contribute to the extracellular Fenton chemistry of G. trabeum, because 2,5-DMHQ by itself is an efficient reductant of 4,5-DMBQ.  相似文献   

19.
Deferiprone (L1) is an effective iron-chelating drug that is widely used for the treatment of iron-overload diseases. It is known that in aqueous solutions Fe2+ and Fe3+ ions can produce hydroxyl radicals via Fenton and photo-Fenton reactions. Although previous studies with Fe2+ have reported ferroxidase activity by L1 followed by the formation of Fe3+ chelate complexes and potential inhibition of Fenton reaction, no detailed data are available on the molecular antioxidant mechanisms involved. Similarly, in vitro studies have also shown that L1–Fe3+ complexes exhibit intense absorption bands up to 800 nm and might be potential sources of phototoxicity. In this study we have applied an EPR spin trapping technique to answer two questions: (1) does L1 inhibit the Fenton reaction catalyzed by Fe2+ and Fe3+ ions and (2) does UV–Vis irradiation of the L1–Fe3+ complex result in the formation of reactive oxygen species. PBN and TMIO spin traps were used for detection of oxygen free radicals, and TEMP was used to trap singlet oxygen if it was formed via energy transfer from L1 in the triplet excited state. It was demonstrated that irradiation of Fe3+ aqua complexes by UV and visible light in the presence of spin traps results in the appearance of an EPR signal of the OH spin adduct (TMIO–OH, a(N)=14.15 G, a(H)=16.25 G; PBN–OH, a(N)=16.0 G, a(H)=2.7 G). The presence of L1 completely inhibited the OH radical production. The mechanism of OH spin adduct formation was confirmed by the detection of methyl radicals in the presence of dimethyl sulfoxide. No formation of singlet oxygen was detected under irradiation of L1 or its iron complexes. Furthermore, the interaction of L1 with Fe2+ ions completely inhibited hydroxyl radical production in the presence of hydrogen peroxide. These findings confirm an antioxidant targeting potential of L1 in diseases related to oxidative damage.  相似文献   

20.

Background

Acid electrolyzed water (AEW), which is produced through the electrolysis of dilute sodium chloride (NaCl) or potassium chloride solution, is used as a disinfectant in various fields because of its potent antimicrobial activity. The hydroxyl radical, an oxygen radical species, is often suggested as a putative active ingredient for AEW antimicrobial activity.

Methodology/Principal Findings

The aim of the present study is to detect hydroxyl radicals in AEW. The hydroxyl radicals in AEW prepared under different conditions were determined using an electron spin resonance (ESR) technique. A signal from 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-OH, an adduct of DMPO and the hydroxyl radical, was detected in AEW prepared by double or triple electrolyses of 1% NaCl but not of 0.1% NaCl solution. Then the presence of hydrogen peroxide as a proposed source of hydroxyl radicals was examined using a combination of ESR and a Fenton reaction. The DMPO-OH signal was clearly detected, even in AEW prepared by single electrolysis of 0.1% NaCl solution, when ferrous sulfate was added to induce a Fenton reaction, indicating the presence of hydrogen peroxide in the AEW. Since sodium formate, a hydroxyl radical scavenger, did not affect the bactericidal activity of AEW, it is concluded that the radical is unlikely to contribute to the antimicrobial activity of AEW, although a small amount of the radical is produced from hydrogen peroxide. Dimethyl sulfoxide, the other hydroxyl radical scavenger used in the present study, canceled the bactericidal activity of AEW, accompanied by complete depletion of free available chlorine, suggesting that hypochlorous acid is probably a major contributor to the antimicrobial activity.

Conclusions

It is strongly suggested that although hydrogen peroxide is present in AEW as a source of hydroxyl radicals, the antimicrobial activity of AEW does not depend on these radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号