首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
To cleave DNA, the Type?III RM (restriction-modification) enzymes must communicate the relative orientation of two recognition sequences, which may be separated by many thousands of base pairs. This long-range interaction requires ATP hydrolysis by a helicase domain, and both active (DNA translocation) and passive (DNA sliding) modes of motion along DNA have been proposed. Potential roles for ATP binding and hydrolysis by the helicase domains are discussed, with a focus on bipartite ATPases that act as molecular switches.  相似文献   

2.
RecQ helicases, together with topoisomerase III and Rmi1 family proteins, form an evolutionarily conserved complex that is essential for the maintenance of genome integrity. This complex, which we term RTR, is capable of, or has been implicated in, the processing of a diverse array of DNA structures, and we propose here that it functions in a coordinated fashion as a DNA structure-specific 'dissolvasome'. Little is known about how the RTR complex might be regulated or targeted to various DNA structures in vivo. Recent findings indicate that the components of the RTR complex might activate the cell cycle checkpoint machinery as well as be a target of checkpoint kinases, suggesting that these events are crucial to ensure faithful DNA replication and chromosome segregation.  相似文献   

3.
Free radicals do not commonly add to nucleotides in DNA, despite the fact that radicals are produced in all aerobically metabolizing cells. Why is this? For oxy-radicals, the ratio of the rate constant for addition to double bonds divided by that for H-abstraction from good H-donors parallels the electrophilicity of the radical, and among oxy-radicals the hydroxyl radical is the most electrophilic, with an unusually high ratio of Kad/kH. The hydroxyl radical also is very reactive in H-atom abstraction reactions, with a large absolute value of kH. However, the hydroxyl radical's high reactivity makes it unselective and relatively nondiscriminating between H-abstraction from a sugar moiety in DNA and penetration to, and reaction with, a base. Oxy-radicals such as alkoxyl and peroxyl radicals do not have as high electrophilicity or as high reactivity. Interestingly, carbon-centered radicals (such as the methyl radical) also can both add to double bonds and abstract H-atoms, but carbon-centered radicals are not commonly observed to add to DNA bases. However, they cannot be generated near DNA in vivo. In contrast, hydroxyl radical generating systems appear to complex with DNA and produce the hydroxyl radical in the immediate vicinity of the DNA, producing a type of DNA damage that is called site specific. Thus, addition of a radical to a DNA base may require all three features possessed by the hydroxyl radical: high electrophilicity, high thermokinetic reactivity, and a mechanism for production near DNA.  相似文献   

4.
5.
Density functional theory calculations of isolated Watson–Crick A:U and A:T base pairs predict that adenine 13C2 trans-hydrogen bond deuterium isotope shifts due to isotopic substitution at the pyrimidine H3, 2hΔ13C2, are sensitive to the hydrogen-bond distance between the N1 of adenine and the N3 of uracil or thymine, which supports the notion that 2hΔ13C2 is sensitive to hydrogen-bond strength. Calculated 2hΔ13C2 values at a given N1–N3 distance are the same for isolated A:U and A:T base pairs. Replacing uridine residues in RNA with 5-methyl uridine and substituting deoxythymidines in DNA with deoxyuridines do not statistically shift empirical 2hΔ13C2 values. Thus, we show experimentally and computationally that the C7 methyl group of thymine has no measurable affect on 2hΔ13C2 values. Furthermore, 2hΔ13C2 values of modified and unmodified RNA are more negative than those of modified and unmodified DNA, which supports our hypothesis that RNA hydrogen bonds are stronger than those of DNA. It is also shown here that 2hΔ13C2 is context dependent and that this dependence is similar for RNA and DNA. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

6.
The histidine–proline-rich glycoprotein (HPRG) component of rabbit skeletal muscle AMP deaminase under denaturing and reducing conditions specifically binds to a Zn2+-charged affinity column and is only eluted with an EDTA-containing buffer that strips Zn2+ from the gel. The isolated protein is homogeneous showing an apparent molecular weight (MW) of 95 000 and the N-terminal sequence L-T-P-T-D-X-K-T-T-K-P-L-A-E-K-A-L-D-L-I, corresponding to that of rabbit plasma HPRG. The incubation with peptide-N-glycosidase F promotes the reduction of the apparent MW of isolated HPRG to 70 000, characterizing it as a N-glycosylated protein. The separation from AMP deaminase of an 85-kDa component with a blocked N terminus is observed when the enzyme is applied to the Zn-charged column under nondenaturing conditions. On storage under reducing conditions, this component undergoes an 85- to 95-kDa transition yielding a L-T-P-T-D-X-K-T-T-K-P-L N-terminal sequence, suggesting that the shift in the migration on SDS/PAGE as well as the truncation of the protein at its N terminus are promoted by the reduction of a disulfide bond present in freshly isolated HPRG. The separation of HPRG induces a marked reduction in the solubility of AMP deaminase, strongly suggesting a role of HPRG in assuring the molecular integrity of the enzyme.  相似文献   

7.
Protein–DNA interactions are central to the control of gene expression across all forms of life. The development of approaches to rigorously model such interactions has often been hindered both by a lack of quantitative binding data and by the difficulty in accounting for parameters relevant to the intracellular situation, such as DNA looping and thermodynamic non-ideality. Here, we review these considerations by developing a thermodynamically based mathematical model that attempts to simulate the functioning of an Escherichia coli expression system incorporating two of the best characterised prokaryotic DNA binding proteins, Lac repressor and lambda CI repressor. The key aim was to reproduce experimentally observed reporter gene activities arising from the expression of either wild-type CI repressor or one of three positive-control CI mutants. The model considers the role of several potentially important, but sometimes neglected, biochemical features, including DNA looping, macromolecular crowding and non-specific binding, and allowed us to obtain association constants for the binding of CI and its variants to a specific operator sequence.  相似文献   

8.
9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号