首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cells (DCs) play a key role in the activation and regulation of B and T lymphocytes. Production of indoleamine 2, 3-dioxygenase (IDO) by macrophages has recently been described to result in inhibition of T cell proliferation through tryptophan degradation. Since DCs can be derived from monocytes, we sought to determine whether DCs could produce IDO which could potentially regulate T cell proliferation. Northern blot analysis of RNA from cultured monocyte-derived human DC revealed that IDO mRNA was induced upon activation with CD40 ligand and IFN-gamma. IDO produced from activated DCs was functionally active and capable of metabolizing tryptophan to kynurenine. Activated T cells were also capable of inducing IDO production by DCs, which was inhibited by a neutralizing Ab against IFN-gamma. DC production of IDO resulted in inhibition of T cell proliferation, which could be prevented using the IDO inhibitor 1-methyl-dl -tryptophan. These results suggest that activation of DCs induces the production of functional IDO, which causes depletion of tryptophan and subsequent inhibition of T cell proliferation. This may represent a potential mechanism for DCs to regulate the immune response.  相似文献   

2.
3.
Neurokinin A (NKA), a neurotransmitter distributed in the central and peripheral nervous system, strictly controls vital responses, such as airway contraction, by intracellular signaling through neurokinin-2 receptor (NK2R). However, the function of NKA-NK2R signaling on involvement in immune responses is less-well defined. We demonstrate that NK2R-mediated neuropeptide signaling activates dendritic cell (DC)-mediated type 1 immune responses. IFN-γ stimulation significantly induced NK2R mRNA and remarkably enhanced surface protein expression levels of bone marrow-derived DCs. In addition, the DC-mediated NKA production level was significantly elevated after IFN-γ stimulation in vivo and in vitro. We found that NKA treatment induced type 1 IFN mRNA expressions in DCs. Transduction of NK2R into DCs augmented the expression level of surface MHC class II and promoted Ag-specific IL-2 production by CD4(+) T cells after NKA stimulation. Furthermore, blockade of NK2R by an antagonist significantly suppressed IFN-γ production by both CD4(+) T and CD8(+) T cells stimulated with the Ag-loaded DCs. Finally, we confirmed that stimulation with IFN-γ or TLR3 ligand (polyinosinic-polycytidylic acid) significantly induced both NK2R mRNA and surface protein expression of human PBMC-derived DCs, as well as enhanced human TAC1 mRNA, which encodes NKA and Substance P. Thus, these findings indicate that NK2R-dependent neuropeptide signaling regulates Ag-specific T cell responses via activation of DC function, suggesting that the NKA-NK2R cascade would be a promising target in chronic inflammation caused by excessive type 1-dominant immunity.  相似文献   

4.
The activation, proliferation, differentiation, and trafficking of CD4 T cells is central to the development of type I immune responses. MHC class II (MHCII)-bearing dendritic cells (DCs) initiate CD4(+) T cell priming, but the relative contributions of other MHCII(+) APCs to the complete Th1 immune response is less clear. To address this question, we examined Th1 immunity in a mouse model in which I-A(beta)(b) expression was targeted specifically to the DCs of I-A(beta)b-/- mice. MHCII expression is reconstituted in CD11b(+) and CD8alpha(+) DCs, but other DC subtypes, macrophages, B cells, and parenchymal cells lack of expression of the I-A(beta)(b) chain. Presentation of both peptide and protein Ags by these DC subsets is sufficient for Th1 differentiation of Ag-specific CD4(+) T cells in vivo. Thus, Ag-specific CD4(+) T cells are primed to produce Th1 cytokines IL-2 and IFN-gamma. Additionally, proliferation, migration out of lymphoid organs, and the number of effector CD4(+) T cells are appropriately regulated. However, class II-negative B cells cannot receive help and Ag-specific IgG is not produced, confirming the critical MHCII requirement at this stage. These findings indicate that DCs are not only key initiators of the primary response, but provide all of the necessary cognate interactions to control CD4(+) T cell fate during the primary immune response.  相似文献   

5.
Alcohol consumption inhibits accessory cell function and Ag-specific T cell responses. Myeloid dendritic cells (DCs) coordinate innate immune responses and T cell activation. In this report, we found that in vivo moderate alcohol intake (0.8 g/kg of body weight) in normal volunteers inhibited DC allostimulatory capacity. Furthermore, in vitro alcohol treatment during DC differentiation significantly reduced allostimulatory activity in a MLR using naive CD4(+) T cells, and inhibited tetanus toxoid Ag presentation by DCs. Alcohol-treated DCs showed reduced IL-12, increased IL-10 production, and a decrease in expression of the costimulatory molecules CD80 and CD86. Addition of exogenous IL-12 and IL-2, but not neutralization of IL-10, during MLR ameliorated the reduced allostimulatory capacity of alcohol-treated DCs. Naive CD4(+) T cells primed with alcohol-treated DCs showed decreased IFN-gamma production that was restored by exogenous IL-12, indicating inhibition of Th1 responses. Furthermore, CD4(+) T cells primed with alcohol-treated DCs were hyporesponsive to subsequent stimulation with the same donor-derived normal DCs, suggesting the ability of alcohol-treated DCs to induce T cell anergy. LPS-induced maturation of alcohol-treated immature DCs partially restored the reduced allostimulatory activity, whereas alcohol given only during DC maturation failed to inhibit DC functions, suggesting that alcohol primarily impairs DC differentiation rather than maturation. NFkappaB activation, a marker of DC maturation was not affected by alcohol. Taken together, alcohol both in vitro and in vivo can impair generation of Th1 immune responses via inhibition of DC differentiation and accessory cell function through mechanisms that involve decreased IL-12 induction.  相似文献   

6.
Dendritic cells (DCs) can initiate immune responses or confer immune tolerance depending on functional status. LPS-induced DC maturation is defined by enhanced surface expression of CD80 and CD86. MicroRNAs are critical for the regulation of DC function and immunity, and the microRNA let-7i was upregulated during LPS-induced DC maturation. Downregulation of let-7i significantly impeded DC maturation as evidenced by reduced CD80 and CD86 expression. DCs stimulated by LPS promoted T cell proliferation in coculture, whereas LPS-stimulated DCs with downregulated let-7i were not effective at stimulating T cell proliferation but promoted expansion of the regulatory T cell (Treg) population. There were two subpopulations of LPS-stimulated DCs with downregulated let-7i, CD86(-) and CD86(+), and it was the CD86(-) DCs that were more effective in inducing T cell hyporesponsiveness and enhancing Treg numbers, indicating that this DC population had tolerogenic properties. Furthermore, Tregs with upregulated IL-10 underscored the tolerogenic effect of CD86(-) DCs. Suppressor of cytokine signaling 1 (SOCS1), a crucial mediator of DC maturation, was confirmed as a let-7i target gene by luciferase construct assay. Suppression or overexpression of let-7i caused reciprocal alterations in SOCS1 protein expression, but had no significant effects on SOCS1 mRNA levels, indicating that let-7i regulated SOCS1 expression by translational suppression. The modulation of SOCS1 protein by let-7i was mainly restricted to CD86(-) DCs. Our study demonstrates that let-7i regulation of SOCS1 is critical for LPS-induced DC maturation and immune function. Dynamic regulation of let-7i may fine-tune immune responses by inducing Ag-specific immune tolerance.  相似文献   

7.
Hwang SL  Chung NP  Chan JK  Lin CL 《Cell research》2005,15(3):167-175
Indoleamine 2, 3-dioxygenase (IDO) is a rate-limiting enzyme for the tryptophan catabolism. In human and murine cells, IDO inhibits antigen-specific T cell proliferation in vitro and suppresses T cell responses to fetal alloantigens during murine pregnancy. In mice, IDO expression is an inducible feature of specific subsets of dendritic cells (DCs),and is important for T cell regulatory properties. However, the effect of IDO and tryptophan deprivation on DC functions remains unknown. We report here that when tryptophan utilization was prevented by a pharmacological inhibitor of IDO, 1-methyl tryptophan (1MT), DC activation induced by pathogenic stimulus lipopolysaccharide (LPS) or inflammatory cytokine TNF-α was inhibited both phenotypically and functionally. Such an effect was less remarkable when DC was stimulated by a physiological stimulus, CD40 ligand. Tryptophan deprivation during DC activation also regulated the expression of CCR5 and CXCR4, as well as DC responsiveness to chemokines. These results suggest that tryptophan usage in the microenvironment is essential for DC maturation, and may also play a role in the regulation of DC migratory behaviors.  相似文献   

8.
Dendritic cells (DCs) initiate proinflammatory or regulatory T cell responses, depending on their activation state. Despite extensive knowledge of DC-activating signals, the understanding of DC inhibitory signals is relatively limited. We show that Src homology region 2 domain-containing phosphatase-1 (SHP-1) is an important inhibitor of DC signaling, targeting multiple activation pathways. Downstream of TLR4, SHP-1 showed increased interaction with several proteins including IL-1R-associated kinase-4, and modulated LPS signaling by inhibiting NF-κB, AP-1, ERK, and JNK activity, while enhancing p38 activity. In addition, SHP-1 inhibited prosurvival signaling through AKT activation. Furthermore, SHP-1 inhibited CCR7 protein expression. Inhibiting SHP-1 in DCs enhanced proinflammatory cytokines, IL-6, IL-12, and IL-1β production, promoted survival, and increased DC migration to draining lymph nodes. Administration of SHP-1-inhibited DCs in vivo induced expansion of Ag-specific cytotoxic T cells and inhibited Foxp3(+) regulatory T cell induction, resulting in an enhanced immune response against pre-established mouse melanoma and prostate tumors. Taken together, these data demonstrate that SHP-1 is an intrinsic global regulator of DC function, controlling many facets of T cell-mediated immune responses.  相似文献   

9.
Impaired Ag-presenting function in dendritic cells (DCs) due to abnormal differentiation is an important mechanism of tumor escape from immune control. A major role for vascular endothelial growth factor (VEGF) and its receptors, VEGFR1/Flt-1 and VEGFR2/KDR/Flk-1, has been documented in hemopoietic development. To study the roles of each of these receptors in DC differentiation, we used an in vitro system of myeloid DC differentiation from murine embryonic stem cells. Exposure of wild-type, VEGFR1(-/-), or VEGFR2(-/-) embryonic stem cells to exogenous VEGF or the VEGFR1-specific ligand, placental growth factor, revealed distinct roles of VEGF receptors. VEGFR1 is the primary mediator of the VEGF inhibition of DC maturation, whereas VEGFR2 tyrosine kinase signaling is essential for early hemopoietic differentiation, but only marginally affects final DC maturation. SU5416, a VEGF receptor tyrosine kinase inhibitor, only partially rescued the mature DC phenotype in the presence of VEGF, suggesting the involvement of both tyrosine kinase-dependent and independent inhibitory mechanisms. VEGFR1 signaling was sufficient for blocking NF-kappaB activation in bone marrow hemopoietic progenitor cells. VEGF and placental growth factor affect the early stages of myeloid/DC differentiation. The data suggest that therapeutic strategies attempting to reverse the immunosuppressive effects of VEGF in cancer patients might be more effective if they specifically targeted VEGFR1.  相似文献   

10.
Blockade of IDO inhibits nasal tolerance induction   总被引:1,自引:0,他引:1  
The amino acid tryptophan is essential for the proliferation and survival of cells. Modulation of tryptophan metabolism has been described as an important regulatory mechanism for the control of immune responses. The enzyme IDO degrades the indole moiety of tryptophan, not only depleting tryptophan but also producing immunomodulatory metabolites called kynurenines, which have apoptosis-inducing capabilities. In this study, we show that IDO is more highly expressed in nonplasmacytoid dendritic cells of the nose draining lymph nodes (LNs), which form a unique environment to induce tolerance to inhaled Ags, when compared with other peripheral LNs. Upon blockade of IDO during intranasal OVA administration, Ag-specific immune tolerance was abrogated. Analysis of Ag-specific T cells in the LNs revealed that inhibition of IDO resulted in enhanced survival at 48 h after antigenic stimulation, although this result was not mediated through alterations in apoptosis or cell proliferation. Furthermore, no differences were found in CD4(+) T cells expressing FoxP3. Our data suggest that the level of IDO expression in dendritic cells, present in nose draining LNs, allows for the generation of a sufficient number of regulatory T cells to control and balance effector T cells in such a way that immune tolerance is induced, whereas upon IDO blockade, effector T cells will outnumber regulatory T cells, leading to immunity.  相似文献   

11.
Dendritic cells (DCs) loaded in vitro with Ag are used as cellular vaccines to induce Ag-specific immunity. These cells are thought to be responsible for direct stimulation of Ag-specific T cells, which may subsequently mediate immunity. In this study, in transgenic mouse models with targeted MHC class II expression specifically on DCs, we show that the DC vaccine is responsible only for partial CD4(+) T cell activation, but to obtain optimal expansion of T cells in vivo, participation of endogenous (resident) DCs, but not endogenous B cells, is crucial. Transfer of Ag to endogenous DCs seems not to be mediated by simple peptide diffusion, but rather by DC-DC interaction in lymph nodes as demonstrated by histological analysis. In contrast, injection of apoptotic or necrotic DC vaccines does not induce T cell responses, but rather represents an immunological null event, which argues that viability of DC vaccines can be crucial for initial triggering of T cells. We propose that viable DCs from the DC vaccine must migrate to the draining lymph nodes and initiate a T cell response, which thereafter requires endogenous DCs that present transferred Ag in order induce optimal T cell expansion. These results are of specific importance with regard to the applicability of DC vaccinations in tumor patients, where the function of endogenous DCs is suppressed by either tumors or chemotherapy.  相似文献   

12.
CpG oligodeoxynucleotides (CpG-ODNs) stimulate innate and adaptive immunity by binding to TLR9 molecules. Paradoxically, expression of the immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO) is induced following i.v. CpG-ODN administration to mice. CpG-ODNs induced selective IDO expression by a minor population of splenic CD19+ dendritic cells (DCs) that did not express the plasmacytoid DC marker 120G8. Following CpG-ODN treatment, CD19+ DCs acquired potent IDO-dependent T cell suppressive functions. Signaling through IFN type I receptors was essential for IDO up-regulation, and CpG-ODNs induced selective activation of STAT-1 in CD19+ DCs. Thus, CpG-ODNs delivered systemically at relatively high doses elicited potent T cell regulatory responses by acting on a discrete, minor population of splenic DCs. The ability of CpG-ODNs to induce both stimulatory and regulatory responses offers novel opportunities for using them as immunomodulatory reagents but may complicate therapeutic use of CpG-ODNs to stimulate antitumor immunity in cancer patients.  相似文献   

13.
The adoptive transfer of cancer Ag-specific effector T cells in patients can result in tumor rejection, thereby illustrating the immune system potential for cancer therapy. Ideally, one would like to directly induce efficient tumor-specific effector and memory T cells through vaccination. Therapeutic vaccines have two objectives: priming Ag-specific T cells and reprogramming memory T cells (i.e., a transformation from one type of immunity to another, for example, regulatory to cytotoxic). Recent successful phase III clinical trials showing benefit to the patients revived cancer vaccines. Dendritic cells (DCs) are essential in generation of immune responses, and as such represent targets and vectors for vaccination. We have learned that different DC subsets elicit different T cells. Similarly, different activation methods result in DCs able to elicit distinct T cells. We contend that a careful manipulation of activated DCs will allow cancer immunotherapists to produce the next generation of highly efficient cancer vaccines.  相似文献   

14.
AIMP1 (ARS-interacting multifunctional protein 1), previously known as p43, was initially identified as a factor associated with a macromolecular tRNA synthetase complex. Recently, we demonstrated that AIMP1 is also secreted and acts as a novel pleiotropic cytokine. In this study, we investigated whether AIMP1 induces the activation and maturation of murine bone marrow-derived dendritic cells (DCs). AIMP1-treated DCs exhibited up-regulated expression of cell-surface molecules, including CD40, CD86, and MHC class II. Additionally, microarray analysis and RT-PCR determinations indicated that the expression of known DC maturation genes also increased significantly following treatment with AIMP1. Treatment of DCs with AIMP1 resulted in a significant increase in IL-12 production and Ag-presenting capability, and it also stimulated the proliferation of allogeneic T cells. Importantly, AIMP1-treated DCs induced activation of Ag-specific Th type 1 (Th1) cells in vitro and in vivo. AIMP1-stimulated DCs significantly enhanced the IFN-gamma production of cocultured CD4+ T cells. Immunization of mice with keyhole limpet hemocyanin-pulsed AIMP1 DCs efficiently led to Ag-specific Th1 cell responses, as determined by flow cytometry and ELISA. The addition of a neutralizing anti-IL-12 mAb to the cell cultures that had been treated with AIMP1 resulted in the decreased production of IFN-gamma, thereby indicating that AIMP1-stimulated DCs may enhance the Th1 response through increased production of IL-12 by APCs. Taken together, these results indicate that AIMP1 protein induces the maturation and activation of DCs, which skew the immune response toward a Th1 response.  相似文献   

15.
STAT3 signaling constitutes an important negative feedback mechanism for the maintenance of immune homeostasis, a suppressive signal for the Th1 immune response in murine macrophages, and a cancer immune evasion signal in various immune cells. The strategy for STAT3 signal inhibition should be considered, because these features could impede effective cancer immunotherapy. We have evaluated the effects of STAT3 inactivation in dendritic cells (DCs) on immune responses in mice and humans. DCs derived from LysMcre/STAT3(flox/flox) mice displayed higher cytokine production in response to TLR stimulation, activated T cells more efficiently, and were more resistant to the suppression of cytokine production by cancer-derived immunosuppressive factors compared with DCs from control littermates. Antitumor activities of STAT3-depleted and control DCs were compared by intratumoral administration of gp70 Ag peptide-pulsed DCs in the therapeutic MC38 tumor model. Intratumoral administration of STAT3-depleted DCs significantly inhibited MC38 tumor growth of both injected and nontreated remote tumors. The inhibition was accompanied by an increase in gp70-specific T cell response as well as in systemic Th1 immune response. STAT3-depleted human DCs with adenoviral STAT3 short hairpin RNA were also capable of producing more cytokines with TLR stimulation and more resistant to cancer-derived factors, and they induced tumor Ag-specific T cells more efficiently than control DCs. The identified role of DC STAT3 signaling in both in vivo therapeutic tumor models in mice and in vitro-specific T cell induction in humans indicates that STAT3-inactivated DCs may be a promising approach for cancer immunotherapy.  相似文献   

16.
Reports have recently suggested that eosinophils have the potential to modulate allergen-dependent pulmonary immune responses. The studies presented expand these reports demonstrating in the mouse that eosinophils are required for the allergen-dependent Th2 pulmonary immune responses mediated by dendritic cells (DCs) and T lymphocytes. Specifically, the recruitment of peripheral eosinophils to the pulmonary lymphatic compartment(s) was required for the accumulation of myeloid DCs in draining lymph nodes and, in turn, Ag-specific T effector cell production. These effects on DCs and Ag-specific T cells did not require MHC class II expression on eosinophils, suggesting that these granulocytes have an accessory role as opposed to direct T cell stimulation. The data also showed that eosinophils uniquely suppress the DC-mediated production of Th17 and, to smaller degree, Th1 responses. The cumulative effect of these eosinophil-dependent immune mechanisms is to promote the Th2 polarization characteristic of the pulmonary microenvironment after allergen challenge.  相似文献   

17.
Immunotherapy using dendritic cells (DCs) has the potential to activate both T cells and NK cells. We previously demonstrated the long-lasting antitumor responses by NK cells following immunization with bone marrow-derived DCs. In the current study, we demonstrate that long-term antitumor NK responses require endogenous DCs and a subset of effector memory CD4(+) T (CD4(+) T(EM)) cells. One month after DC immunization, injection of a tumor into DC-immunized mice leads to an increase in the expression of CXCL10 by endogenous DCs, thus directing NK cells into the white pulp where the endogenous DCs bridged CD4(+) T(EM) cells and NK cells. In this interaction, CD4(+) T(EM) cells express CD40L, which matures the endogenous DCs, and produce cytokines, such as IL-2, which activates NK cells. These findings suggest that DC vaccination can sustain long-term innate NK cell immunity but requires the participation of the adaptive immune system.  相似文献   

18.
The prevalence of squamous cell carcinoma of the lower lip (SCC-LL) is increasing worlwide. The expression of the enzyme indoleamine 2,3-dioxygenase (IDO) by antigen-presenting cells and/or tumor cells leads to tumor escape by inhibiting T cell-mediated rejection responses. The aim of this study was to determine the expression of IDO in SCC-LL. IDO-expression was analyzed in 47 SCC-LL, together with the expression of markers of T-cells (CD3), myeloid DCs (S100, CD11c), macrophages (CD68, CD11c), Langerhans cells (CD1a, Langerin (CD207)), plasmacytoid DCs (CD123), and regulatory T cells (Foxp3) by immunohistochemistry and immunofluorescence analysis. Twelve specimens out of 47 LL-SCCs contained cells that expressed IDO. IDO-positivity was strongly associated with the intensity of the cancer-associated infiltrate (P=0.0007). IDO-positive cells are located right along the border between the developing tumor and the inflammatory infiltrate. Immunofluorescence stainings showed that CD11c+S100+CD68- dendritic cells (DCs) express IDO in SCC-LL. IDO expression in LL-SCC may aid immune escape and chronic inflammation to promote cancer progression. Inhibition of IDO might be a therapeutic strategy to increase the anti-tumor immune response in SCC-LL.  相似文献   

19.
It is widely believed that generation of mature dendritic cells (DCs) with full T cell stimulatory capacity from human monocytes in vitro requires 5-7 days of differentiation with GM-CSF and IL-4, followed by 2-3 days of activation. Here, we report a new strategy for differentiation and maturation of monocyte-derived DCs within only 48 h of in vitro culture. Monocytes acquire immature DC characteristics by day 2 of culture with GM-CSF and IL-4; they down-regulate CD14, increase dextran uptake, and respond to the inflammatory chemokine macrophage inflammatory protein-1alpha. To accelerate DC development and maturation, monocytes were incubated for 24 h with GM-CSF and IL-4, followed by activation with proinflammatory mediators for another 24 h (FastDC). FastDC expressed mature DC surface markers as well as chemokine receptor 7 and secreted IL-12 (p70) upon CD40 ligation in the presence of IFN-gamma. The increase in intracellular calcium in response to 6Ckine showed that chemokine receptor 7 expression was functional. When FastDC were compared with mature monocyte-derived DCs generated by a standard 7-day protocol, they were equally potent in inducing Ag-specific T cell proliferation and IFN-gamma production as well as in priming autologous naive T cells using tetanus toxoid as a model Ag. These findings indicate that FastDC are as effective as monocyte-derived DCs in stimulating primary, Ag-specific, Th 1-type immune responses. Generation of FastDC not only reduces labor, cost, and time required for in vitro DC development, but may also represent a model more closely resembling DC differentiation from monocytes in vivo.  相似文献   

20.
The dendritic cell (DC) is the most potent APC of the immune system, capable of stimulating naive T cells to proliferate and differentiate into effector T cells. Recombinant adenovirus (Adv) readily transduces DCs in vitro allowing directed delivery of transgenes that modify DC function and immune responses. In this study we demonstrate that footpad injection of a recombinant Adv readily targets transduction of myeloid and lymphoid DCs in the draining popliteal lymph node, but not in other lymphoid organs. Popliteal DCs transduced with an empty recombinant Adv undergo maturation, as determined by high MHC class II and CD86 expression. However, transduction with vectors expressing human IL-10 limit DC maturation and associated T cell activation in the draining lymph node. The extent of IL-10 expression is dose dependent; transduction with low particle numbers (10(5)) yields only local expression, while transduction with higher particle numbers (10(7) and 10(10)) leads additionally to IL-10 appearance in the circulation. Furthermore, local DC expression of human IL-10 following in vivo transduction with low particle numbers (10(5)) significantly improves survival following cecal ligation and puncture, suggesting that compartmental modulation of DC function profoundly alters the sepsis-induced immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号