首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four Holstein heifers (297.5 ± 27.7 kg BW) fed high concentrate diets were used in a crossover experiment in order to characterize the rumen fermentation pattern, and to estimate by the in situ method rumen degradation kinetics of alfalfa hay and seven plant protein supplements: solvent-extracted soybean meal, solvent-extracted sunflower meal, peas (Pisum sativum L.), lupin seeds (Lupinus sp.), broadbean (Vicia faba L.), horsebean (Vicia faba L. var equina) and vetch (Vicia sativa L.), in high concentrate diets with different forage to concentrate ratio. Heifers were fitted with a ruminal cannula. The experiment was performed in two 30-day periods, 15 days of diet adaptation and 15 days of sampling. At each period, heifers were offered one of two total mixed rations (12:88 versus 30:70 forage to concentrate ratio), two heifers per diet, on ad libitum basis. After the first period, heifers switched treatments. Intake of dry matter (DM), organic matter, crude protein and neutral detergent fibre (NDF), expressed as kg/day, did not differ between treatments, but DM intake, expressed as g/kg metabolic body weight (BW), was higher in the 12:88 diet. Average rumen pH was 6.0 in both diets, and the time pH was below 5.8, which is considered as a critical threshold for fibre degradation, was the same for both treatments (10.4 ± 1.6 h). Average ammonia nitrogen and volatile fatty acid (VFA) concentrations did not differ between treatments and individual VFA proportions were typical of high concentrate diets. Average effective degradability of DM (0.62 ± 0.02) and NDF (0.25 ± 0.03) of alfalfa hay were low and no differences were detected between treatments. The same extent of NDF degradation, together with the same proportions of VFA would indicate that both diets had the same fibrolytic activity. Forage to concentrate ratio did not affect rumen nitrogen degradability of any protein supplements incubated in situ. Corrected effective degradability for small particle losses of sunflower meal (0.78) was higher than legume seeds, which were not statistically different between each other and ranged from 0.63 to 0.66. Soybean meal had the lowest degradability value (0.61). These nitrogen degradation values must be considered more valid for beef cattle formulation of high concentrate diets than data obtained with forage diets.  相似文献   

2.
Diets based on large proportions of grassland-based feed are uncommon in forage-based intensive beef production, thus contradicting governmental or commercial strategies to promote the use of grassland-based feed in ruminant production systems. Compared with typical maize silage/concentrate diets, grassland-based diets are associated with impaired nitrogen (N) and energy utilisation because of the comparably lower energy and higher CP content of these feeds. However, quantitative studies concerning the effects of increased dietary proportions of grassland-derived feeds on N and energy losses and utilisation and on methane emissions are missing and the compensation potential of using a limited proportion of an energy-rich forage is unknown. Therefore, we tested five diets with varying types and proportions of forage and concentrate. Three diets consisted of grass silage, maize silage, and concentrate in ratios of, g/kg DM, 100:600:300 (G100; control), 300:500:200 (G300), and 500:300:200 (G500), respectively. Two diets were composed of grass silage, corn-cob mix (CCM), and concentrate in ratios of, g/kg DM, 500:300:200 (G500CCM), and 750:150:100 (G750CCM), respectively. A high-protein concentrate (270 g CP/kg DM) was fed to G100, whereas a low-protein concentrate (140 g CP/kg DM) was used in the remaining diets. Diets were fed throughout the entire fattening period to groups of six Limousin-crossbred bulls each. When weighing 246 ± 18 kg, each animal underwent a 7-day total daily faeces and urine collection, which was followed by measuring methane emissions in respiration chambers for 48 h. Total DM intake was similar across all diets, whereas the N intake varied (P < 0.05). Urinary N loss (g/day) was the highest for G750CCM (28.2) and G100 (26.6) and lowest for G500CCM (15.2) and G300 (16.9) (P < 0.001). Energy utilisation was comparable among all groups. Metabolisable energy intake decreased numerically only with increasing proportions of grass silage in the diet. Substituting maize silage with CCM counteracted the loss in metabolisable energy intake. Absolute methane emissions were not different across the groups, but methane emission intensity (mg/g body protein retention) varied (P < 0.05), being numerically lower for G100 (349) and G500CCM (401) compared with the other groups (488 on average). In conclusion, the results show that the grass silage proportion in beef cattle diets can be substantially increased when strategically combined with energy-dense forages, such as CCM. This also limits the need for concentrate and additional protein sources; in addition, the associated urinary N emissions, which are potentially noxious to the environment, are avoided.  相似文献   

3.
Holstein × Gyr and Holstein are the primary dairy breeds used in tropical systems, but when rearing under pasture, feed intake, behavior, and performance might differ between them. This study aimed to evaluate the voluntary intake, nutrient digestibility, performance, and ingestive behavior of Holstein and Holstein × Gyr (½ Holstein × ½ Gyr) heifers managed in a rotational system of Guinea grass (Panicum maximum Jacq. cv. Mombaça). The experiment was conducted during the summer season throughout four periods of 21 d. Two 8-heifers (four Holstein and four Holstein × Gyr) groups, averaging 258.6 ± 24.79 kg and 157.1 ± 24.99 kg BW, were used. Each group grazed a separate set of 16 paddocks, and all heifers received a concentrate supplement daily. Heifers were weighed at the beginning and end of the experiment. Fecal, forage and concentrate samples were evaluated for their DM, CP, crude fat, ash, NDF, and indigestible NDF. Feeding behavior was evaluated through 24 h of live observation for 48 h of each experimental period. Grazing, ruminating, resting, and intake of concentrate times were recorded, and rumination criteria, bout criteria, mealtime, meal frequency, and meal duration were calculated. There was no difference in total dry matter intake (DMI), but forage DMI of Holstein × Gyr was 11.70 % greater than the Holstein heifers. The Holstein × Gyr heifers had greater NDF intake and feed efficiency tended to show greater CP and NDF digestibilities, consequently, they had greater average daily gain (ADG). Holstein grazed less than Holstein × Gyr heifers in the afternoon. Ruminating time was 18.43 % lower for Holstein than Holstein × Gyr heifers, and rumination criteria (i.e. longest non-feeding interval within a rumination event) were greater for Holstein heifers. Holstein heifers presented more prolonged rumination bouts and resting time than Holstein × Gyr heifers. Holstein × Gyr can ingest and ruminate greater amounts of fibrous material, and Holstein heifers needed to spend more time ruminating the cud. Overall, even though the behavior was not markedly different between breeds, rearing young Holstein heifers in tropical pasture conditions is less suitable than Holstein-Gyr because of their lower ADG. Therefore, this management condition seems appropriate for Holstein × Gyr but inappropriate for Holstein dairy heifers.  相似文献   

4.
Currently, consumers are increasingly interested in obtaining high-quality and healthy lamb meat. Compared to grain-based diets, dietary forage legumes such as alfalfa and condensed tannin (CT)-rich sainfoin increase the levels of polyunsaturated fatty acids (PUFAs) that are beneficial for health in lamb meat thanks to their high content in PUFA and/or their impact on ruminal biohydrogenation. However, they can therefore adversely affect its oxidative stability. Thus, the impact of dietary forage legumes on lamb longissimus thoracis (LT) muscle FA composition and their stability to peroxidation was studied in 36 Romane lambs grazing alfalfa (AF; n = 12) or alfalfa plus daily supplementation with CT-rich sainfoin pellets (AS; n = 12; 15 g DM/kg BW, 42 g CT/kg DM) or stall-fed concentrate and grass hay indoors (SI; n = 12). Lambs were slaughtered at a mean age of 162 ± 8.0 days after an average experimental period of 101 ± 8.1 days. Forage legumes-grazing lambs outperformed SI lambs in LT nutritional quality, with more conjugated linoleic acids and n-3 PUFAs, especially 18:3n-3, eicosapentaenoic and docosahexaenoic acids (P < 0.001), and thus lower n-6 PUFA/n-3 PUFA and 18:2 n-6/18:3 n-3 ratios (P < 0.001). Peroxidizability index was higher (P < 0.001) in LT muscle of forage legumes-grazing lambs. Concurrently, two endogenous antioxidant enzyme activities, superoxide dismutase and glutathione peroxidase, were, respectively, similar and lower (P < 0.001) for forage legumes-grazing compared with SI lambs. A lower vitamin E level in SI lambs compared with forage legumes-grazing lambs (1.0 v. 3.8 mg/g, P < 0.001) could explain that malondialdehyde content, a marker of lipid oxidation intensity, was 0.63 µg/g in SI after 8 days in aerobic packaging conditions, whereas it remaining steady at 0.16 µg/g in forage legumes-grazing lambs. Dietary forage alfalfa thus improved FA composition of lamb LT muscle and their stability to oxidation when compared to SI lambs. However, supplementation of alfalfa-grazing lambs with CT-rich sainfoin pellets did not affect the nutritional quality of LT muscle FAs.  相似文献   

5.
The effects of maturity of maize at harvest, level of inclusion and potential interactions on the performance, carcass composition, meat quality and potential concentrate-sparing effect when offered to finishing beef cattle were studied. Two maize silages were ensiled that had dry matter (DM) concentrations of 217 and 304 g/kg and starch concentrations of 55 and 258 g/kg DM, respectively. Grass silage was offered as the sole forage supplemented with either 4 or 8 kg concentrate/steer daily or in addition with one of the two maize silages at a ratio 0.5 : 0.5, on a DM basis, maize silage : grass silage supplemented with 4 kg concentrate daily. The two maize silages were also offered as the sole forage supplemented with 4 kg concentrate/steer daily. The forages were offered ad libitum. The six diets were offered to 72 steers (initial live weight 522 s.d. 23.5 kg) for 146 days. There were significant interactions (P < 0.05) between maize maturity and inclusion level for food intake, fibre digestibility and daily gain. For the grass silage supplemented with 4 or 8 kg concentrate, and the maize silages with DM concentrations of 217 and 304 g/kg offered as 0.5 or 1.0 of the forage component of the diet, total DM intakes were 8.3, 9.8, 8.9, 8.2, 9.2 and 9.8 kg DM/day (s.e. 0.27); live-weight gains were 0.74, 1.17, 0.86, 0.71, 0.88 and 1.03 kg/day (s.e. 0.057); and carcass gains were 0.48, 0.73, 0.56, 0.46, 0.56 and 0.63 kg/day (s.e. 0.037), respectively. Increasing the level of concentrate (offered with grass silage), maize maturity and level of maize inclusion reduced (P < 0.05) fat b* (yellowness). The potential daily concentrate-sparing effect, as determined by carcass gain, for the maize silages with DM concentrations of 217 and 304 g/kg offered as 0.5 and 1.0 of the forage component of the diet were 1.3, −0.3, 1.3 and 2.4 kg fresh weight, respectively. It is concluded that the response, in animal performance, including maize silage is dependent on the stage of maturity and level of inclusion in the diet. Maize silage with a DM of 304 g/kg offered ad libitum increased carcass gain by 31%, because of a combination of increased metabolizable energy (ME) intake and improved efficiency of utilization of ME, and produced carcasses with whiter fat.  相似文献   

6.
Livestock grazing plays a significant role in maintaining grasslands and promoting animal production globally. To understand the livestock performance in sown pasture (SP) vs native pasture (NP) is important to ensure more effective grassland-livestock interactions with minimal environmental impact. A 2 (treatment) * 2 (period) Latin Square design experiment was conducted with 10 growing Hu sheep ♂ × thin-tailed Han sheep ♀ rams grazed perennially SP vs NP in an inland arid region of China. The objectives were to evaluate the effects of grazing management on nutrient digestibility, nitrogen (N) and energy utilisation and methane (CH4) emission. The N intake, N retained and energy intake (gross energy (GE), and digestible and metabolisable energy) of sheep grazing in SP were significantly increased compared with those grazing in NP. There were significant linear relationships between DM intake (DMI) (g/kg BW or g/kg BW0.75) or CH4 (g/kg BW or g/kg BW0.75) emissions and forage nutrient and GE concentrations within each grassland type. The linear regression analysis indicated that forage CP or ether extract concentration was a good predictor for DMI (g/kg BW or g/kg BW0.75) (R2 = 0.756 or 0.752), and CH4 emission could be predicted using forage nutrient and GE concentrations (R2 = 0.381–0.503). These results suggest that DMI and CH4 emissions per unit metabolic BW were accurately predicted by multiple-factor combinations of forage nutrients, including ether extract and CP paired with GE. The present output could provide useful information for the development of sustainable sheep grazing systems in the inland arid regions of the world.  相似文献   

7.
Nelore heifers usually begin their reproductive life at ⩾24 months of age mainly due to suboptimal nutritional conditions and genetics. This study aimed to determine the effect of expected progeny difference (EPD) for age at first calving and average daily gain (ADG) on puberty in Nelore (Bos taurus indicus) heifers. A total of 58 weaned heifers (initial BW=174±6 kg; age=9±1 months) were allocated into 28 feedlot pens. Heifers were born from four sires, of which two had low EPD for age at first calving (L; n=33) and two had high EPD for age at first calving (H; n=25). Then, heifers of each EPD were randomly assigned to high ADG (HG; 0.7 kg) or low ADG (LG; 0.3 kg), resulting in four treatments: heifers from L sires were submitted to either HG (LHG; n=17) or LG (LLG; n=16), and heifers from H sires were submitted to either HG (HHG; n=12), or LG (HLG; n=13). The HG heifers were fed a 75% grain diet, whereas the LG heifers received 93% of forage in their diet. Blood samples were collected at 9, 14, 18, 24 and 28 months of age for IGF1 and leptin determination. There was a treatment effect (P<0.01) on the proportion of heifers that attained puberty by 18 (62%, 0%, 0% and 0%), 24 (100%, 6%, 54% and 0%) or 36 (100%, 100%, 100% and 38%) months of age for LHG, LLG, HHG and HLG treatments, respectively. In addition, mean age at puberty was different across treatments (P<0.01). Heifers from the LHG achieved puberty at the earliest age when compared with cohorts from other treatments (18.1, 28.9, 23.9 and 34.5 months for LHG, LLG, HHG and HLG, respectively). Serum IGF1 concentrations were higher for L heifers compared with H cohorts at 9, 14, 18, 24 and 28 months of age (P<0.01; treatment×age interaction), whereas circulating leptin concentrations were higher (P<0.01; age effect) as heifers became older, regardless of the treatments. In conclusion, only Nelore heifers with favorable genetic merit for age at first calving were able to attain puberty by 18 months of age. In heifers with unfavorable genetic merit for age at first calving, supplementary feeding to achieve high ADG was unable to shift the age at puberty below 24 months.  相似文献   

8.
Crude glycerin (CG) is a biodiesel byproduct that has been tested as an alternative feed additive for use in beef production. After being absorbed, it is used in the liver to produce glucose, an important precursor of intramuscular fat in ruminants. This study aimed to evaluate the effect of CG (439 g/kg glycerol) on the performance and meat quality of crossbred heifers finished in Urochloa brizantha cv. Marandu. Thirty-six heifers with an initial BW of 301.5 ± 23.02 kg were used. They were supplemented for 154 days with the following levels of CG: mineral mixture (without CG), 33.3, 66.6 and 99.9 g/kg CG in the DM of the supplement. Supplement or pasture DM intakes, slaughter BW and carcass traits were not influenced (P > 0.05) by increasing levels of CG. The total fat content of the meat, the vaccenic (18:1 n-7t) and conjugated linoleic acid (18:2 c9-t11) increased with the addition of CG in the diet (P < 0.05). Crude glycerin can be included up to 99.9 g/kg of the total diet without changing the performance of crossbred heifers finished in the tropical pasture.  相似文献   

9.
《Endocrine practice》2020,26(11):1269-1276
Objective: To investigate possible causes of menstrual disorders and androgen-related traits in young women with type 1 diabetes mellitus (T1DM).Methods: Fifty-three women with T1DM (duration 8.0 ± 5.6 years), 41 women with (polycystic ovary syndrome) PCOS, and 51 controls matched for age (19.4 ± 4.3 years vs. 21.2 ± 2.7 years vs. 20.8 ± 3.1 years; P>.05) and body mass index (BMI) (22.2 ± 2.7 kg/m2 vs. 21.9 ± 2.0 kg/m2 vs. 21.4 ± 1.9 kg/m2; P>.05) were prospectively recruited.Results: Two women (3.8%) in the T1DM group had not experienced menarche (at 15.5 and 16.6 years); of the rest, 23.5% had oligomenorrhea, 32.1% hirsutism, and 45.3% had acne. The age at menarche was delayed in the T1DM group compared to controls (12.7 ± 1.3 vs. 12.0 ± 1.0 years; P = .004), while no difference was observed with the polycystic ovary syndrome (PCOS) group (12.4 ± 1.2 years). There were no differences in total testosterone (0.43 ± 0.14 ng/mL vs. 0.39 ± 0.14 ng/mL; P>.05), dehydroepiandrosterone sulfate (DHEA-S) (269 ± 112 μg/dL vs. 238 ± 106 μg/dL; P>.05) or Δ4-androstenedione (2.4 ± 1.3 ng/mL vs. 1.9 ± 0.5 ng/mL; P>.05) concentrations between T1DM and controls. However, patients with T1DM had lower sex hormone binding globulin (SHBG) concentrations than controls (61 ± 17 nmol/L vs. 83 ± 18.1 nmol/L; P = .001), which were even lower in the PCOS group (39.5 ± 12.9 nmol/L; P = .001 compared with T1DM). The free androgen index (FAI) was higher in the PCOS group compared with both other groups (T1DM vs. PCOS vs. controls: 2.53 ± 0.54 vs. 7.88 ± 1.21 vs. 1.6 ± 0.68; P<.001). FAI was higher in patients with T1DM compared to controls as well (P = .038). There was no difference in DHEA-S concentrations between T1DM and PCOS patients (269 ± 112 μg/dL vs. 297 ± 100 μg/dL; P>.05).Conclusion: Menstrual disorders and androgen-related traits in young women with T1DM may be attributed to an increase in androgen bioavailability due to decreased SHBG concentrations.  相似文献   

10.
The objective of this study was to investigate how level of forage and oils in ruminant animals’ diet affect selected strains of ruminal bacteria believed to be involved in biohydrogenation (BH). Four continuous culture fermenters were used in 4 × 4 Latin square design with a 2 × 2 factorial arrangement over four consecutive periods of 10 days each. The experimental diets used in this study were: high forage diet (700:300 g/kg (DM basis) forage to concentrate; HFC), high forage with oil supplement (HFO), high forage diet (300:700 g/kg (DM basis) forage to concentrate; LFC), and high forage with oil supplement (HFO). The oil supplement was a blend of fish oil (FO) and soybean oil (SBO) added at 10 and 20 g/kg DM, respectively. Acetate concentration was greater (P<0.01) with the high forage diets whereas propionate concentration was greater (P<0.02) with the low forage diets and both decreased (P<0.05) with oil supplementation. The concentrations of t11 C18:1 (vaccenic acid, VA) and c9t11 conjugated linoleic acid (CLA) were greater (P<0.01) with the high than the low forage diets and concentrations increased (P<0.01) with oil supplementation particularly when added with the high forage diet. The concentrations of t10 C18:1 and t10c12 CLA were greater (P<0.01) with the low than the high forage diets and concentrations increased (P<0.01) with oil supplementation particularly when added with the low forage diet. The DNA abundance of Butyrivibrio fibrisolvens, Ruminococcus albus, Ruminococcus flavefaciens, Anaerovibrio lipolytica and Butyrivibrio proteoclasticum were greater (P<0.03) with the high than the low forage diets. Oil supplementation reduced (P<0.05) the DNA abundance only for R. flavefaciens, B. fibrisolvens and R. albus especially when added with the high forage diet. Results from this study suggest that the greater trans fatty acids (FA) production seen with the high forage diets may be related to greater activity of B. fibrisolvens, R. flavefaciens and R. albus, and B. proteoclasticum appears to play a minor role in the production of C18:0 from trans C18:1.  相似文献   

11.
The objective of this study was to assess effects of feed intake and NDF content of highly digestible grass-clover silage on chewing behavior, fecal particle size distribution and apparent digestibility in restrictively fed heifers. Four grass-clover silages (Lolium perenne, Trifolium pratense and Trifolium repens) were harvested in 2009 at different regrowth stages, resulting in silages with NDF contents of 312, 360, 371 and 446 g/kg dry matter (DM), respectively. Four rumen-fistulated Jersey heifers (343±32 kg BW) were fed silage at 90% of ad libitum levels in a 4×4 Latin square design, replicated with further restricted feeding levels (50%, 60%, 70% or 80% of ad libitum) in a balanced 4×4×4 Greco-Latin square design. Eating activity was estimated from test meal observations, while rumination activity was estimated from jaw movements logged by a jaw recorder system. Total tract digestibility was estimated from chromic oxide marker and fecal spot sampling, and fecal particle size distribution in washed and freeze-dried particulate DM was determined by dry sieving (2.36, 1.0, 0.5, 0.212 and 0.106 mm, and bottom bowl). Higher NDF content of silage stimulated longer eating time per kg DM intake (P<0.001), while reduced feeding level caused a reduction in eating time per kg DM intake (P<0.001) and NDF (P<0.001). Rumination time per kg DM intake (P<0.01) increased with reduced feeding level, with less effect of feeding level at lower NDF contents (P<0.01) and more rumination with greater NDF content (P<0.01). Relative to NDF intake, rumination time increased with greater NDF content (P<0.01), at a higher rate with reduced feeding level (P<0.05). Digestibility of potentially digestible NDF (DNDF) decreased with greater NDF content (P<0.001) and increased with reduced feeding level (P<0.05). Increasing NDF content resulted in more particulate DM in feces (g/kg DM; P<0.05) and larger mean particle size (P<0.001). In conclusion, feeding heifers with grass-clover silages of decreasing NDF content increased chewing time relative to NDF intake, reduced mean fecal particle size, and increased DNDF digestibility. Restricting feeding level made heifers eat for a shorter time period while rumination and total chewing was increased, causing the ratio between eating and rumination time to decrease with lower intake of forage fiber. Particle size reduction and digestibility depended mostly on changes in NDF content, especially the indigestible NDF content.  相似文献   

12.
Previous work led to the proposal that the precision feeding of a high-concentrate diet may represent a potential method with which to enhance feed efficiency (FE) when rearing dairy heifers. However, the physiological and metabolic mechanisms underlying this approach remain unclear. This study used metabolomics analysis to investigate the changes in plasma metabolites of heifers precision-fed diets containing a wide range of forage to concentrate ratios. Twenty-four half-sib Holstein heifers, with a similar body condition, were randomly assigned into four groups and precision fed with diets containing different proportions of concentrate (20%, 40%, 60% and 80% based on DM). After 28 days of feeding, blood samples were collected 6 h after morning feeding and gas chromatography time-of-flight/MS was used to analyze the plasma samples. Parameters of oxidative status were also determined in the plasma. The FE (after being corrected for gut fill) increased linearly (P < 0.01) with increasing level of dietary concentrate. Significant changes were identified for 38 different metabolites in the plasma of heifers fed different dietary forage to concentrate ratios. The main pathways showing alterations were clustered into those relating to carbohydrate and amino acid metabolism; all of which have been previously associated with FE changes in ruminants. Heifers fed with a high-concentrate diet had higher (P < 0.01) plasma total antioxidant capacity and superoxide dismutase but lower (P ≤ 0.02) hydroxyl radical and hydrogen peroxide than heifers fed with a low-concentrate diet, which might indicate a lower plasma oxidative status in the heifers fed a high-concentrate diet. Thus, heifers fed with a high-concentrate diet had higher FE and antioxidant capacity but a lower plasma oxidative status as well as changed carbohydrate and amino acid metabolism. Our findings provide a better understanding of how forage to concentrate ratios affect FE and metabolism in the precision-fed growing heifers.  相似文献   

13.
A study was conducted to evaluate the ensiling characteristics of chopped sugarbeets with dry feedstuffs and the corresponding change in the nutritive composition of the silages with the addition of dry substrates. Pre-calculated amounts of each feedstuff were weighed individually to achieve desired proportions of each silage product and thoroughly mixed for 5 min. After mixing, the silage was distributed evenly into three 19-L buckets and sealed to provide an anaerobic environment. The treatments for this study were arranged in a 4 × 4 + 1 factorial design to determine the effects of DM level and source of dry feedstuff on the ensiling properties of sugarbeets following a 42-d fermentation period. Treatments were ensiled sugarbeets alone (250 g/kg) or based on (1) formulated silage DM concentrations of 275, 350, 425, and 500 g/kg and (2) the inclusion of dry feedstuffs (alfalfa hay, dry-rolled corn, wheat middlings, and wheat straw). Fermentation and nutritive characteristics of ensiled sugarbeets were influenced with the addition of dry substrates. A linear increase (P<0.001) in silage pH was observed with the addition of alfalfa, dry-rolled corn, wheat middlings, and wheat straw to ensiled sugarbeets. Lactic acid increased (P<0.001) with the addition of wheat middlings. Alfalfa addition to sugarbeet silage did not alter (P<0.001) lactate concentration. Concentration of lactate decreased (P=0.01) when corn was added, while wheat straw addition did not influence (P=0.37) lactate. A contrast was used to compare ensiling characteristics of sugarbeets alone (250 g/kg DM) to 350 g/kg DM (sugarbeets with dry substrates). Results indicated fermentative parameters were altered; pH increased (P<0.001) for all dry substrates while lactate was lower (P=0.003) for the sugarbeets ensiled with dry-rolled corn compared with sugarbeets ensiled alone. Alfalfa, wheat straw, and wheat middlings decreased (P<0.001) while dry-rolled corn did not affect (P=0.54) in vitro DM digestion. These results indicate the inclusion of dry feedstuffs with sugarbeets altered fermentation and with the exception of corn, decreased in vitro DM digestion. Nutrient composition and DM content of ensiled sugarbeets was altered with the addition of dry substrates.  相似文献   

14.
In many countries, daily herbage accumulation on pasture declines towards zero during the winter period; thus, many pregnant ewes are housed and offered conserved forages supplemented with concentrate prior to parturition. The effects of forage type and feed value (FV), offering soybean meal with maize silage during mid and late pregnancy, and concentrate feed level in late pregnancy on the performance of ewes and their progeny (to slaughter) were evaluated. Ewes (n = 151) were assigned to one of nine treatments from mid-pregnancy until lambing. Medium FV and high FV grass silages (metabolisable energy concentrations of 10.7 and 12.0 MJ/kg DM) were offered ad libitum supplemented with either 15 or 25 kg concentrate/ewe during late pregnancy. Low and high DM maize silages (starch concentrations of 80 and 315 g/kg DM) were offered ad libitum either alone or with soybean meal (200 g/d) and supplemented with 15 kg concentrate during late pregnancy. A final treatment consisted of high FV grass silage supplemented with 5 kg soybean/ewe over the final 4 weeks of pregnancy. Ewes and lambs were put to pasture in a rotational-grazing system within 3 days of lambing. There were no interactions (P > 0.05) between grass silage FV and concentrate feed level for ewe or lamb traits. Increasing grass silage FV increased food intake (P < 0.001) during late pregnancy, ewe BW and body condition score (BCS) at lambing (P < 0.001), lamb BW at birth (P < 0.001) and weaning (P < 0.05), and reduced age at slaughter (P = 0.06). Increasing concentrate feed level increased metabolisable energy (P < 0.05) intake during late pregnancy but had no effect (P > 0.05) on ewe or lamb performance. Increasing maize DM at harvest and offering soybean meal with maize silage increased food intake (P < 0.001) and ewe BW and BCS at lambing (P < 0.05 or P < 0.01). Offering soybean meal with maize silage increased lamb BW at birth (P < 0.01) and reduced age at slaughter (P < 0.05). Reducing supplementation of high FV grass silage to 5 kg of soybean meal had no effect (P > 0.05) on animal performance. Replacing grass silage with maize silage did not affect (P > 0.05) BW gain of lambs. It is concluded that increasing the FV of the grass silage offered during pregnancy had the greatest positive impact on ewe and lamb performance.  相似文献   

15.
Improving reproductive performance is one of the most important factors affecting the profitability of dairy herds. This study investigated the effect of feeding a high starch (HS) diet and body condition score (BCS) at calving on blood metabolites, fertility and ovarian function and milk production in Holstein dairy cows. One hundred seventy-four multiparous cows were fed common close-up and early lactation diets during the first 15 days in milk (DIM). Cows were randomly assigned to 1 of 2 experimental diets from 16 until 50 DIM (n = 87 per group); normal starch (228 g/kg diet DM; NS) or HS (270 g/kg diet DM; HS) diets. Each treatment group was further subdivided based on BCS at calving as normal BCS (BCS ⩽ 3.5; normal BCS (NBCS); n = 45) or high BCS (HBCS) (BCS ⩾ 3.75; HBCS; n = 42). A significant difference was detected for increased milk production (47.24 v. 44.55 kg/day) and decreased milk fat (33.93 v. 36.33 g/kg) in cows fed HS or NS, respectively. Plasma glucose and insulin concentrations were significantly higher in cows fed the HS compared to the NS diet. Diets significantly affected DIM at first artificial insemination (AI, 79.51 ± 3.83 v. 90.40 ± 3.83 days for cows fed HS and NS diets, respectively). High BCS groups had greater milk fat content and elevated plasma nonesterified fatty acids (NEFA), β hydroxybutyrate (BHB) and bilirubin concentrations. In general, feeding higher starch diets to normal BCS cows during the first 50 DIM improved productive and reproductive performance of early-lactating dairy cows.  相似文献   

16.
Flax seed meal (FSM) is rich in various nutrients, especially CP and energy, and can be used as animal protein feed. In animal husbandry production, it is a long-term goal to replace soybean meal (SBM) in animal feed with other plant protein feed. However, studies on the effects of replacing SBM with FSM in fattening sheep are limited. The aim of this experiment was to study the effects of replacing a portion of SBM with FSM on nutrient digestibility, rumen microbial protein synthesis and growth performance in sheep. Thirty-six Dorper × Small Thin-Tailed crossbred rams (BW = 40.4 ± 1.73 kg, mean ± SD) were randomly assigned into four groups. The dietary treatments (forage/concentrate, 45 : 55) were isocaloric according to the nutrient requirements of rams. Soybean meal was replaced with FSM at different levels (DM basis): (1) 18% SBM (18SBM), (2) 12% SBM and 6% FSM (6FSM), (3) 6% SBM and 12% FSM (12FSM) and (4) 18% FSM (18FSM). The rams were fed in individual pens for 60 days, with the first 10 days for adaptation to diets, and then the digestibility of nutrients was determined. There was no significant difference in DM intake, but quadratic (P < 0.001) effects on the average daily gain and feed efficiency were detected, with the highest values in the 6FSM and 12FSM groups. For DM and NDF digestibility, quadratic effects were observed with the higher values in the 6FSM and 12FSM groups, but the digestibility of CP linearly decreased with the increase in FSM in the diet (P = 0.043). There was a quadratic (P < 0.001) effect of FSM inclusion rate on the estimated microbial CP yield. However, the values of intestinally absorbable dietary protein decreased linearly (P < 0.001). For the supply of metabolisable protein, both the linear (P = 0.001) and quadratic (P = 0.044) effects were observed with the lowest value in the 18FSM group. Overall, the results indicated that SBM can be effectively replaced by FSM in the diets of fattening sheep and the optimal proportion was 12.0% under the conditions of this experiment.  相似文献   

17.
Ruminant animals are generally fed with starch-rich grain as the main energy source, and the incidence of metabolic diseases such as subacute ruminal acidosis (SARA) is high due to the intensive farming. Thiamin has been reported to alleviate SARA caused by high-concentrate diets, but the exact mechanism is not well understood. The goal of this study was to examine the role of thiamine in intestinal inflammation and microbiota caused by high-concentrate diets. The SARA model was induced by low neutral detergent fibre/starch ration to study the effects of thiamine on intestinal tissue structure and microbiota. 18 mid-lactation (148 ± 3 d in milk; milk yield = 0.71 ± 0.0300 kg/d) Saanen goats (BW = 36.5 ± 1.99 kg; body condition score = 2.73 ± 0.16, where 1 = emaciated and 6 = obese) in parities 1 or 2 were selected. The goats were randomly divided into three groups with six replicates: (1) control diet (C; concentrate:forage 30:70), (2) high-concentrate diet (H; concentrate:forage 70:30), and (3) high-concentrate diet with 200 mg of thiamine/kg of DM intake (H + T;concentrate:forage 70:30). The experimental period was lasted for 56 d. The small and large intestine, expression of inflammatory factor genes, tight junction protein genes, total antioxidant capacity, and intestinal microbiota were measured. The results showed that SARA was observed in treatment H, whereas rumen fluid pH was improved in treatment H + T. Treatment H + T also significantly repaired the intestinal tissue structure damaged by SARA, improved the total antioxidant capacity of the small intestinal mucosa, reduced mRNA expression of inflammatory factors in the small intestine tissue, and increased the mRNA expression of tight junction genes in small intestine tissue. The high-concentrate diet reduced the diversity of intestinal microbiota. When thiamine is added to the high-concentrate diet, the relative abundance of intestinal Firmicutes and beneficial bacteria represented by Lactobacilli were upregulated, and the relative abundance of Proteus, a marker of intestinal dysbacteriosis, returned to normal. In conclusion, thiamine supplementation could alleviate the damage to the intestinal tissue structure and microbial environment caused by SARA condition in dairy goats fed a high-concentrate diet.  相似文献   

18.
Conjugated linoleic acid (CLA) dietary supplementation reduces milk fat content and yield, but its effects on lipid metabolism and energy status remain controversial. The objective of this study was to investigate the effects of dietary CLA on adipose tissue (AT) mRNA abundance of genes related to lipid metabolism, plasma indicators of metabolic status, body condition score (BCS) and BW changes in dairy cows. Sixteen multiparous Holstein cows (3.2 ± 1.4 lactations, 615 ± 15 kg BW) were randomly assigned to treatments: 1) CLA; rumen-protected CLA (75 g/d) or 2) Control; equivalent amount of rumen inert fatty acid (FA) as the previous diet (78 g/d), from − 20.2 ± 3.2 (mean ± SEM) to 21 d relative to calving (d 0). Subcutaneous AT was biopsied from the tail-head region at d 21 to determine the mRNA abundance of genes related to lipid metabolism. Blood samples were collected at − 20.2 ± 3.2, 0, 7, 14 and 21 d relative to calving to determine plasma non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHBA), insulin and glucose. Conjugated linoleic acid decreased milk fat yield and milk fat content by 15 and 16%, respectively. Cows fed CLA had lower plasma NEFA and BHBA and greater glucose and insulin concentrations (P < 0.05). Mean BCS at 21 d postpartum was greater (P < 0.01; 2.89 vs 2.25), and BCS loss from the day of enrollment to 21 d postpartum was reduced (P < 0.01; − 0.13 vs − 0.64) in the CLA group. The expression of acylcoenzyme A oxidase, carnitine palmitoyltransferase 1A, hormone-sensitive lipase, β2 adrenergic receptor and acetyl-CoA carboxylase was downregulated by CLA supplementation, whereas the expression of sterol regulatory element binding protein, lipoprotein lipase and peroxisome proliferator-activated receptor gamma was upregulated (P < 0.01). In summary, CLA-supplemented cows showed signs of better metabolic status and less severe fat mobilization. Moreover, CLA increased mRNA abundance of genes related to lipogenesis and decreased mRNA abundance of genes related to FA oxidation and lipolysis in the AT of dairy cows during early lactation.  相似文献   

19.
A total of eight Simmental heifers (114 ± 3.2 days old and weighing 118 ± 3.8 kg BW) were used to study the effects of feeding method on intake and animal behaviour in a crossover design experiment. Treatments consisted of feeding concentrate and chopped barley straw as (1) choice (CH; concentrate and straw in separate feedbunks) or (2) total mixed ration (TMR; concentrate and straw in one feedbunk). Feeds were offered on an ad libitum basis, but always maintaining a concentrate to straw ratio of 90 to 10. The experiment was performed in two 21-day periods, and sampling was carried out in the last week of each period. At the end of each period, treatment was changed for heifers; hence, the final number of animals per treatment was eight. Intake was recorded over 7 consecutive days. BW was recorded at the beginning and the end of the experiment and on day 21 of each experimental period. Barley straw was coarsely chopped with a chopping machine. Once chopped, all the straw was handled for particle size separation using the 2-screen Penn State Particle Separator and only material of more than 8 mm was used to feed the heifers. Animal behaviour was video-recorded for 24 h on day 2 and day 6 of each experimental period. Concentrate intake and total dry matter intake of heifers fed with the CH feeding method were higher (P < 0.01 and P < 0.05) than when fed with TMR (5.1 and 5.3 v. 4.7 and 5.0 kg dry matter (DM)/day, respectively). Conversely, barley straw was consumed in higher amounts in heifers fed with the TMR feeding method (0.3 v. 0.2 kg DM/day, respectively; P = 0.001). The total NDF intake was similar in both treatments. In contrast, NDF intake from barley straw and physically effective NDF intake were higher in heifers fed with the TMR feeding method than when fed with CH. Feeding method used to feed heifers did not affect the consumption of the different kinds of barley straw particles and eating and drinking behaviours but affected ruminating behaviour. Heifers fed TMR spent more time ruminating than heifers fed concentrate and barley straw separately (376 v. 287 min/day, respectively; P < 0.01). TMR as the feeding method in intensive beef production systems could be a good approach to promote roughage intake.  相似文献   

20.
《Endocrine practice》2016,22(6):716-725
Objective: Obesity is less prevalent in Asian subjects with type 2 diabetes mellitus (T2DM) in contrast to Caucasians. Whether higher axial bone mineral density (BMD) often reported in T2DM is independent of body mass index (BMI) has not been clearly shown. BMD characterization in T2DM patients with hip fractures has also not been performed. We compared the BMD of Asian diabetic and nondiabetic patients with new hip fractures and explored how BMD was influenced by BMI.Methods: We included 255 diabetic and 148 nondiabetic patients. BMD adjusted for age; BMI; race; sex; renal function; and use of statins, proton pump inhibitors, steroids, anticonvulsants, and calcium and/or vitamin D supplements were compared between the groups. We were particularly interested in the BMD comparison between underweight diabetics and nondiabetics with hip fractures.Results: The presence of T2DM was associated with higher BMD (g/cm2) at the femoral neck (0.527 ± 0.103 vs. 0.491 ± 0.102, P<.01) and lumbar spine [LS] (0.798 ± 0.147 vs. 0.723 ± 0.156, P<.01). This association persisted after adjustment for multiple confounding variables including BMI. The age-, BMI-, and sex-adjusted LS BMD was higher in underweight (BMI <18.5 kg/m2) diabetics compared to similar weight nondiabetics (0.733 ± 0.126 vs. 0.649 ± 0.131 g/cm2, P = .014).Conclusion: T2DM is independently associated with higher axial BMD in patients with new hip fractures. The finding of higher BMD even in underweight diabetics with hip fractures compared to their nondiabetic counterparts suggests that higher BMD in subjects with T2DM is not due to higher BMI.Abbreviations:BMD = bone mineral densityBMI = body mass indexCV = coefficient of variationDXA = dual-energy X-ray absorptiometryHbA1c = glycated hemoglobinIGF-1 = insulin growth factor-1LS = lumbar spine25(OH)D = 25-hydroxyvitamin DT2DM = type 2 diabetes mellitus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号