共查询到20条相似文献,搜索用时 15 毫秒
1.
Antonio Real-Hohn Patricia Zancan Daniel Da Silva Eliane R. Martins Leonardo T. Salgado Claudia S. Mermelstein Andre M.O. Gomes Mauro Sola-Penna 《Biochimie》2010
Glycolytic enzymes reversibly associate with the human erythrocyte membrane (EM) as part of their regulatory mechanism. The site for this association has been described as the amino terminus of band 3, a transmembrane anion transporter. Binding of glycolytic enzymes to this site is recognized to inhibit glycolysis, since binding inhibits the catalytic activity of these enzymes, including the rate-limiting enzyme 6-phosphofructo-1-kinase (PFK). However, the existence of a putative stimulatory site for glycolytic enzymes within the EM has been proposed. PFK has been described as able to reversibly associate with other proteins, such as microtubules, which inhibit the enzyme, and filamentous actin, which activates the enzyme. Here, it is demonstrated that PFK also binds to actin filaments and its associated binding proteins in the protein meshwork that forms the erythrocyte cytoskeleton. Through fluorescence resonance energy transfer experiments using either confocal microscopy or fluorescence spectroscopy, we show that, within the EM, PFK and actin filaments containing its associated binding proteins are located close enough to propose binding between them. Moreover, specifically blocking PFK binding to band 3 results in an association of the enzyme with the EM that increases the enzyme's catalytic activity. Conversely, disruption of the association between PFK and actin filaments containing its associated binding proteins potentiates the inhibitory action of the EM on the enzyme. Furthermore, it is shown that insulin signaling increases the association of PFK to actin filaments and its associated binding proteins, revealing that this event may play a role on the stimulatory effects of insulin on erythrocyte glycolysis. In summary, the present work presents evidence that filamentous actin and its associated binding proteins are the stimulatory site for PFK within the EM. 相似文献
2.
Emerging proteomic evidence suggests that acetylation of metabolic enzymes is a prevalent post-translational modification. In a few recent reports, acetylation down-regulated activity of specific enzymes in fatty acid oxidation, urea cycle, electron transport, and anti-oxidant pathways. Here, we reveal that the glycolytic enzyme phosphoglycerate mutase-1 (PGAM1) is negatively regulated by Sirt1, a member of the NAD(+)-dependent protein deacetylases. Acetylated PGAM1 displays enhanced activity, although Sirt1-mediated deacetylation reduces activity. Acetylation sites mapped to the C-terminal "cap," a region previously known to affect catalytic efficiency. Overexpression of a constitutively active variant (acetylated mimic) of PGAM1 stimulated flux through glycolysis. Under glucose restriction, Sirt1 levels dramatically increased, leading to PGAM1 deacetylation and attenuated activity. Previously, Sirt1 has been implicated in the adaptation from glucose to fat burning. This study (i) demonstrates that protein acetylation can stimulate metabolic enzymes, (ii) provides biochemical evidence that glycolysis is modulated by reversible acetylation, and (iii) demonstrates that PGAM1 deacetylation and activity are directly controlled by Sirt1. 相似文献
3.
Zancan P Almeida FV Faber-Barata J Dellias JM Sola-Penna M 《Archives of biochemistry and biophysics》2007,467(2):275-282
Rabbit muscle 6-phosphofructo-1-kinase (PFK) is the key glycolytic enzyme being regulated by diverse molecules and signals. This enzyme may undergo a reversible dissociation from a fully active homotetramer to a quite inactive dimer. There are evidences that some positive and negative modulators of PFK, such as ADP and citrate, may interfere with the enzyme oligomeric structure shifting the tetramer-dimer equilibrium towards opposite orientations, where the negative modulators favor the dissociation of tetramers into dimers and vice versa. PFK is allosterically inhibited by ATP at its physiological range of concentration, an effect counteracted by fructose-2,6-bisphosphate (F2,6BP). However, the structural molecular mechanism by which ATP and F2,6BP regulate PFK is hitherto demonstrated. The present paper aimed at demonstrating that either the ATP-induced inhibition of PFK and the reversion of this inhibition by F2,6BP occur through the same molecular mechanism, i.e., the displacement of the oligomeric equilibrium of the enzyme. This conclusion is arrived assessing the effects of ATP and F2,6BP on PFK inactivation through two distinct ways to dissociate the enzyme: (a) upon incubation at 50 °C, or (b) incubating the enzyme with guanidinium hydrochloride (GdmCl). Our results reveal that temperature- and GdmCl-induced inactivation of PFK prove remarkably more effective in the presence 5 mM ATP than in the absence of additives. On the other hand, the presence of 100 nM F2,6BP attenuate the effects of both high-temperature exposition and GdmCl on PFK, even in the simultaneous presence of 5 mM ATP. These data support the hypothesis that ATP shifts the oligomeric equilibrium of PFK towards the smaller conformations, while F2,6BP acts in the opposite direction. This conclusion leads to important information about the molecular mechanism by which PFK is regulated by these modulators. 相似文献
4.
Bernard B. Rees Steven C. Hand 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1991,161(3):237-246
Summary Respiration rates, hemolymph acid-base variables, and metabolite levels were measured in the land snail Oreohelix during a brief period of estivation (4 days) and during exposure of non-estivating snails to elevated levels of ambient CO2 (34 and 58 mmHg). Respiration rate dropped during entry into estivation reflecting decreased glycolytic flux. Analyses of metabolite levels in foot muscle and digestive gland tissues demonstrated that glycolytic control during early estivation was primarily vested in pyruvate kinase. Relative to control values, the mass action ratio (MAR) of this reaction decreased by a factor of 4 in the foot muscle and by a factor of 2.7 in the digestive gland, reflecting inhibition of this enzyme in both tissues. No other glycolytic reaction appeared to be inhibited. Exposure of non-estivating snails to artificial hypercapnia resulted in extracellular acid-base conditions similar to those seen during estivation and also promoted a reduction in respiration rate. However, the points of glycolytic control were different: artificial hypercapnia resulted in inhibition of phosphofructokinase in foot muscle and hexokinase in digestive gland. Furthermore, elevated ambient CO2 had no effect on the MAR of the pyruvate kinase reaction in non-estivating snails. These results suggest that the action of extracellular acid-base variables alone cannot fully explain the down-regulation of glycolysis which occurs during estivation in this land snail.Abbreviations
ADP
adenosine 5'-diphosphate
-
AEC
adenylate energy charge
-
AMP
adenosine 5'-monophosphate
-
ANOVA
analysis of variance
-
ATP
adenosine 5'-triphosphate
-
CCO2
total content of carbon dioxide
-
EDTA
ethylenediamine tetraacetic acid (disodium salt)
-
AG
o
change in molar standard Gibbs energy
-
IMP
inosine 5'-monophosphate
-
K
a
activation constant
-
K
eq
equilibrium constant
-
K
m
Michaelis constant
-
MAR
mass action ratio
-
P
probability
-
PCA
perchloric acid
-
PCO2
partial pressure of carbon dioxide
-
pH
i
intracellular pH
-
P
i
inorganic phosphate
-
r
Spearman's coefficient of rank correlation
-
SD
standard deviation 相似文献
5.
6.
Despite the fact that the area of glycolysis in Lactococcus lactis has been intensively studied, only a limited number of studies have been focused on the regulation of uptake of glucose itself. Using the tool of the glucostat fed-batch mode of culture, it was demonstrated in our earlier work that the concentration of glucose regulates its uptake rate and that the control of the glycolytic flux resides to a large extent in processes outside the pathway itself, like glucose transport and the ATP consuming reactions, while allosteric properties of key enzymes like phosphofructokinase (PFK) have a significant influence on the control. Extending our work, we report here the results of fermentations with engineered L. lactis strains with altered PFK activity in which the pfkA gene from Aspergillus niger, and its truncated version pfk13 that encodes a shorter PFK1 fragment were cloned. The results in this study suggest that, under the optimum for the microorganism applied microaerobic conditions, the glycolytic capacity of L. lactis was significantly increased in engineered strains with increased PFK activity. The transformant strain in which the truncated pfk13 gene of A. niger was expressed performed more efficiently as it was able to grow successfully in glucostat cultures with 277 mM glucose - while the optimum glucose concentration for the parental strain was 55 mM. The present work demonstrates the direct effect of PFK activity on the glycolytic flux in L. lactis since a twofold increase in specific PFK activity (from 7.1 to 14.5 U/OD600) resulted in a proportional increase of the maximum specific rates of glucose uptake (from 0.8 to 1.7 μM s−1 g CDW−1) and lactate formation (from 15 to 22.8 g lactate (g CDW)−1 h−1). 相似文献
7.
Gema Alcarraz-Vizán Susana Sánchez-Tena Mary Pat Moyer Marta Cascante 《Biochimica et Biophysica Acta (BBA)/General Subjects》2014
Background
Cancer cells have extremely active metabolism, which supports high proliferation rates. Metabolic profiles of human colon cancer cells have been extensively studied, but comparison with non-tumour counterparts has been neglected.Methods
Here we compared the metabolic flux redistribution in human colon adenocarcinoma cells (HT29) and the human colon healthy cell line NCM460 in order to identify the main pathways involved in metabolic reprogramming. Moreover, we explore if induction of differentiation in HT29 by trichostatin A (TSA) reverts the metabolic reprogramming to that of NCM460. Cells were incubated with [1,2-13C2]-d-glucose as a tracer, and Mass Isotopomer Distribution Analysis was applied to characterize the changes in the metabolic flux distribution profile of the central carbon metabolism.Results
We demonstrate that glycolytic rate and pentose phosphate synthesis are 25% lower in NCM460 with respect to HT29 cells. In contrast, Krebs cycle activity in the former was twice that recorded in the latter. Moreover, we show that TSA-induced HT29 cell differentiation reverts the metabolic phenotype to that of healthy NCM460 cells whereas TSA does not affect the metabolism of NCM460 cells.Conclusions
We conclude that pentose phosphate pathway, glycolysis, and Krebs cycle are key players of colon adenocarcinoma cellular metabolic remodeling and that NCM460 is an appropriate model to evaluate the results of new therapeutic strategies aiming to selectively target metabolic reprogramming.General significance
Our findings suggest that strategies to counteract robust metabolic adaptation in cancer cells might open up new avenues to design multiple hit and targeted therapies. 相似文献8.
9.
Erhard Bieberich Bettina Freischütz Shyh-Shyurng Liour Robert K. Yu 《Journal of neurochemistry》1998,71(3):972-979
Abstract: Cell differentiation is frequently accompanied by alterations in the composition of gangliosides in the plasma membrane resulting from a regulation of the enzyme activities involved. The regulation of CMP-NeuAc:GM1 α2-3-sialyltransferase (ST-IV) and UDP-GalNAc:GM3 N-acetylgalactosaminyltransferase (Gal-NAc-T) by the degree of enzyme phosphorylation was analyzed by determination of the enzyme activity on incubation of NG108-15 cells with various protein phosphatase inhibitors (okadaic acid and orthovanadate) or protein kinase activators (phorbol ester and forskolin). Incubation with okadaic acid, but not with orthovanadate, inhibited the ST-IV activity to 45% of that of control cells with t1/2 = 60 min for the inactivation reaction. This indicates a rapid hyperphosphorylation of ST-IV due to the inhibition of a serine/threonine-specific phosphatase. A similar rate of inactivation was found on stimulation of protein kinase C with phorbol ester. In contrast to ST-IV, the activity of GalNAc-T was increased on stimulation of intracellular phosphorylation systems. The fastest activation of GalNAc-T was achieved with forskolin, yielding up to 160% of the initial activity within 30 min of effector incubation. Up-regulation of GalNAc-T in conjunction with down-regulation of ST-IV by stimulation of phosphorylation is suggested to serve as a physiological mechanism to increase the concentration of GM1, which was found to be elevated in correlation with the cell density. This assumption was corroborated by metabolic labeling studies with radioactive ganglioside precursors indicating an enhancement of the relative amount of a-series gangliosides subsequent to GM3 on phosphorylation stimulation. In particular, the biosynthesis of GM1 was specifically elevated within 2 h of incubation with forskolin. We conclude from the overall data that the ganglioside composition during the cell differentiation of NG108-15 cells can be specifically regulated by both protein kinase A- and protein kinase C-related phosphorylation systems. 相似文献
10.
11.
12.
13.
Vacuolar proton-translocating ATPases (V-ATPases) are responsible for organelle acidification in all eukaryotic cells. The yeast V-ATPase, known to be regulated by reversible disassembly in response to glucose deprivation, was recently reported to be regulated by extracellular pH as well (Padilla-López, S., and Pearce, D. A. (2006) J. Biol. Chem. 281, 10273–10280). Consistent with those results, we find 57% higher V-ATPase activity in vacuoles isolated after cell growth at extracellular pH of 7 than after growth at pH 5 in minimal medium. Remarkably, under these conditions, the V-ATPase also becomes largely insensitive to reversible disassembly, maintaining a low vacuolar pH and high levels of V1 subunit assembly, ATPase activity, and proton pumping during glucose deprivation. Cytosolic pH is constant under these conditions, indicating that the lack of reversible disassembly is not a response to altered cytosolic pH. We propose that when alternative mechanisms of vacuolar acidification are not available, maintaining V-ATPase activity becomes a priority, and the pump is not down-regulated in response to energy limitation. These results also suggest that integrated pH and metabolic inputs determine the final assembly state and activity of the V-ATPase. 相似文献
14.
Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism 总被引:9,自引:0,他引:9
Intercellular communication between oocytes and granulosa cells is essential for normal follicular differentiation and oocyte development. Subtraction hybridization was used to identify genes more highly expressed in cumulus cells than in mural granulosa cells of mouse antral follicles. This screen identified six genes involved in glycolysis: Eno1, Pkm2, Tpi, Aldoa, Ldh1, and Pfkp. When oocytes were microsurgically removed from cumulus cell-oocyte complexes, the isolated cumulus cells exhibited decreased expression levels of genes encoding glycolytic enzymes, glycolysis and activity of the tricarboxylic acid (TCA) cycle. These decreases were prevented by culturing the cumulus cells with paracrine factors secreted by fully grown oocytes. Paracrine factors from fully grown oocytes exhibited greater ability than those from growing oocytes to promote expression of genes encoding glycolytic enzymes and glycolysis in the granulosa cells of preantral follicles. However, neither fully grown nor growing oocytes secreted paracrine factors affecting activity of the TCA cycle. These results indicate that oocytes regulate glycolysis and the TCA cycle in granulosa cells in a manner specific to the population of granulosa cells and to the stage of growth and development of the oocyte. Oocytes control glycolysis in granulosa cells by regulating expression levels of genes encoding glycolytic enzymes. Therefore, mouse oocytes control the intercellular metabolic cooperativity between cumulus cells and oocytes needed for energy production by granulosa cells and required for oocyte and follicular development. 相似文献
15.
Neuronal Ca2+ dyshomeostasis associated with cognitive impairment and mediated by changes in several Ca2+ sources has been seen in animal models of both aging and diabetes. In the periphery, dysregulation of intracellular Ca2+ signals may contribute to the development of insulin resistance. In the brain, while it is well-established that type 2 diabetes mellitus is a risk factor for the development of dementia in the elderly, it is not clear whether Ca2+ dysregulation might also affect insulin sensitivity and glucose utilization. Here we present a combination of imaging techniques testing the disappearance of the fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) as an indication of glycolytic activity in neurons and astrocytes. Our work shows that glucose utilization at rest is greater in neurons compared to astrocytes, and ceases upon activation in neurons with little change in astrocytes. Pretreatment of hippocampal cultures with pioglitazone, a drug used in the treatment of type 2 diabetes, significantly reduced glycolytic activity in neurons and enhanced it in astrocytes. This series of experiments, including Fura-2 and NADH imaging, provides results that are consistent with the idea that Ca2+ levels may rapidly alter glycolytic activity, and that downstream events beyond Ca2+ dysregulation with aging, may alter cellular metabolism in the brain. 相似文献
16.
Charles Ebikeme Jane Hubert Marc Biran Gilles Gouspillou Pauline Morand Nicolas Plazolles Fabien Guegan Philippe Diolez Jean-Michel Franconi Jean-Charles Portais Frédéric Bringaud 《The Journal of biological chemistry》2010,285(42):32312-32324
Trypanosoma brucei is a parasitic protist that undergoes a complex life cycle during transmission from its mammalian host (bloodstream forms) to the midgut of its insect vector (procyclic form). In both parasitic forms, most glycolytic steps take place within specialized peroxisomes, called glycosomes. Here, we studied metabolic adaptations in procyclic trypanosome mutants affected in their maintenance of the glycosomal redox balance. T. brucei can theoretically use three strategies to maintain the glycosomal NAD+/NADH balance as follows: (i) the glycosomal succinic fermentation branch; (ii) the glycerol 3-phosphate (Gly-3-P)/dihydroxyacetone phosphate (DHAP) shuttle that transfers reducing equivalents to the mitochondrion; and (iii) the glycosomal glycerol production pathway. We showed a hierarchy in the use of these glycosomal NADH-consuming pathways by determining metabolic perturbations and adaptations in single and double mutant cell lines using a combination of NMR, ion chromatography-MS/MS, and HPLC approaches. Although functional, the Gly-3-P/DHAP shuttle is primarily used when the preferred succinate fermentation pathway is abolished in the Δpepck knock-out mutant cell line. In the absence of these two pathways (Δpepck/RNAiFAD-GPDH.i mutant), glycerol production is used but with a 16-fold reduced glycolytic flux. In addition, the Δpepck mutant cell line shows a 3.3-fold reduced glycolytic flux compensated by an increase of proline metabolism. The inability of the Δpepck mutant to maintain a high glycolytic flux demonstrates that the Gly-3-P/DHAP shuttle is not adapted to the procyclic trypanosome context. In contrast, this shuttle was shown earlier to be the only way used by the bloodstream forms of T. brucei to sustain their high glycolytic flux. 相似文献
17.
Jie Han Wen Hou Leslie A. Goldstein Donna B. Stolz Simon C. Watkins Hannah Rabinowich 《The Journal of biological chemistry》2014,289(10):6485-6497
Several cross-talk mechanisms between autophagy and apoptosis have been identified, in which certain co-regulators are shared, allowing the same protein to participate in these opposing processes. Our studies suggest that caspase-9 is a novel co-regulator of apoptosis and autophagy and that its caspase catalytic activity is dispensable for its autophagic role. We provide evidence that caspase-9 facilitates the early events leading to autophagosome formation; that it forms a complex with Atg7; that Atg7 is not a direct substrate for caspase-9 proteolytic activity; and that, depending on the cellular context, Atg7 represses the apoptotic capability of caspase-9, whereas the latter enhances the Atg7-mediated formation of light chain 3-II. The repression of caspase-9 apoptotic activity is mediated by its direct interaction with Atg7, and it is not related to the autophagic function of Atg7. We propose that the Atg7·caspase-9 complex performs a dual function of linking caspase-9 to the autophagic process while keeping in check its apoptotic activity. 相似文献
18.
Pediococcus halophilus possesses phosphoenolpyruvate:mannose phosphotransferase system (man:PTS) as a main glucose transporter. A man:PTS defective (man:PTSd) strain X-160 could, however, utilize glucose. A possible glucose-transport mechanism other than PTS was studied with the strain X-160 and its derivative, man:PTSd phosphofructokinase defective (PFK–) strain M-13. Glucose uptake by X-160 at pH 5.5 was inhibited by any of carbonylcyanide m-chlorophenylhydrazone, nigericin, N,N-dicyclohexylcarbodiimide, or iodoacetic acid. The double mutant M-13 could still transport glucose and accumulated intracellularly a large amount of hexose-phosphates (ca. 8 mM glucose 6-phosphate and ca. 2 mM fructose 6-phosphate). Protonophores also inhibited the glucose transport at pH 5.5, as determined by the amounts of accumulated hexose-phosphates (< 4 mM). These showed involvement of proton motive force (P) in the non-PTS glucose transport. It was concluded that the non-PTS glucose transporter operated in concert with hexokinase or glucokinase for the metabolism of glucose in the man:PTSd strain.Abbreviations BM
basal medium
- BM-G
basal medium containing glucose
- CM
complex medium
- man:PTS
phosphoenolpyruvate:mannose phosphotransferase system
- CCCP
carbonylcyanide m-chlorophenylhydrazone
- DCCD
N,N-dicyclohexyl carbodiimide
- P
proton motive force
- pH
transmembrane pH gradient
-
transmembrane electrical potential difference
- MNNG
N-methyl-N-nitro-N-nitrosoguanidine
- PIPES
piperazine-N,N-bis(-ethanesulfonic acid)
- MES
4-morpholineethanesulfonic acid
- G-6-P
glucose 6-phosphate
- F-6-P
fructose 6-phosphate
- FDP
fructose 1,6-bisphosphate
- EMP
Embden-Meyerhof-Parnas pathway
- PFK
phosphofructokinase
- GK
glucokinase
- HK
hexokinase
- IAA
iodoacetic acid
- IIman
enzyme II component of man:PTS 相似文献
19.
对芦竹内生真菌F0238的细胞生长和代谢产曲酸量进行了代谢调控。结果表明,F0238生长及产曲酸的营养和环境条件为:PDA培养基,8%淀粉为碳源,0.2%蛋白胨为N源,发酵温度28℃,初始pH为6.5,发酵时间5d/(120h),装液量80mL/500mL三角瓶。在摇瓶试验的基础上,对该菌发酵过程作了初步放大试验(10L全自动发酵罐),得到F0238发酵过程的动态曲线。动态曲线反映了在一个发酵周期内,发酵液的pH值、DO值及残糖的降低趋势和生物量与抗菌产物量的上升趋势。 相似文献
20.
Zhihong Yang Hiroyuki Tsuchiya Yuxia Zhang M. Elizabeth Hartnett Li Wang 《The Journal of biological chemistry》2013,288(40):28893-28899
We show for the first time that potent microRNA-433 (miR-433) inhibition of expression of the cAMP response element-binding protein CREB1 represses hepatocellular carcinoma (HCC) cell migration. We identified a miR-433 seed match region in human and mouse CREB1 3′-UTRs. Overexpression of miR-433 markedly decreased human CREB1 3′-UTR reporter activity, and the inhibitory effect of miR-433 was alleviated upon mutation of its binding site. Ectopic expression of miR-433 reduced CREB1 protein levels in a variety of human and mouse cancer cells, including HeLa, Hepa1, Huh7, and HepG2. Human CREB1 protein levels in highly invasive MHCC97H cells were diminished by expression of miR-433 but were induced by miR-433 antagomir (anti-miR-433). The expression of mouse CREB1 protein negatively correlated with miR-433 levels in nuclear receptor Shp−/− liver tissues and liver tumors compared with wild-type mice. miR-433 exhibited a significant repression of MHCC97H cell migration, which was reversed by anti-miR-433. Overexpressing miR-433 inhibited focus formation dramatically, demonstrating that miR-433 may exert a tumor suppressor function. Knockdown of CREB1 by siRNAs impeded MHCC97H cell migration and invasion and antagonized the effect of anti-miR-433. Interestingly, CREB1 siRNA decreased MHCC97H cell proliferation, which was not influenced by anti-miR-433. Overexpressing CREB1 decreased the inhibitory activity of miR-433. The CpG islands surrounding miR-433 were hypermethylated, and the DNA methylation agent 5′-aza-2′-deoxycytidine, but not the histone deacetylase inhibitor trichostatin A, drastically stimulated the expression of miR-433 and miR-127 in HCC cells. The latter is clustered with miR-433. The results reveal a critical role of miR-433 in mediating HCC cell migration via CREB1. 相似文献