首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Short interfering RNA (siRNA)-based RNA interference (RNAi) is widely used for target gene knockdown in mammalian cells. To clarify the position-dependent functions of ribonucleotides in siRNA, siRNAs with various DNA substitutions were constructed. The following could be simultaneously replaced with DNA without substantial loss of gene-silencing activity: the seed arm, which occupies positions 2–8 from the 5′end of the guide strand; its complementary sequence; the 5′end of the guide strand and the 3′overhang of the passenger strand. However, most part of the 3′ two-thirds of the guide strand could not be replaced with DNA, possibly due to binding of RNA-recognition proteins such as TRBP2 and Ago2. The passenger strand with DNA in the 3′end proximal region was incapable of inducing off-target effect. Owing to lesser stability of DNA–RNA hybrid than RNA duplex, modified siRNAs with DNA substitution in the seed region were, in most cases, incapable to exert unintended gene silencing due to seed sequence homology. Thus, it may be possible to design DNA–RNA chimeras which effectively silence mammalian target genes without silencing unintended genes.  相似文献   

2.
3.
Despite the widespread application of RNA interference (RNAi) as a research tool for diverse purposes, the key step of strand selection of siRNAs during the formation of RNA-induced silencing complex (RISC) remains poorly understood. Here, using siRNAs targeted to the complementary region of Survivin and the effector protease receptor 1 (EPR-1), we show that both strands of the siRNA duplex can find their target mRNA and are equally eligible for assembly into Argonaute 2 (Ago2) of RISC in HEK293 cells. Transfection of the synthetic siRNA duplexes with different thermodynamic profiles or short hairpin RNA (shRNA) vectors that generate double-stranded RNAs (dsRNAs), permitting processing specifically from either the 5′ or 3′ end of the incipient siRNA, results in the degradation of the respective target mRNAs of either strand of the siRNA duplex with comparable efficiencies. Thus, while most RNAi reactions may follow the thermodynamic asymmetry rule in strand selection, our study suggests an exceptional mode for certain siRNAs in which both strands of the duplex are competent in sponsoring RNAi, and implies additional factors that might dictate the RNAi targets.  相似文献   

4.
Human RISC couples microRNA biogenesis and posttranscriptional gene silencing   总被引:40,自引:0,他引:40  
RNA interference is implemented through the action of the RNA-induced silencing complex (RISC). Although Argonaute2 has been identified as the catalytic center of RISC, the RISC polypeptide composition and assembly using short interfering RNA (siRNA) duplexes has remained elusive. Here we show that RISC is composed of Dicer, the double-stranded RNA binding protein TRBP, and Argonaute2. We demonstrate that this complex can cleave target RNA using precursor microRNA (pre-miRNA) hairpin as the source of siRNA. Although RISC can also utilize duplex siRNA, it displays a nearly 10-fold greater activity using the pre-miRNA Dicer substrate. RISC distinguishes the guide strand of the siRNA from the passenger strand and specifically incorporates the guide strand. Importantly, ATP is not required for miRNA processing, RISC assembly, or multiple rounds of target-RNA cleavage. These results define the composition of RISC and demonstrate that miRNA processing and target-RNA cleavage are coupled.  相似文献   

5.
Small interfering RNAs (siRNAs) are short, double-stranded RNAs that use the endogenous RNAi pathway to mediate gene silencing. Phosphorylation facilitates loading of a siRNA into the Ago2 complex and subsequent cleavage of the target mRNA. In this study, 2′, 3′ seco nucleoside modifications, which contain an acylic ribose ring and are commonly called unlocked nucleic acids (UNAs), were evaluated at all positions along the guide strand of a siRNA targeting apolipoprotein B (ApoB). UNA modifications at positions 1, 2 and 3 were detrimental to siRNA activity. UNAs at positions 1 and 2 prevented phosphorylation by Clp1 kinase, abrogated binding to Ago2, and impaired Ago2-mediated cleavage of the mRNA target. The addition of a 5′-terminal phosphate to siRNA containing a position 1 UNA restored ApoB mRNA silencing, Ago2 binding, and Ago2 mediated cleavage activity. Position 1 UNA modified siRNA containing a 5′-terminal phosphate exhibited a partial restoration of siRNA silencing activity in vivo. These data reveal the complexity of interpreting the effects of chemical modification on siRNA activity, and exemplify the importance of using multiple biochemical, cell-based and in vivo assays to rationally design chemically modified siRNA destined for therapeutic use.  相似文献   

6.
In the present study, the relationship between short interfering RNA (siRNA) sequence and RNA interference (RNAi) effect was extensively analyzed using 62 targets of four exogenous and two endogenous genes and three mammalian and Drosophila cells. We present the rules that may govern siRNA sequence preference and in accordance with which highly effective siRNAs essential for systematic mammalian functional genomics can be readily designed. These rules indicate that siRNAs which simultaneously satisfy all four of the following sequence conditions are capable of inducing highly effective gene silencing in mammalian cells: (i) A/U at the 5′ end of the antisense strand; (ii) G/C at the 5′ end of the sense strand; (iii) at least five A/U residues in the 5′ terminal one-third of the antisense strand; and (iv) the absence of any GC stretch of more than 9 nt in length. siRNAs opposite in features with respect to the first three conditions give rise to little or no gene silencing in mammalian cells. Essentially the same rules for siRNA sequence preference were found applicable to DNA-based RNAi in mammalian cells and in ovo RNAi using chick embryos. In contrast to mammalian and chick cells, little siRNA sequence preference could be detected in Drosophila in vivo RNAi.  相似文献   

7.
Gene silencing and RNA interference are major cellular processes that control gene expression via the cleavage of target mRNA. Eukaryotic translation initiation factor 2C2 (EIF2C2, Argonaute protein 2, Ago2) is considered to be the major player of RNAi as it is the core component of RISC complexes. While a considerable amount of research has focused on RNA interference and its associated mechanisms, the nature and mechanisms of nucleotide recognition by the PAZ domain of EIF2C2/Ago2 have not yet been characterized. Here, we demonstrate that the EIF2C2/Ago2 PAZ domain has an inherent lack of binding to adenine nucleotides, a feature that highlights the poor binding of 3′-adenylated RNAs with the PAZ domain as well as the selective high trimming of the 3′-ends of miRNA containing adenine nucleotides. We further show that the PAZ domain selectively binds all ribonucleotides (except adenosine), whereas it poorly recognizes deoxyribonucleotides. In this context, the modification of dTMP to its ribonucleotide analogue gave a drastic improvement of binding enthalpy and, hence, binding affinity. Additionally, higher in vivo gene silencing efficacy was correlated with the stronger PAZ domain binders. These findings provide new insights into the nature of the interactions of the EIF2C2/Ago2 PAZ domain.  相似文献   

8.
We recently reported the synthesis of 2′-fluorinated Northern-methanocarbacyclic (2′-F-NMC) nucleotides, which are based on a bicyclo[3.1.0]hexane scaffold. Here, we analyzed RNAi-mediated gene silencing activity in cell culture and demonstrated that a single incorporation of 2′-F-NMC within the guide or passenger strand of the tri-N-acetylgalactosamine-conjugated siRNA targeting mouse Ttr was generally well tolerated. Exceptions were incorporation of 2′-F-NMC into the guide strand at positions 1 and 2, which resulted in a loss of the in vitro activity. Activity at position 1 was recovered when the guide strand was modified with a 5′ phosphate, suggesting that the 2′-F-NMC is a poor substrate for 5′ kinases. In mice, the 2′-F-NMC-modified siRNAs had comparable RNAi potencies to the parent siRNA. 2′-F-NMC residues in the guide seed region position 7 and at positions 10, 11 and 12 were well tolerated. Surprisingly, when the 5′-phosphate mimic 5′-(E)-vinylphosphonate was attached to the 2′-F-NMC at the position 1 of the guide strand, activity was considerably reduced. The steric constraints of the bicyclic 2′-F-NMC may impair formation of hydrogen-bonding interactions between the vinylphosphonate and the MID domain of Ago2. Molecular modeling studies explain the position- and conformation-dependent RNAi-mediated gene silencing activity of 2′-F-NMC. Finally, the 5′-triphosphate of 2′-F-NMC is not a substrate for mitochondrial RNA and DNA polymerases, indicating that metabolites should not be toxic.  相似文献   

9.
Chu CY  Rana TM 《RNA (New York, N.Y.)》2008,14(9):1714-1719
RNA interference (RNAi) is a gene-silencing mechanism by which a ribonucleoprotein complex, the RNA-induced silencing complex (RISC) and a double-stranded (ds) short-interfering RNA (siRNA), targets a complementary mRNA for site-specific cleavage and subsequent degradation. While longer dsRNA are endogenously processed into 21- to 24-nucleotide (nt) siRNAs or miRNAs to induce gene silencing, RNAi studies in human cells typically use synthetic 19- to 20-nt siRNA duplexes with 2-nt overhangs at the 3′-end of both strands. Here, we report that systematic synthesis and analysis of siRNAs with deletions at the passenger and/or guide strand revealed a short RNAi trigger, 16-nt siRNA, which induces potent RNAi in human cells. Our results indicate that the minimal requirement for dsRNA to trigger RNAi is an ~42 Å A-form helix with ~1.5 helical turns. The 16-nt siRNA more effectively knocked down mRNA and protein levels than 19-nt siRNA when targeting the endogenous CDK9 gene, suggesting that 16-nt siRNA is a more potent RNAi trigger. In vitro kinetic analysis of RNA-induced silencing complex (RISC) programmed in HeLa cells indicates that 16-nt siRNA has a higher RISC-loading capacity than 19-nt siRNA. These results suggest that RISC assembly and activation during RNAi does not necessarily require a 19-nt duplex siRNA and that 16-nt duplexes can be designed as more potent triggers to induce RNAi.  相似文献   

10.
11.
12.
13.
RNA诱导沉默复合体中的生物大分子及其装配   总被引:6,自引:0,他引:6  
宋雪梅  燕飞  杜立新 《遗传》2006,28(6):761-766
在RNA干扰机制中,双链RNA诱导同源RNA降解的过程依赖于RNA诱导沉默复合体(RISC)的活性。RISC由Dicer酶,Argonaute蛋白,siRNA等多种生物大分子装配而成,对这些大分子的结构和功能进行深入细致的研究,有助于进一步了解RISC的形成过程、作用方式,以及阐明整个RNAi过程的作用机制。研究表明,RISC中的Dicer具有RNaseIII结构域,在RNAi的起始阶段负责催化siRNA的产生,在RISC装配过程中起稳定RISC中间体结构和功能的作用;Argonaute蛋白是RISC中的核心蛋白,有PAZ和PIWI两个主要的结构域,前者为siRNA的传递提供结合位点,后者是RISC中的酶切割活性中心;siRNA是RISC完成特异性切割作用的向导,在成熟的RISC中虽然只包含siRNA的一条链,但siRNA在RISC形成过程中的双链结构是保证RNAi效应的决定因素。尽管RISC中还存在其他一些功能未知的蛋白质,但在RISC组分结构及功能研究方面取得的进展为建立一个可能的RISC装配模型提供了理论基础。  相似文献   

14.
The canonical exogenous trigger of RNA interference (RNAi) in mammals is small interfering RNA (siRNA). One promising application of RNAi is siRNA-based therapeutics, and therefore the optimization of siRNA efficacy is an important consideration. To reduce unfavorable properties of canonical 21mer siRNAs, structural and chemical variations to canonical siRNA have been reported. Several of these siRNA variants demonstrate increased potency in downstream readout-based assays, but the molecular mechanism underlying the increased potency is not clear. Here, we tested the performance of canonical siRNAs and several sequence-matched variants in parallel in gene silencing, RNA-induced silencing complex (RISC) assembly, stability and Argonaute (Ago) loading assays. The commonly used 19mer with two deoxythymidine overhangs (19merTT) variant performed similarly to canonical 21mer siRNA. A shorter 16mer variant (16merTT) did not perform comparably in our assays. Dicer substrate interfering RNA (dsiRNA) demonstrated better gene silencing by the guide strand (target complementary strand), better RISC assembly, persistence of the guide strand and relatively more loading of the guide strand into Ago. Hence, we demonstrate the advantageous properties of dsiRNAs at upstream, intermediate and downstream molecular steps of the RNAi pathway.  相似文献   

15.
16.
RISC (RNA-induced silencing complex) is a central protein complex in RNAi, into which a siRNA strand is assembled to become effective in gene silencing. By using an in vitro RNAi reaction based on Drosophila embryo extract, an asymmetric model was recently proposed for RISC assembly of siRNA strands, suggesting that the strand that is more loosely paired at its 5′ end is selectively assembled into RISC and results in target gene silencing. However, in the present study, we were unable to establish such a correlation in cell-based RNAi assays, as well as in large-scale RNAi data analyses. This suggests that the thermodynamic stability of siRNA is not a major determinant of gene silencing in mammalian cells. Further studies on fork siRNAs showed that mismatch at the 5′ end of the siRNA sense strand decreased RISC assembly of the antisense strand, but surprisingly did not increase RISC assembly of the sense strand. More interestingly, measurements of melting temperature showed that the terminal stability of fork siRNAs correlated with the positions of the mismatches, but not gene silencing efficacy. In summary, our data demonstrate that there is no definite correlation between siRNA stability and gene silencing in mammalian cells, which suggests that instead of thermodynamic stability, other features of the siRNA duplex contribute to RISC assembly in RNAi.  相似文献   

17.
Joseph TT  Osman R 《Proteins》2012,80(5):1283-1298
Silencing in RNAi is strongly affected by guide‐strand/target‐mRNA mismatches. Target nucleation is thought to occur at positions 2–8 of the guide (“seed region”); successful hybridization in this region is the primary determinant of target‐binding affinity and hence target cleavage. To define a molecular basis for the target sequence selectivity in RNAi, we studied all possible distinct single mismatches in seven positions of the seed region—a total of 21 substitutions. We report results from soft‐core thermodynamic integration simulations to determine changes in targeting binding‐free energies to Argonaute due to single mismatches in the guide strand, which arise during binding of an imperfectly matched target mRNA. In agreement with experiment, most mismatches impair target binding, consistent with a prominent role for binding affinity changes in RNAi sequence selectivity. Individual Argonaute residues located near the mismatched base pair are found to contribute significantly to binding affinity changes. We also use this methodology to analyze the mismatch‐dependent free energy changes for dissociation of a DNA?RNA hybrid from Argonaute, as a model for the escape of miRNAs from the silencing pathway. Several mismatched sequences of the miRNA have increased affinity to Argonaute, implying that some mismatches may reduce the probability for escape. Furthermore, calculations of base‐substitution‐dependent free energy changes for binding ssDNA reveal mild sequence sensitivity as expected for guide strand binding to Argonaute. Our findings give a thermodynamic basis for RNAi target sequence selectivity and suggest that miRNA mismatches may increase silencing effectiveness and thus could be evolutionarily advantageous. Proteins 2012; © 2011 Wiley Periodicals, Inc.  相似文献   

18.
19.
RNA interference (RNAi) is now widely used for gene silencing in mammalian cells. The mechanism uses the RNA-induced silencing complex, in which Dicer, Ago2, and the human immunodeficiency virus type 1 (HIV-1) TAR RNA binding protein (TRBP) are the main components. TRBP is a protein that increases HIV-1 expression and replication by inhibition of the interferon-induced protein kinase PKR and by increasing translation of viral mRNA. After HIV infection, TRBP could restrict the viral RNA through its activity in RNAi or could contribute more to the enhancement of viral replication. To determine which function will be predominant in the virological context, we analyzed whether the inhibition of its expression could enhance or decrease HIV replication. We have generated small interfering RNAs (siRNAs) against TRBP and found that they decrease HIV-1 long terminal repeat (LTR) basal expression 2-fold, and the LTR Tat transactivated level up to 10-fold. In the context of HIV replication, siRNAs against TRBP decrease the expression of viral genes and inhibit viral production up to fivefold. The moderate increase in PKR expression and activation indicates that it contributes partially to viral gene inhibition. The moderate decrease in micro-RNA (miRNA) biogenesis by TRBP siRNAs suggests that in the context of HIV replication, TRBP functions other than RNAi are predominant. In addition, siRNAs against Dicer decrease viral production twofold and impede miRNA biogenesis. These results suggest that, in the context of HIV replication, TRBP contributes mainly to the enhancement of virus production and that Dicer does not mediate HIV restriction by RNAi.  相似文献   

20.
Robb GB  Rana TM 《Molecular cell》2007,26(4):523-537
RNA interference is a conserved pathway of sequence-specific gene silencing that depends on small guide RNAs and the action of proteins assembled in the RNA-induced silencing complex (RISC). Minimally, the action of RISC requires the endonucleolytic slicer activity of Argonaute2 (Ago2) directed to RNA targets whose sequences are complementary to RISC-incorporated small RNA. To identify RISC components in human cells, we developed an affinity-purification strategy to isolate siRNA-programmed RISC. Here we report the identification of RNA helicase A (RHA) as a human RISC-associated factor. We show that RHA interacts in human cells with siRNA, Ago2, TRBP, and Dicer and functions in the RNAi pathway. In RHA-depleted cells, RNAi was reduced as a consequence of decreased intracellular concentration of active RISC assembled with the guide-strand RNA and Ago2. Our results identify RHA as a RISC component and demonstrate that RHA functions in RISC as an siRNA-loading factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号