首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.

Motivation

Ischemic stroke, triggered by an obstruction in the cerebral blood supply, leads to infarction of the affected brain tissue. An accurate and reproducible automatic segmentation is of high interest, since the lesion volume is an important end-point for clinical trials. However, various factors, such as the high variance in lesion shape, location and appearance, render it a difficult task.

Methods

In this article, nine classification methods (e.g. Generalized Linear Models, Random Decision Forests and Convolutional Neural Networks) are evaluated and compared with each other using 37 multiparametric MRI datasets of ischemic stroke patients in the sub-acute phase in terms of their accuracy and reliability for ischemic stroke lesion segmentation. Within this context, a multi-spectral classification approach is compared against mono-spectral classification performance using only FLAIR MRI datasets and two sets of expert segmentations are used for inter-observer agreement evaluation.

Results and Conclusion

The results of this study reveal that high-level machine learning methods lead to significantly better segmentation results compared to the rather simple classification methods, pointing towards a difficult non-linear problem. The overall best segmentation results were achieved by a Random Decision Forest and a Convolutional Neural Networks classification approach, even outperforming all previously published results. However, none of the methods tested in this work are capable of achieving results in the range of the human observer agreement and the automatic ischemic stroke lesion segmentation remains a complicated problem that needs to be explored in more detail to improve the segmentation results.  相似文献   

3.
This work describes a generalized method for classifying motor-related neural signals for a brain-computer interface (BCI), based on a stochastic machine learning method. The method differs from the various feature extraction and selection techniques employed in many other BCI systems. The classifier does not use extensive a-priori information, resulting in reduced reliance on highly specific domain knowledge. Instead of pre-defining features, the time-domain signal is input to a population of multi-layer perceptrons (MLPs) in order to perform a stochastic search for the best structure. The results showed that the average performance of the new algorithm outperformed other published methods using the Berlin BCI IV (2008) competition dataset and was comparable to the best results in the Berlin BCI II (2002–3) competition dataset. The new method was also applied to electroencephalography (EEG) data recorded from five subjects undertaking a hand squeeze task and demonstrated high levels of accuracy with a mean classification accuracy of 78.9% after five-fold cross-validation. Our new approach has been shown to give accurate results across different motor tasks and signal types as well as between subjects.  相似文献   

4.
We propose a feature vector approach to characterize the variation in large data sets of biological sequences. Each candidate sequence produces a single feature vector constructed with the number and location of amino acids or nucleic acids in the sequence. The feature vector characterizes the distance between the actual sequence and a model of a theoretical sequence based on the binomial and uniform distributions. This method is distinctive in that it does not rely on sequence alignment for determining protein relatedness, allowing the user to visualize the relationships within a set of proteins without making a priori assumptions about those proteins. We apply our method to two large families of proteins: protein kinase C, and globins, including hemoglobins and myoglobins. We interpret the high-dimensional feature vectors using principal components analysis and agglomerative hierarchical clustering. We find that the feature vector retains much of the information about the original sequence. By using principal component analysis to extract information from collections of feature vectors, we are able to quickly identify the nature of variation in a collection of proteins. Where collections are phylogenetically or functionally related, this is easily detected. Hierarchical agglomerative clustering provides a means of constructing cladograms from the feature vector output.  相似文献   

5.
6.
7.

Purpose

To compare the reproducibilities of manual and semiautomatic segmentation method for the measurement of normalized cerebral blood volume (nCBV) using dynamic susceptibility contrast-enhanced (DSC) perfusion MR imaging in glioblastomas.

Materials and Methods

Twenty-two patients (11 male, 11 female; 27 tumors) with histologically confirmed glioblastoma (WHO grade IV) were examined with conventional MR imaging and DSC imaging at 3T before surgery or biopsy. Then nCBV (means and standard deviations) in each mass was measured using two DSC MR perfusion analysis methods including manual and semiautomatic segmentation method, in which contrast-enhanced (CE)-T1WI and T2WI were used as structural imaging. Intraobserver and interobserver reproducibility were assessed according to each perfusion analysis method or each structural imaging. Interclass correlation coefficient (ICC), Bland-Altman plot, and coefficient of variation (CV) were used to evaluate reproducibility.

Results

Intraobserver reproducibilities on CE-T1WI and T2WI were ICC of 0.74–0.89 and CV of 20.39–36.83% in manual segmentation method, and ICC of 0.95–0.99 and CV of 8.53–16.19% in semiautomatic segmentation method, repectively. Interobserver reproducibilites on CE-T1WI and T2WI were ICC of 0.86–0.94 and CV of 19.67–35.15% in manual segmentation method, and ICC of 0.74–1.0 and CV of 5.48–49.38% in semiautomatic segmentation method, respectively. Bland-Altman plots showed a good correlation with ICC or CV in each method. The semiautomatic segmentation method showed higher intraobserver and interobserver reproducibilities at CE-T1WI-based study than other methods.

Conclusion

The best reproducibility was found using the semiautomatic segmentation method based on CE-T1WI for structural imaging in the measurement of the nCBV of glioblastomas.  相似文献   

8.
Detailed seabed substrate maps are increasingly in demand for effective planning and management of marine ecosystems and resources. It has become common to use remotely sensed multibeam echosounder data in the form of bathymetry and acoustic backscatter in conjunction with ground-truth sampling data to inform the mapping of seabed substrates. Whilst, until recently, such data sets have typically been classified by expert interpretation, it is now obvious that more objective, faster and repeatable methods of seabed classification are required. This study compares the performances of a range of supervised classification techniques for predicting substrate type from multibeam echosounder data. The study area is located in the North Sea, off the north-east coast of England. A total of 258 ground-truth samples were classified into four substrate classes. Multibeam bathymetry and backscatter data, and a range of secondary features derived from these datasets were used in this study. Six supervised classification techniques were tested: Classification Trees, Support Vector Machines, k-Nearest Neighbour, Neural Networks, Random Forest and Naive Bayes. Each classifier was trained multiple times using different input features, including i) the two primary features of bathymetry and backscatter, ii) a subset of the features chosen by a feature selection process and iii) all of the input features. The predictive performances of the models were validated using a separate test set of ground-truth samples. The statistical significance of model performances relative to a simple baseline model (Nearest Neighbour predictions on bathymetry and backscatter) were tested to assess the benefits of using more sophisticated approaches. The best performing models were tree based methods and Naive Bayes which achieved accuracies of around 0.8 and kappa coefficients of up to 0.5 on the test set. The models that used all input features didn''t generally perform well, highlighting the need for some means of feature selection.  相似文献   

9.
Many of previous neuroimaging studies on neuronal structures in patients with obsessive-compulsive disorder (OCD) used univariate statistical tests on unimodal imaging measurements. Although the univariate methods revealed important aberrance of local morphometry in OCD patients, the covariance structure of the anatomical alterations remains unclear. Motivated by recent developments of multivariate techniques in the neuroimaging field, we applied a fusion method called “mCCA+jICA” on multimodal structural data of T1-weighted magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) of 30 unmedicated patients with OCD and 34 healthy controls. Amongst six highly correlated multimodal networks (p < 0.0001), we found significant alterations of the interrelated gray and white matter networks over occipital and parietal cortices, frontal interhemispheric connections and cerebella (False Discovery Rate q ≤ 0.05). In addition, we found white matter networks around basal ganglia that correlated with a subdimension of OC symptoms, namely ‘harm/checking’ (q ≤ 0.05). The present study not only agrees with the previous unimodal findings of OCD, but also quantifies the association of the altered networks across imaging modalities.  相似文献   

10.
Proteins have many functions and predicting these is still one of the major challenges in theoretical biophysics and bioinformatics. Foremost amongst these functions is the need to fold correctly thereby allowing the other genetically dictated tasks that the protein has to carry out to proceed efficiently. In this work, some earlier algorithms for predicting protein domain folds are revisited and they are compared with more recently developed methods. In dealing with intractable problems such as fold prediction, when different algorithms show convergence onto the same result there is every reason to take all algorithms into account such that a consensus result can be arrived at. In this work it is shown that the application of different algorithms in protein structure prediction leads to results that do not converge as such but rather they collude in a striking and useful way that has never been considered before.  相似文献   

11.
Aiming at iron-related T2-hypointensity, which is related to normal aging and neurodegenerative processes, we here present two practicable approaches, based on Bayesian inference, for preprocessing and statistical analysis of a complex set of structural MRI data. In particular, Markov Chain Monte Carlo methods were used to simulate posterior distributions. First, we rendered a segmentation algorithm that uses outlier detection based on model checking techniques within a Bayesian mixture model. Second, we rendered an analytical tool comprising a Bayesian regression model with smoothness priors (in the form of Gaussian Markov random fields) mitigating the necessity to smooth data prior to statistical analysis. For validation, we used simulated data and MRI data of 27 healthy controls (age: ; range, ). We first observed robust segmentation of both simulated T2-hypointensities and gray-matter regions known to be T2-hypointense. Second, simulated data and images of segmented T2-hypointensity were analyzed. We found not only robust identification of simulated effects but also a biologically plausible age-related increase of T2-hypointensity primarily within the dentate nucleus but also within the globus pallidus, substantia nigra, and red nucleus. Our results indicate that fully Bayesian inference can successfully be applied for preprocessing and statistical analysis of structural MRI data.  相似文献   

12.
Supervised machine learning can be used to predict which drugs human cardiomyocytes have been exposed to. Using electrophysiological data collected from human cardiomyocytes with known exposure to different drugs, a supervised machine learning algorithm can be trained to recognize and classify cells that have been exposed to an unknown drug. Furthermore, the learning algorithm provides information on the relative contribution of each data parameter to the overall classification. Probabilities and confidence in the accuracy of each classification may also be determined by the algorithm. In this study, the electrophysiological effects of β–adrenergic drugs, propranolol and isoproterenol, on cardiomyocytes derived from human induced pluripotent stem cells (hiPS-CM) were assessed. The electrophysiological data were collected using high temporal resolution 2-photon microscopy of voltage sensitive dyes as a reporter of membrane voltage. The results demonstrate the ability of our algorithm to accurately assess, classify, and predict hiPS-CM membrane depolarization following exposure to chronotropic drugs.  相似文献   

13.
Brain tissue changes in autism spectrum disorders seem to be rather subtle and widespread than anatomically distinct. Therefore a multimodal, whole brain imaging technique appears to be an appropriate approach to investigate whether alterations in white and gray matter integrity relate to consistent changes in functional resting state connectivity in individuals with high functioning autism (HFA). We applied diffusion tensor imaging (DTI), voxel-based morphometry (VBM) and resting state functional connectivity magnetic resonance imaging (fcMRI) to assess differences in brain structure and function between 12 individuals with HFA (mean age 35.5, SD 11.4, 9 male) and 12 healthy controls (mean age 33.3, SD 9.0, 8 male). Psychological measures of empathy and emotionality were obtained and correlated with the most significant DTI, VBM and fcMRI findings. We found three regions of convergent structural and functional differences between HFA participants and controls. The right temporo-parietal junction area and the left frontal lobe showed decreased fractional anisotropy (FA) values along with decreased functional connectivity and a trend towards decreased gray matter volume. The bilateral superior temporal gyrus displayed significantly decreased functional connectivity that was accompanied by the strongest trend of gray matter volume decrease in the temporal lobe of HFA individuals. FA decrease in the right temporo-parietal region was correlated with psychological measurements of decreased emotionality. In conclusion, our results indicate common sites of structural and functional alterations in higher order association cortex areas and may therefore provide multimodal imaging support to the long-standing hypothesis of autism as a disorder of impaired higher-order multisensory integration.  相似文献   

14.
Micrograph comparison remains useful in bioscience. This technology provides researchers with a quick snapshot of experimental conditions. But sometimes a two- condition comparison relies on researchers’ eyes to draw conclusions. Our Bioimage Analysis, Statistic, and Comparison (BASIN) software provides an objective and reproducible comparison leveraging inferential statistics to bridge image data with other modalities. Users have access to machine learning-based object segmentation. BASIN provides several data points such as images’ object counts, intensities, and areas. Hypothesis testing may also be performed. To improve BASIN’s accessibility, we implemented it using R Shiny and provided both an online and offline version. We used BASIN to process 498 image pairs involving five bioscience topics. Our framework supported either direct claims or extrapolations 57% of the time. Analysis results were manually curated to determine BASIN’s accuracy which was shown to be 78%. Additionally, each BASIN version’s initial release shows an average 82% FAIR compliance score.  相似文献   

15.
This paper presents a novel feature vector based on physicochemical property of amino acids for prediction protein structural classes. The proposed method is divided into three different stages. First, a discrete time series representation to protein sequences using physicochemical scale is provided. Later on, a wavelet-based time-series technique is proposed for extracting features from mapped amino acid sequence and a fixed length feature vector for classification is constructed. The proposed feature space summarizes the variance information of ten different biological properties of amino acids. Finally, an optimized support vector machine model is constructed for prediction of each protein structural class. The proposed approach is evaluated using leave-one-out cross-validation tests on two standard datasets. Comparison of our result with existing approaches shows that overall accuracy achieved by our approach is better than exiting methods.  相似文献   

16.
Based on three measures of evaluation, it was concluded that with respect to pseudomonads the learning machine was superior to experienced microbiologists in predicting the presence or absence of the following four features; the production of phenazine compounds, the utilizations of d-sorbitol, of n-hexadecane, and of histamine.  相似文献   

17.
An algorithm is proposed for the computation of the Mann-Whitney Test which only requires the separate ordering of the individual samples and is therefore more suitable than the usual one. It is also more suitable as to computation time than the algorithm described by KUMMER , 1981, if the two sample sizes are of the same magnitude.  相似文献   

18.
MRI connectomics methods treat the brain as a network and provide new information about its organization, efficiency, and mechanisms of disruption. The most commonly used method of defining network nodes is to register the brain to a standardized anatomical atlas based on the Brodmann areas. This approach is limited by inter-subject variability and can be especially problematic in the context of brain maturation or neuroplasticity (cerebral reorganization after brain damage). In this study, we combined different image processing and network theory methods and created a novel approach that enables atlas-free construction and connection-wise comparison of diffusion MRI-based brain networks. We illustrated the proposed approach in three age groups: neonates, 6-month-old infants, and adults. First, we explored a data-driven method of determining the optimal number of equal-area nodes based on the assumption that all cortical areas of the brain are connected and, thus, no part of the brain is structurally isolated. Second, to enable a connection-wise comparison, alignment to a “reference brain” was performed in the network domain within each group using a matrix alignment algorithm with simulated annealing. The correlation coefficients after pair-wise network alignment ranged from 0.6102 to 0.6673. To test the method’s reproducibility, one subject from the 6-month-old group and one from the adult group were scanned twice, resulting in correlation coefficients of 0.7443 and 0.7037, respectively. While being less than 1 due to parcellation and noise, statistically, these values were significantly higher than inter-subject values. Rotation of the parcellation largely explained the variability. Through the abstraction from anatomy, the developed framework allows for a fully network-driven analysis of structural MRI connectomes and can be applied to subjects at any stage of development and with substantial differences in cortical anatomy.  相似文献   

19.

Introduction

Preclinical in vivo imaging requires precise and reproducible delineation of brain structures. Manual segmentation is time consuming and operator dependent. Automated segmentation as usually performed via single atlas registration fails to account for anatomo-physiological variability. We present, evaluate, and make available a multi-atlas approach for automatically segmenting rat brain MRI and extracting PET activies.

Methods

High-resolution 7T 2DT2 MR images of 12 Sprague-Dawley rat brains were manually segmented into 27-VOI label volumes using detailed protocols. Automated methods were developed with 7/12 atlas datasets, i.e. the MRIs and their associated label volumes. MRIs were registered to a common space, where an MRI template and a maximum probability atlas were created. Three automated methods were tested: 1/registering individual MRIs to the template, and using a single atlas (SA), 2/using the maximum probability atlas (MP), and 3/registering the MRIs from the multi-atlas dataset to an individual MRI, propagating the label volumes and fusing them in individual MRI space (propagation & fusion, PF). Evaluation was performed on the five remaining rats which additionally underwent [18F]FDG PET. Automated and manual segmentations were compared for morphometric performance (assessed by comparing volume bias and Dice overlap index) and functional performance (evaluated by comparing extracted PET measures).

Results

Only the SA method showed volume bias. Dice indices were significantly different between methods (PF>MP>SA). PET regional measures were more accurate with multi-atlas methods than with SA method.

Conclusions

Multi-atlas methods outperform SA for automated anatomical brain segmentation and PET measure’s extraction. They perform comparably to manual segmentation for FDG-PET quantification. Multi-atlas methods are suitable for rapid reproducible VOI analyses.  相似文献   

20.
Study of emotions in human–computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号