首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assimilable organic carbon (AOC) is one of the most important factors affecting the re-growth of microorganisms in drinking water. High AOC concentrations result in biological instability, but disinfection kills microbes to ensure the safety of drinking water. Free chlorine is an important oxidizing agent used during the disinfection process. Therefore, we explored the combined effects of AOC and free chlorine on bacterial growth in drinking water using flow cytometry (FCM). The initial AOC concentration was 168 μg.L-1 in all water samples. Without free chlorine, the concentrations of intact bacteria increased but the level of AOC decreased. The addition of sodium hypochlorite caused an increase and fluctuation in AOC due to the oxidation of organic carbon. The concentrations of intact bacteria decreased from 1.1×105 cells.mL-1 to 2.6×104 cells.mL-1 at an initial free chlorine dose of 0.6 mg.L-1 to 4.8×104 cells.mL-1 at an initial free chlorine dose of 0.3 mg.L-1 due to free chlorine originating from sodium hypochlorite. Additionally, free chlorine might be more obviously affected AOC concentrations than microbial growth did. These results suggested that AOC and free chlorine might have combined effects on microbial growth. In this study, our results showed concentrations determined by FCM were higher than those by HPC, which indicated that some E. coli detected by FCM might not be detected using HPC in drinking water. The level of free chlorine might restrain the consumption of AOC by inhibiting the growth of E. coli; on the other hand, chlorination might increase the level of AOC, thereby increase the potential for microbial growth in the drinking water network.  相似文献   

2.
Chlorine Demand and Inactivation of Fungal Propagules   总被引:2,自引:2,他引:0       下载免费PDF全文
Conidia of filamentous fungi, vegetative yeast cells, and coliform bacteria were tested to determine their chlorine demand and their sensitivity to chlorine inactivation. Levels of chlorine demand for the various conidia, yeast, and coliforms were, respectively, 3.6 × 10−9 to 3.2 × 10−8, 1.2 × 10−9 to 8.0 × 10−9, and 2.5 × 10−11 to 6.3 × 10−10 mg of chlorine per propagule. Preliminary evidence suggests that the chlorine demand per propagule increases as the number of propagules per milliliter decreases. In general, conidia showed greatest resistance to chlorine inactiviation, followed by the yeast and coliforms. Inactivation by chlorine was influenced by pH, with inactivation (chlorine activity) falling in the order pH 5 > 7 > 8.  相似文献   

3.
The development of bacterial communities in drinking water distribution systems leads to a food chain which supports the growth of macroorganisms incompatible with water quality requirements and esthetics. Nevertheless, very few studies have examined the microbial communities in drinking water distribution systems and their trophic relationships. This study was done to quantify the microbial communities (especially bacteria and protozoa) and obtain direct and indirect proof of protozoan feeding on bacteria in two distribution networks, one of GAC water (i.e., water filtered on granular activated carbon) and the other of nanofiltered water. The nanofiltered water-supplied network contained no organisms larger than bacteria, either in the water phase (on average, 5 × 107 bacterial cells liter−1) or in the biofilm (on average, 7 × 106 bacterial cells cm−2). No protozoa were detected in the whole nanofiltered water-supplied network (water plus biofilm). In contrast, the GAC water-supplied network contained bacteria (on average, 3 × 108 cells liter−1 in water and 4 × 107 cells cm−2 in biofilm) and protozoa (on average, 105 cells liter−1 in water and 103 cells cm−2 in biofilm). The water contained mostly flagellates (93%), ciliates (1.8%), thecamoebae (1.6%), and naked amoebae (1.1%). The biofilm had only ciliates (52%) and thecamoebae (48%). Only the ciliates at the solid-liquid interface of the GAC water-supplied network had a measurable grazing activity in laboratory test (estimated at 2 bacteria per ciliate per h). Protozoan ingestion of bacteria was indirectly shown by adding Escherichia coli to the experimental distribution systems. Unexpectedly, E. coli was lost from the GAC water-supplied network more rapidly than from the nanofiltered water-supplied network, perhaps because of the grazing activity of protozoa in GAC water but not in nanofiltered water. Thus, the GAC water-supplied network contained a functional ecosystem with well-established and structured microbial communities, while the nanofiltered water-supplied system did not. The presence of protozoa in drinking water distribution systems must not be neglected because these populations may regulate the autochthonous and allochthonous bacterial populations.  相似文献   

4.
This study evaluated the impacts of reducing nutrient levels on bacterial water quality in drinking water. Two American Water System facilities (sites NJ102a and IN610) with histories of coliform problems were involved, and each water utility received two pilot distribution systems (annular reactors). One reactor simulated the conventional treatment conditions (control), while the other reactor was used to assess the effect of biological filtration and subsequent reduced biodegradable organic matter levels on suspended (water column) and biofilm bacterial concentrations in the distribution systems. Biodegradable organic matter levels were reduced approximately by half after biological treatment. For site NJ102a, the geometric mean of the assimilable organic carbon concentrations was 217 μg/liter in the plant effluent and 91 μg/liter after biological filtration. For both sites, plant effluent biodegradable dissolved organic carbon levels averaged 0.45 mg/liter, versus 0.19 to 0.22 mg/liter following biological treatment. Biological treatment improved the stability of free chlorine residuals, while it had little effect on chloramine consumption patterns. High bacterial levels from the biological filters resulted in higher bacterial concentrations entering the test reactors than entering the control reactors. On average, biofilms in the model systems were reduced by 1 log unit (from 1.4 × 105 to 1.4 × 104 CFU/cm2) and 0.5-log unit (from 2.7 × 105 to 7.8 × 104 CFU/cm2) by biological treatment at sites NJ102a and IN610, respectively. Interestingly, it required several months of biological treatment before there was an observable impact on bacterial water quality in the system, suggesting that the effect of the treatment change was influenced by other factors (i.e., pipe conditions or disinfection, etc.).  相似文献   

5.
When exposed to oxidation, algae release dissolved organic matter with significant carbohydrate (52%) and biodegradable (55 to 74%) fractions. This study examined whether algal organic matter (AOM) added in drinking water can compromise water biological stability by supporting bacterial survival. Escherichia coli (1.3 × 105 cells ml−1) was inoculated in sterile dechlorinated tap water supplemented with various qualities of organic substrate, such as the organic matter coming from chlorinated algae, ozonated algae, and acetate (model molecule) to add 0.2 ± 0.1 mg of biodegradable dissolved organic carbon (BDOC) liter−1. Despite equivalent levels of BDOC, E. coli behavior depended on the source of the added organic matter. The addition of AOM from chlorinated algae led to an E. coli growth equivalent to that in nonsupplemented tap water; the addition of AOM from ozonated algae allowed a 4- to 12-fold increase in E. coli proliferation compared to nonsupplemented tap water. Under our experimental conditions, 0.1 mg of algal BDOC was sufficient to support E. coli growth, whereas the 0.7 mg of BDOC liter−1 initially present in drinking water and an additional 0.2 mg of BDOC acetate liter−1 were not sufficient. Better maintenance of E. coli cultivability was also observed when AOM was added; cultivability was even increased after addition of AOM from ozonated algae. AOM, likely to be present in treatment plants during algal blooms, and thus potentially in the treated water may compromise water biological stability.  相似文献   

6.
Flow cytometry (FCM) and 16S rRNA gene sequencing data are commonly used to monitor and characterize microbial differences in drinking water distribution systems. In this study, to assess microbial differences in drinking water distribution systems, 12 water samples from different sources water (groundwater, GW; surface water, SW) were analyzed by FCM, heterotrophic plate count (HPC), and 16S rRNA gene sequencing. FCM intact cell concentrations varied from 2.2 × 103 cells/mL to 1.6 × 104 cells/mL in the network. Characteristics of each water sample were also observed by FCM fluorescence fingerprint analysis. 16S rRNA gene sequencing showed that Proteobacteria (76.9–42.3%) or Cyanobacteria (42.0–3.1%) was most abundant among samples. Proteobacteria were abundant in samples containing chlorine, indicating resistance to disinfection. Interestingly, Mycobacterium, Corynebacterium, and Pseudomonas, were detected in drinking water distribution systems. There was no evidence that these microorganisms represented a health concern through water consumption by the general population. However, they provided a health risk for special crowd, such as the elderly or infants, patients with burns and immune‐compromised people exposed by drinking. The combined use of FCM to detect total bacteria concentrations and sequencing to determine the relative abundance of pathogenic bacteria resulted in the quantitative evaluation of drinking water distribution systems. Knowledge regarding the concentration of opportunistic pathogenic bacteria will be particularly useful for epidemiological studies.  相似文献   

7.
Recent whole-genome analysis suggests that lateral gene transfer by bacteriophages has contributed significantly to the genetic diversity of bacteria. To accurately determine the frequency of phage-mediated gene transfer, we employed cycling primed in situ amplification-fluorescent in situ hybridization (CPRINS-FISH) and investigated the movement of the ampicillin resistance gene among Escherichia coli cells mediated by phage at the single-cell level. Phages P1 and T4 and the newly isolated E. coli phage EC10 were used as vectors. The transduction frequencies determined by conventional plating were 3 × 10−8 to 2 × 10−6, 1 × 10−8 to 4 × 10−8, and <4 × 10−9 to 4 × 10−8 per PFU for phages P1, T4, and EC10, respectively. The frequencies of DNA transfer determined by CPRINS-FISH were 7 × 10−4 to 1 × 10−3, 9 × 10−4 to 3 × 10−3, and 5 × 10−4 to 4 × 10−3 for phages P1, T4, and EC10, respectively. Direct viable counting combined with CPRINS-FISH revealed that more than 20% of the cells carrying the transferred gene retained their viabilities. These results revealed that the difference in the number of viable cells carrying the transferred gene and the number of cells capable of growth on the selective medium was 3 to 4 orders of magnitude, indicating that phage-mediated exchange of DNA sequences among bacteria occurs with unexpectedly high frequency.  相似文献   

8.
Growing interest in bacteriophage research and use, especially as an alternative treatment option for multidrug-resistant bacterial infection, requires rapid development of production methods and strengthening of bacteriophage activities. Bacteriophage adsorption to host cells initiates the process of infection. The rotating magnetic field (RMF) is a promising biotechnological method for process intensification, especially for the intensification of micromixing and mass transfer. This study evaluates the use of RMF to enhance the infection process by influencing bacteriophage adsorption rate. The RMF exposition decreased the t50 and t75 of bacteriophages T4 on Escherichia coli cells and vb_SauM_A phages on Staphylococcus aureus cells. The T4 phage adsorption rate increased from 3.13 × 10−9 mL × min−1 to 1.64 × 10−8 mL × min−1. The adsorption rate of vb_SauM_A phages exposed to RMF increased from 4.94 × 10−9 mL × min−1 to 7.34 × 10−9 mL × min−1. Additionally, the phage T4 zeta potential changed under RMF from −11.1 ± 0.49 mV to −7.66 ± 0.29 for unexposed and RMF-exposed bacteriophages, respectively.  相似文献   

9.
Muramic acid, a constituent of procaryotic cell walls, was assayed by high-pressure liquid chromatography in samples from several marine environments (water column, surface microlayer, and sediment) and a bacterial culture. It is used as a microbial biomass indicator. The method gave a good separation of muramic acid from interfering compounds with satisfactory reproducibility. A pseudomonad culture had a muramic acid content of 4.7 × 10−10 to 5.3 × 10−10 μg per cell during growth. In natural water samples, highly significant relationships were found between muramic acid concentrations and bacterial numbers for populations of 108 to 1011 cells per liter. The muramic acid content in natural marine water decreased from 5.3 × 10−10 to 1.6 × 10−10 μg per cell with increasing depth. In coastal sediments exposed to sewage pollution, concentrations of muramic acid, ATP, organic carbon, and total amino acids displayed a parallel decrease with increasing distance from the sewage outlet. Advantages of muramic acid measurement by high-pressure liquid chromatography are its high sensitivity and reduction of preparation steps, allowing a short time analysis.  相似文献   

10.
The role of chlorinated primary effluents in viral pollution of the Ottawa River (Ontario) was assessed by examining 282 field samples of wastewaters from two different sewage treatment plants over a 2-year period. The talc-Celite technique was used for sample concentration, and BS-C-1 cells were employed for virus detection. Viruses were detected in 80% (75/94) of raw sewage, 72% (68/94) of primary effluent, and 56% (53/94) of chlorinated effluent samples. Both raw sewage and primary effluent samples contained about 100 viral infective units (VIU) per 100 ml. Chlorination produced a 10- to 50-fold reduction in VIU and gave nearly 2.7 VIU/100 ml of chlorinated primary effluent. With a combined daily chlorinated primary effluent output of approximately 3.7 × 108 liters, these two plants were discharging 1.0 × 1010 VIU per day. Because the river has a mean annual flow of 8.0 × 1010 liters per day, these two sources alone produced a virus loading of 1.0 VIU/8 liters of the river water. This river also receives at least 9.0 × 107 liters of raw sewage per day and undetermined but substantial amounts of storm waters and agricultural wastes. It is used for recreation and acts as a source of potable water for some 6.0 × 105 people. In view of the potential of water for disease transmission, discharge of such wastes into the water environment needs to be minimized.  相似文献   

11.
The steady-state effect of 2,5,2′,5′-tetrachlorobiphenyl (TCBP) on the green alga Selenastrum capricornutum was investigated in a P-limited two-stage chemostat system. The partition coefficient of this polychlorinated biphenyl congener was 5.9 × 104 in steady-state cultures. At a cellular TCBP concentration of 12.2 × 10−8 ng · cell−1, growth rate was not affected. However, photosynthetic capacity (Pmax) was significantly enhanced by TCBP (56 × 10−9 μmol of C · cell−1 · h−1 versus 34 × 10−9 μmol of C · cell−1 · h−1 in the control). Photosynthetic efficiency, or the slope of the photosynthesis-irradiance curve, was also significantly higher. There was little difference in the cell chlorophyll a content, and therefore the difference in these photosynthetic characteristics was the same even when they were expressed on a per-chlorophyll a basis. Cell C content was higher in TCBP-containing cells than in TCBP-free cells, but approximately 36% of the C fixed by cells with TCBP was not incorporated as cell C. The maximum P uptake rate was also enhanced by TCBP, but the half-saturation concentration appeared to be unaffected.  相似文献   

12.
Isoprene (2-methyl-1,3 butadiene) is a low-molecular-weight hydrocarbon emitted in large quantities to the atmosphere by vegetation and plays a large role in regulating atmospheric chemistry. Until now, the atmosphere has been considered the only significant sink for isoprene. However, in this study we performed both in situ and in vitro experiments with soil from a temperate forest near Ithaca, N.Y., that indicate that the soil provides a sink for atmospheric isoprene and that the consumption of isoprene is carried out by microorganisms. Consumption occurred rapidly in field chambers (672.60 ± 30.12 to 2,718.36 ± 86.40 pmol gdw−1 day−1) (gdw is grams [dry weight] of soil; values are means ± standard deviations). Subsequent laboratory experiments confirmed that isoprene loss was due to biological processes: consumption was stopped by autoclaving the soil; consumption rates increased with repeated exposure to isoprene; and consumption showed a temperature response consistent with biological activity (with an optimum temperature of 30°C). Isoprene consumption was diminished under low oxygen conditions (120 ± 7.44 versus 528.36 ± 7.68 pmol gdw−1 day−1 under ambient O2 concentrations) and showed a strong relationship with soil moisture. Isoprene-degrading microorganisms were isolated from the site, and abundance was calculated as 5.8 × 105 ± 3.2 × 105 cells gdw−1. Our results indicate that soil may provide a significant biological sink for atmospheric isoprene.  相似文献   

13.
The response of the planktonic heterotrophic bacterial community to the buildup and breakdown of a semipermanent, crusted, floating cyanobacterial mat, or hyperscum, that covered 1 to 2 ha was studied in a hypertrophic lake (Hartbeespoort Dam, South Africa). The initial response of bacteria in the main basin to the release of dissolved organic carbon (DOC) from the hyperscum 1 km away was an increase in activity per cell from 35 × 10−12 to 153 × 10−12 μg of C cell−1 h−1 for total cell counts, while activity per cell for metabolically active cells increased from 19 × 10−11 to 85 × 10−11 μg of C cell−1 h−1. No major population growth occurred at this stage. Later, with the continuous supply of DOC from the hyperscum, total bacterial numbers increased from 6.6 × 106 to 20 × 106 cells ml−1, while the activity per cell declined. Metabolically active bacteria followed the same trend. Shorter-term DOC increases caused only increases in bacterial activity per cell. The data from Hartbeespoort Dam demonstrate an interesting and little-documented mechanism by which aquatic bacteria respond to increased DOC concentration and which may be universal for aquatic systems.  相似文献   

14.
Despite the fact that marine viruses have been increasingly studied in the last decade, there is little information on viral abundance and distribution on a global scale. In this study, we report on a global-scale survey covering the Pacific, Atlantic, and Indian Oceans on viral distribution using flow cytometry. Viruses were stained with the SYBR Green I, which targets only dsDNA viruses. The average viral abundance was 1.10±0.73×107 ml−1 in global surface oceans and decreased from the areas with high chlorophyll concentration (on average, 1.47±0.78×107 ml−1) to the oligotrophic subtropical gyres (on average, 6.34±2.18×106 ml−1). On a large-spatial-scale, viruses displayed significant relationships with both heterotrophic and autotrophic picoplankton abundance, suggesting that viral distribution is dependent on their host cell abundance. Our study provided a basin scale pattern of marine viral distributions and their relationship with major host cells, indicating that viruses play a significant role in the global marine ecosystem.  相似文献   

15.
Cylindrical or taper-and-cylinder combination optical fiber probe based on evanescent wave has been widely used for immunofluorescence biosensor to detect various analytes. In this study, in contrast to the contradiction between penetration depth and analyte diameter of optical fiber probe-based evanescent wave, we demonstrate that double-taper optical fiber used in a radiation wave-based all-fiber immunofluorescence biosensor (RWAIB) can detect micron-scale analytes using Escherichia coli O157:H7 as representative target. Finite-difference time-domain method was used to compare the properties of evanescent wave and radiation wave (RW). Ray-tracing model was formulated to optimize the taper geometry of the probe. Based on a commercial multi-mode fiber, a double-taper probe was fabricated and connected with biosensor through a “ferrule connector” optical fiber connector. The RWAIB configuration was accomplished using commercial multi-mode fibers and fiber-based devices according to the “all-fiber” method. The standard sample tests revealed that the sensitivity of the proposed technique for E. coli O157:H7 detection was 103 cfu·mL−1. Quantitation could be achieved within the concentration range of 103 cfu·mL−1 to 107 cfu·mL−1. No non-specific recognition to ten kinds of food-borne pathogens was observed. The results demonstrated that based on the double-taper optical fiber RWAIB can be used for the quantitative detection of micron-scale targets, and RW sensing is an alternative for traditional evanescent wave sensing during the fabrication of fiber-optic biosensors.  相似文献   

16.
Four point-of-use disinfection technologies for treating sewage-contaminated well water were compared. Three systems, based on flocculant-disinfectant packets and N-halamine chlorine and bromine contact disinfectants, provided a range of 4.0 to >6.6 log10 reductions (LR) of naturally occurring fecal indicator and heterotrophic bacteria and a range of 0.9 to >1.9 LR of coliphage.Disasters and flooding can overwhelm sanitation infrastructure, leading to sewage contamination of potable waters. This may be routine during the wet season in many parts of the world and spreads numerous waterborne diseases (21). Point-of-use (POU) water treatment has reduced the incidence of diarrheal disease when used for household drinking water (3, 4, 6, 13) and is now being promoted for disaster relief. While POU systems have recently been reviewed (14), to our knowledge there has been no direct, experimental comparison for treating actual sewage-contaminated waters. In this study, the efficacies of four POU disinfection systems (based on sodium dichloroisocyanurate [NaDCC] tablets, a flocculent-disinfectant powder, and chlorine and bromine contact disinfectant cartridges) in reducing the concentrations of six microbial indicators in well water contaminated with raw sewage were compared.The NaDCC tablets (67 mg; Aquatabs; Medentech, Wexford, Ireland), used for disinfection in low-turbidity water, have shown preliminary efficacy for routine household drinking water treatment (3, 4). The flocculant-disinfectant packet (4 g; PUR; Procter & Gamble Co., Cincinnati, OH) includes Fe2(SO4)3, bentonite, Na2CO3, chitosan, polyacrylamide, KMnO4, and Ca(OCl)2 (13). It achieved >7.3 log10 reductions (LR) of 24 bacteria species; >4.6 LR of poliovirus and rotavirus in EPA no. 2 test water (turbidity, >30 nephelometric turbidity units [NTU]) (15); and reduced diarrheal illness in Guatemala, Liberia, Kenya, and Pakistan (6, 7, 11, 13).HaloPure canisters (Eureka Forbes, Mumbai, India) contain N-halamine polymer disinfectant beads, poly[1,2-dichloro-5-methyl-5-(4′-vinylphenyl)hydrantoin] for chlorine canisters, and poly[1,2-dibromo-5-methyl-5-(4′-vinylphenyl)hydrantoin] for bromine canisters. Seeded laboratory trials achieved >6.8 LR for Escherichia coli and Staphylococcus aureus as water was passed through the canisters (2). The Cl-contact (producing residuals ranging from 0 to 0.6 mg/liter) and Br-contact (with residuals of 0.68 to 1.8 mg/liter) disinfectants achieved 2.9 LR and 5.0 LR of the bacteriophage MS2, respectively, and 27.5% and 88.5% reductions of the algal toxin microcystin, respectively (5).Sewage-contaminated water was prepared by mixing 9 liters of potable, nonchlorinated well water (pH 7.8; turbidity, 0.33 NTU; Williamston, MI) with 1 liter of raw sewage (City of East Lansing Wastewater Treatment Plant, MI) with an average pH of 6.6 ± 0.1, a biochemical oxygen demand of 144 ± 36 mg/liter, a concentration of total suspended solids of 146 ± 31 mg/liter, and a turbidity of 132 ± 12 NTU. Three disinfection trials were conducted at room temperature for each POU system on three different days to allow for variance in sewage strength. The turbidities of 1:10 dilutions of raw sewage averaged 7.5 ± 2.0 NTU. Table Table11 lists the indicator microorganism concentrations in the influent and effluent for each system.

TABLE 1.

Concentrations of influent and 30-min-effluent microorganisms for POU disinfectant systems treating sewage-contaminated water
Microorganism groupGeometric mean concn (range) [% of samples below detection limit]a
NaDCC
Flocculant-disinfectant
Cl-contact
Br-contact
InfluentEffluent at 30 minInfluentEffluent at 30 minInfluentEffluent at 30 minInfluentEffluent at 30 min
Total coliforms2.7 × 104 (6.7 × 103 to 7.6 × 104)4.3 (4.0 × 10−2 to 1.6 × 102)1.7 × 104 (1.2 × 104 to 2.7 × 104)4.0 × 10−2 (<1.0 × 10−2 to 2.4 × 10−1) [33]2.9 × 104 (2.3 × 104 to 4.0 × 104)<1.0 × 10−2 [100]4.5 × 104 (1.9 × 104 to 7.2 × 104)1.1 × 10−2 (<1.0 × 10−2 to 1.3 × 10−2) [66]
Heterotrophic plate counts8.7 × 104 (2.7 × 104 to 1.8 × 105)6.4 × 101 (2.1 × 101 to 4.5 × 102)8.9 × 104 (2.9 × 104 to 4.3 × 105)8.5 (4.7 to 2.7 × 101)6.6 × 104 (3.5 × 104 to 1.1 × 105)3.9 (3.5 to 4.2)8.3 × 104 (2.4 × 104 to 2.0 × 105)4.6 (2.2 to 7.7)
E. coli3.3 × 103 (7.7 × 102 to 1.1 × 104)1.8 × 101 (9.0 × 10−1 to 5.3 × 102)6.7 × 103 (2.3 × 103 to 4.3 × 104)1.1 × 10−2 (<1.0 × 10−2 to 1.3 × 10−2) [66]4.7 × 103 (2.3 × 103 to 1.1 × 104)<1.0 × 10−2 [100]1.5 × 104 (6.3 × 103 to 4.6 × 104)<1.0 × 10−2 [100]
Enterococci8.8 × 102 (5.7 × 102 to 1.3 × 103)2.3 (<1.0 × 10−2 to 4.9 × 101) [33]6.3 × 102 (5.0 × 102 to 8.7 × 102)<1.0 × 10−2 [100]9.9 × 102 (5.3 × 102 to 1.7 × 103)<1.0 × 10−2 [100]1.3 × 103 (7.3 × 102 to 2.3 × 103)<1.0 × 10−2 [100]
Clostridia1.6 × 102 (6.0 × 101 to 3.0 × 102)6.4 (6.7 × 10−1 to 7.7 × 101)2.0 × 102 (7.0 × 101 to 6.0 × 102)7.9 × 10−1 (4.5 × 10−1 to 1.4)3.4 × 101 (2.0 × 101 to 6.3 × 101)2.4 × 10−2 (<1.0 × 10−2 to 6.0 × 10−2) [33]4.4 × 101 (2.7 × 101 to 9.3 × 101)7.4 × 10−2 (<1.0 × 10−2 to 3.6 × 10−1) [33]
Coliphage1.5 × 102 (1.2 × 102 to 2.2 × 102)3.1 × 101 (<1.0 to 1.8 × 102) [33]1.4 × 102 (1.3 × 102 to 1.4 × 102)1.9 × 101 (<1.0 to 1.1 × 102) [33]9.4 × 101 (4.3 × 101 to 1.6 × 102)7.3 (1.3 to 4.7 × 101)7.7 × 101 (4.0 × 101 to 1.2 × 102)<1.0 [100]
Open in a separate windowaValues shown are numbers of CFU/ml except those for coliphage, which are numbers of PFU/ml. The percentage of samples below the detection limit (n = 3 for all systems) is 0% if not shown.All systems were used in accordance with the manufacturer''s directions for 10 liters of water. For NaDCC trials, one tablet was added and allowed 30 min of contact time (total dose of 3.2 mg/liter of hypochlorite; in deionized water, one tablet produced 2.1 mg/liter free Cl residual). For flocculant-disinfectant trials, one packet was added, stirred vigorously for 5 min, strained through cheesecloth after 10 min, and allowed 20 min of further contact time. The amount of hypochlorite included in one packet was not indicated, but one packet provided 1.5 mg/liter free Cl residual in 10 liters of deionized water. Samples were taken at 1, 3, 5, 10, 15, and 30 min for both systems.For the Cl-contact and Br-contact trials, disinfectant cartridges were installed in AquaSure housings consisting of an upper reservoir for influent, which flows by gravity through the disinfectant cartridge to a lower reservoir with a tap for dispensing (Fig. (Fig.1).1). The housings usually include cloth and activated charcoal prefilters, but these were removed in order to directly evaluate the disinfectant. With the tap open, 10 liters of influent was added and samples were collected at first flow (6 to 12 min) and after 15 and 30 min of flow. A single chlorine canister was used for all trials; the bromine canister was replaced for the third trial because the original clogged.Open in a separate windowFIG. 1.Flow schematic for contact disinfectant cartridges. Arrows indicate the directions of water flow from the upper reservoir (U), through the halogen (chlorine or bromine) disinfectant cartridge (H) containing packed N-halamine beads (N), to the lower reservoir (L) and out through the open tap.Microbial indicators in the influent and effluent (collection tubes contained sodium thiosulfate) in triplicate were quantified as numbers of CFU/ml by using mENDO agar for total coliforms (9), mHPC agar for heterotrophic plate counts (8), mTEC medium for E. coli (19), mEI agar for the genus Enterococcus (18), and mCP agar for the genus Clostridium (1) (Becton, Dickinson and Co., Franklin Lakes, NJ). Coliphage (PFU/ml) were measured with a double agar overlay assay, EPA method 1601 (17). Residuals (mg/liter) were measured using a Hach chlorine (free and total) test kit, model CN66 (Hach Co., Loveland, CO) (used for bromine in accordance with Hach method 8016 [10], with the instrument reading multiplied by 2.25 [the ratio of the atomic weights of bromine and chlorine], as advised by Hach Co. technical support).Comparison of water quality levels was done at 30 minutes. LR were calculated, with zeros replaced with the detection limits (Fig. (Fig.2).2). All POU systems reduced microbial concentrations below the detection limit in some trials (Table (Table1),1), making the calculated reductions the lower bound for those trials.Open in a separate windowFIG. 2.Average LR of naturally occurring microorganisms at 30 min for sewage-contaminated well water (1:10 dilution of raw sewage in well water) with the use of four POU disinfection systems (error bars represent 1 standard error). * indicates that effluent was below the limit of detection for all samples. Limit of detection was substituted to calculate LR and actual reductions may be greater than shown.Average LR for each POU system were compared using two-way analysis of variance with post hoc least-significant-difference (LSD) tests, performed with SPSS 11.0.1 (SPSS, Inc.). LR at 30 min differed significantly between systems (analysis of variance; F3,5 = 20.6; P < 0.001). There was no significant difference between the LR achieved by flocculant-disinfectant and contact disinfectants (LSD; mean difference, 0.2 to 0.5 LR; P > 0.05), while the NaDCC tablets induced significantly lower reductions (LSD; mean difference, 1.5 to 2.0 LR; P < 0.001).There was detectable residual free chlorine after 30 min for one NaDCC trial (0.4 mg/liter) and two flocculant-disinfectant trials (0.1 and 0.4 mg/liter). No contact disinfectant trial produced a measurable residual.No system in this study reliably produced residuals for safe storage after POU treatment or ideal virus reduction. Except for the NaDCC system, the POU systems achieved approximately 5.5 LR for E. coli and coliforms, 4.5 LR for enterococci, 4.0 LR for heterotrophs, 2.5 LR for clostridia, and 1.0 LR for coliphage. Coliphage was reduced below detection limits in all trials with Br-contact, similar to what was found in previous research (5). Bromine disinfection has proved safe and effective for large-scale maritime applications, like U.S. Navy vessels (20), and appears promising for household treatment. Further assessment of the Br-contact system is warranted, as is field comparison of POU systems in disaster relief.  相似文献   

17.
Studies in human populations and mouse models of disease have linked the common leptin receptor Q223R mutation to obesity, multiple forms of cancer, adverse drug reactions, and susceptibility to enteric and respiratory infections. Contradictory results cast doubt on the phenotypic consequences of this variant. We set out to determine whether the Q223R substitution affects leptin binding kinetics using surface plasmon resonance (SPR), a technique that allows sensitive real-time monitoring of protein-protein interactions. We measured the binding and dissociation rate constants for leptin to the extracellular domain of WT and Q223R murine leptin receptors expressed as Fc-fusion proteins and found that the mutant receptor does not significantly differ in kinetics of leptin binding from the WT leptin receptor. (WT: ka 1.76×106±0.193×106 M−1 s−1, kd 1.21×10−4±0.707×10−4 s−1, KD 6.47×10−11±3.30×10−11 M; Q223R: ka 1.75×106±0.0245×106 M−1 s−1, kd 1.47×10−4±0.0505×10−4 s−1, KD 8.43×10−11±0.407×10−11 M). Our results support earlier findings that differences in affinity and kinetics of leptin binding are unlikely to explain mechanistically the phenotypes that have been linked to this common genetic variant. Future studies will seek to elucidate the mechanism by which this mutation influences susceptibility to metabolic, infectious, and malignant pathologies.  相似文献   

18.
Ice Nucleation Activity in Lichens   总被引:7,自引:0,他引:7       下载免费PDF全文
A newly discovered form of biological ice nucleus associated with lichens is described. Ice nucleation spectra of a variety of lichens from the southwestern United States were measured by the drop-freezing method. Several epilithic lichen samples of the genera Rhizoplaca, Xanthoparmelia, and Xanthoria had nuclei active at temperatures as warm as −2.3°C and had densities of 2.3 × 106 to more than 1 × 108 nuclei g−1 at −5°C (2 to 4 orders of magnitude higher than any plants infected with ice nucleation-active bacteria). Most lichens tested had nucleation activity above −8°C. Lichen substrates (rocks, plants, and soil) showed negligible activity above −8°C. Ice nucleation-active bacteria were not isolated from the lichens, and activity was not destroyed by heat (70°C) or sonication, indicating that lichen-associated ice nuclei are nonbacterial in origin and differ chemically from previously described biological ice nuclei. An axenic culture of the lichen fungus Rhizoplaca chrysoleuca showed detectable ice nucleation activity at −1.9°C and an ice nucleation density of 4.5 × 106 nuclei g−1 at −5°C. It is hypothesized that these lichens, which are both frost tolerant and dependent on atmospheric moisture, derive benefit in the form of increased moisture deposition as a result of ice nucleation.  相似文献   

19.
The spatial heterogeneity of bacterial populations at a shallow-water hydrothermal vent in the Aegean Sea close to the island of Milos (Greece) was examined at two different times by using acridine orange staining for total cell counts, cultivation-based techniques, and denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA gene fragments. Concurrent with measurements of geochemical parameters, samples were taken along a transect from the center of the vent to the surrounding area. Most-probable-number (MPN) counts of metabolically defined subpopulations generally constituted a minor fraction of the total cell counts; both counting procedures revealed the highest cell numbers in a transition zone from the strongly hydrothermally influenced sediments to normal sedimentary conditions. Total cell counts ranged from 3.2 × 105 cells ml−1 in the water overlying the sediments to 6.4 × 108 cells g (wet weight) of sediment−1. MPN counts of chemolithoautotrophic sulfur-oxidizing bacteria varied between undetectable and 1.4 × 106 cells g−1. MPN counts for sulfate-reducing bacteria and dissimilatory iron-reducing bacteria ranged from 8 to 1.4 × 105 cells g−1 and from undetectable to 1.4 × 106 cells g−1, respectively. DGGE revealed a trend from a diverse range of bacterial populations which were present in approximately equal abundance in the transition zone to a community dominated by few populations close to the center of the vent. Temperature was found to be an important parameter in determining this trend. However, at one sampling time this trend was not discernible, possibly due to storm-induced disturbance of the upper sediment layers.  相似文献   

20.
1. Purified rabbit-muscle and -liver glucose phosphate isomerase, free of contaminating enzyme activities that could interfere with the assay procedures, were tested for inhibition by fructose, fructose 1-phosphate and fructose 1,6-diphosphate. 2. Fructose 1-phosphate and fructose 1,6-diphosphate are both competitive with fructose 6-phosphate in the enzymic reaction, the apparent Ki values being 1·37×10−3−1·67×10−3m for fructose 1-phosphate and 7·2×10−3−7·9×10−3m for fructose 1,6-diphosphate; fructose and inorganic phosphate were without effect. 3. The apparent Km values for both liver and muscle enzymes at pH7·4 and 30° were 1·11×10−4−1·29×10−4m for fructose 6-phosphate, determined under the conditions in this paper. 4. In the reverse reaction, fructose, fructose 1-phosphate and fructose 1,6-diphosphate did not significantly inhibit the conversion of glucose 6-phosphate into fructose 6-phosphate. 5. The apparent Km values for glucose 6-phosphate were in the range 5·6×10−4−8·5×10−4m. 6. The competitive inhibition of hepatic glucose phosphate isomerase by fructose 1-phosphate is discussed in relation to the mechanism of fructose-induced hypoglycaemia in hereditary fructose intolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号