首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SSeCKS/Gravin/AKAP12 (“SSeCKS”) encodes a cytoskeletal protein that regulates G1 → S progression by scaffolding cyclins, protein kinase C (PKC) and PKA. SSeCKS is down-regulated in many tumor types including prostate, and when re-expressed in MAT-LyLu (MLL) prostate cancer cells, SSeCKS selectively inhibits metastasis by suppressing neovascularization at distal sites, correlating with its ability to down-regulate proangiogenic genes including Vegfa. However, the forced re-expression of VEGF only rescues partial lung metastasis formation. Here, we show that SSeCKS potently inhibits chemotaxis and Matrigel invasion, motility parameters contributing to metastasis formation. SSeCKS suppressed serum-induced activation of the Raf/MEK/ERK pathway, resulting in down-regulation of matrix metalloproteinase-2 expression. In contrast, SSeCKS had no effect on serum-induced phosphorylation of the Src substrate, Shc, in agreement with our previous data that SSeCKS does not inhibit Src kinase activity in cells. Invasiveness and chemotaxis could be restored by the forced expression of constitutively active MEK1, MEK2, ERK1, or PKCα. SSeCKS suppressed phorbol ester-induced ERK1/2 activity only if it encoded its PKC binding domain (amino acids 553–900), suggesting that SSeCKS attenuates ERK activation through a direct scaffolding of conventional and/or novel PKC isozymes. Finally, control of MLL invasiveness by SSeCKS is influenced by the actin cytoskeleton: the ability of SSeCKS to inhibit podosome formation is unaffected by cytochalasin D or jasplakinolide, whereas its ability to inhibit MEK1/2 and ERK1/2 activation is nullified by jasplakinolide. Our findings suggest that SSeCKS suppresses metastatic motility by disengaging activated Src and then inhibiting the PKC-Raf/MEK/ERK pathways controlling matrix metalloproteinase-2 expression and podosome formation.  相似文献   

2.
Human galectins have functionally divergent roles, although most of the members of the galectin family bind weakly to the simple disaccharide lactose (Galbeta1-4Glc). To assess the specificity of galectin-glycan interactions in more detail, we explored the binding of several important galectins (Gal-1, Gal-2, and Gal-3) using a dose-response approach toward a glycan microarray containing hundreds of structurally diverse glycans, and we compared these results to binding determinants on cells. All three galectins exhibited differences in glycan binding characteristics. On both the microarray and on cells, Gal-2 and Gal-3 exhibited higher binding than Gal-1 to fucose-containing A and B blood group antigens. Gal-2 exhibited significantly reduced binding to all sialylated glycans, whereas Gal-1 bound alpha2-3- but not alpha2-6-sialylated glycans, and Gal-3 bound to some glycans terminating in either alpha2-3- or alpha2-6-sialic acid. The effects of sialylation on Gal-1, Gal-2, and Gal-3 binding to cells also reflected differences in cellular sensitivity to Gal-1-, Gal-2-, and Gal-3-induced phosphatidylserine exposure. Each galectin exhibited higher binding for glycans with poly-N-acetyllactosamine (poly(LacNAc)) sequences (Galbeta1-4GlcNAc)(n) when compared with N-acetyllactosamine (LacNAc) glycans (Galbeta1-4GlcNAc). However, only Gal-3 bound internal LacNAc within poly(LacNAc). These results demonstrate that each of these galectins mechanistically differ in their binding to glycans on the microarrays and that these differences are reflected in the determinants required for cell binding and signaling. The specific glycan recognition by each galectin underscores the basis for differences in their biological activities.  相似文献   

3.
Monocytes and macrophages link the innate and adaptive immune systems and protect the host from the outside world. In inflammatory disorders their activation leads to tissue damage. Galectins have emerged as central regulators of the immune system. However, if they regulate monocyte/macrophage physiology is still unknown.Binding of Gal-1, Gal-2, Gal-3 and Gal-4 to monocytes/macrophages, activation, cytokine secretion and apoptosis were determined by FACS, migration by Transwell system and phagocytosis by phagotest. Supernatants from macrophages co-cultured with galectins revealed their influence on T-cell function.In our study Gal-1, Gal-2, Gal-4, and partly Gal-3 bound to monocytes/macrophages. Galectins prevented Salmonella-induced MHCII upregulation. Cytokine release was distinctly induced by different galectins. T-cell activation was significantly restricted by supernatants of macrophages co-cultured in the presence of Gal-2 or Gal-4. Furthermore, all galectins tested significantly inhibited monocyte migration. Finally, we showed for the first time that galectins induce potently monocyte, but not macrophage apoptosis.Our study provides evidence that galectins distinctively modulate central monocyte/macrophage function. By inhibiting T-cell function via macrophage priming, we show that galectins link the innate and adaptive immune systems and provide new insights into the action of sugar-binding proteins.  相似文献   

4.
Human galectins have distinct and overlapping biological roles in immunological homeostasis. However, the underlying differences among galectins in glycan binding specificity regulating these functions are unclear. Galectin-8 (Gal-8), a tandem repeat galectin, has two distinct carbohydrate recognition domains (CRDs) that may cross-link cell surface counter receptors. Here we report that each Gal-8 CRD has differential glycan binding specificity and that cell signaling activity resides in the C-terminal CRD. Full-length Gal-8 and recombinant individual domains (Gal-8N and Gal-8C) bound to human HL60 cells, but only full-length Gal-8 signaled phosphatidylserine (PS) exposure in cells, which occurred independently of apoptosis. Although desialylation of cells did not alter Gal-8 binding, it enhanced cellular sensitivity to Gal-8-induced PS exposure. By contrast, HL60 cell desialylation increased binding by Gal-8C but reduced Gal-8N binding. Enzymatic reduction in surface poly-N-acetyllactosamine (polyLacNAc) glycans in HL60 cells reduced cell surface binding by Gal-8C but did not alter Gal-8N binding. Cross-linking and light scattering studies showed that Gal-8 is dimeric, and studies on individual subunits indicate that dimerization occurs through the Gal-8N domain. Mutations of individual domains within full-length Gal-8 showed that signaling activity toward HL60 cells resides in the C-terminal domain. In glycan microarray analyses, each CRD of Gal-8 showed different binding, with Gal-8N recognizing sulfated and sialylated glycans and Gal-8C recognizing blood group antigens and polyLacNAc glycans. These results demonstrate that Gal-8 dimerization promotes functional bivalency of each CRD, which allows Gal-8 to signal PS exposure in leukocytes entirely through C-terminal domain recognition of polyLacNAc glycans.  相似文献   

5.
BackgroundGalectins are multifunctional effectors, which all share absence of a signal sequence. It is not clear why galectins belong to the small set of proteins, which avoid the classical export route.MethodsProducts of recombinant galectin expression in P. pastoris were analyzed by haemagglutination, gel filtration and electrophoresis and lectin blotting as well as mass spectrometry on the level of tryptic peptides and purified glycopeptides(s). Density gradient centrifugation and confocal laser scanning microscopy facilitated localization in transfected human and rat cells, proliferation assays determined activity as growth mediator.ResultsDirecting galectin-1 to the classical secretory pathway in yeast produces N-glycosylated protein that is active. It cofractionates and -localizes with calnexin in human cells, only Gal-4 is secreted. Presence of N-glycan(s) reduces affinity of cell binding and growth regulation by Gal-1.ConclusionsFolding and activity of a galectin are maintained in signal-peptide-directed routing, N-glycosylation occurs. This pathway would deplete cytoplasm and nucleus of galectin, presence of N-glycans appears to interfere with lattice formation.General significanceAvailability of glycosylated galectins facilitates functional assays to contribute to explain why galectins invariably avoid classical routing for export.  相似文献   

6.
To examine whether the lack of sufficient neoangiogenesis in systemic sclerosis (SSc) is caused by a decrease in angiogenic factors and/or an increase in angiostatic factors, the potent proangiogenic molecules vascular endothelial growth factor (VEGF) and basic fibroblast growth factor, and the angiostatic factor endostatin were determined in patients with SSc and in healthy controls. Forty-three patients with established SSc and nine patients with pre-SSc were included in the study. Serum levels of VEGF, basic fibroblast growth factor and endostatin were measured by ELISA. Age-matched and sex-matched healthy volunteers were used as controls. Highly significant differences were found in serum levels of VEGF between SSc patients and healthy controls, whereas no differences could be detected for endostatin and basic fibroblast growth factor. Significantly higher levels of VEGF were detected in patients with Scl-70 autoantibodies and in patients with diffuse SSc. Patients with pre-SSc and short disease duration showed significant higher levels of VEGF than healthy controls, indicating that elevated serum levels of VEGF are a feature of the earliest disease stages. Patients without fingertip ulcers were found to have higher levels of VEGF than patients with fingertip ulcers. Levels of endostatin were associated with the presence of giant capillaries in nailfold capillaroscopy, but not with any other clinical parameter. The results show that the concentration of VEGF is already increased in the serum of SSc patients at the earliest stages of the disease. VEGF appears to be protective against ischemic manifestations when concentrations of VEGF exceed a certain threshold level.  相似文献   

7.
Essential factors associated with hepatic angiogenesis   总被引:3,自引:0,他引:3  
Das SK  Vasudevan DM 《Life sciences》2007,81(23-24):1555-1564
  相似文献   

8.
There is much evidence that rheumatoid arthritis is closely linked to angiogenesis. Important angiogenic mediators have been demonstrated in synovium and tenosynovium of rheumatoid joints. VEGF (Vascular Endothelial Growth Factor), expressed in response to soluble mediators such as cytokines and growth factors and its receptors are the best characterized system in the angiogenesis regulation of rheumatoid joints. Moreover, other angiogenic mediators such as platelet-derived growth factor (PDGF), fibroblast growth factor-2 (FGF-2), epidermal growth factor (EGF), insulin-like growth factor (IGF), hepatocyte growth factor (HGF), transforming growth factor beta (TGF-beta), tumor necrosis factor alpha (TNF-alpha), interleukin-1 (IL-1), IL-6, IL-8, IL-13, IL-15, IL-18, angiogenin, platelet activating factor (PAF), angiopoietin, soluble adhesion molecules, endothelial mediator (endoglin) play an important role in angiogenesis in rheumatoid arthritis. On the other hand, endostatin, thrombospondin-1 and -2 are angiogenic inhibitors in rheumatoid arthritis. The persistence of inflammation in rheumatoid joints is a consequence of an imbalance between these inducers and inhibitors of angiogenesis.  相似文献   

9.
Wang J  Wang J  Sun Y  Song W  Nor JE  Wang CY  Taichman RS 《Cellular signalling》2005,17(12):1578-1592
The establishment of metastatic bone lesions in prostate cancer (CaP) is a process partially dependent on angiogenesis. Previously we demonstrated that the stromal-derived factor-1 (SDF-1 or CXCL12)/CXCR4 chemokine axis is critical for CaP cell metastasis. In this investigation, cell lines were established in which CXCR4 expression was knocked down using siRNA technology. When CaP cells were co-transplanted with human vascular endothelial cells into SCID mice, significantly fewer human blood vessels were observed paralleling the reductions in CXCR4 levels. Likewise, the invasive behaviors of the CaP cells were inhibited in vitro. From these functional observations we explored angiogenic and signaling mechanisms generated following SDF-1 binding to CXCR4. Differential activation of the MEK/ERK and PI3K/AKT pathways that result in differential secretion IL-6, IL-8, TIMP-2 and VEGF were seen contingent on the cell type examined; VEGF and TIMP-2 expression in PC3 cells are dependent on AKT activation and ERK activation in LNCaP and LNCaP C4-2B cells leads to IL-6 or IL-8 secretion. At the same time, expression of angiostatin levels were inversely related to CXCR4 levels, and inhibited by SDF-1 stimulation. These data link the SDF-1/CXCR4 pathway to changes in angiogenic cytokines by different signaling mechanisms and, suggest that the delicate equilibrium between proangiogenic and antiangiogenic factors may be achieved by different signal transduction pathways to regulate the angiogenic phenotype of prostate cancers. Taken together, our results provide new information regarding expression of functional CXCR4 receptor-an essential role and potential mechanism of angiogenesis upon SDF-1 stimulation.  相似文献   

10.
11.
12.
Vascular endothelial growth factor (VEGF) has angiogenic, inflammatory, and bone-destructive roles in rheumatoid arthritis (RA). We aimed to determine the unique role of VEGF in osteoclastogenesis in RA. VEGF-induced receptor activator of nuclear factor ҡB ligand (RANKL) expression was determined in RA synovial fibroblasts by real-time PCR, luciferase assays, and ELISA. Osteoclastogenesis in peripheral blood monocytes cultured with VEGF was assessed by determining the numbers of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. Synovial fluid RANKL was correlated with VEGF concentration in the RA patients. VEGF stimulated the expression of RANKL in RA synovial fibroblasts. The RANKL promoter activity was upregulated by VEGF in the synovial fibroblasts transfected with RANKL-reporter plasmids. The VEGF-induced RANKL expression was decreased by the inhibition of both VEGF receptors (VEGFR) 1 and 2, Src, protein kinase C (PKC) and p38 MAPK. VEGF induced osteoclast differentiation from monocytes in the absence of RANKL and this was decreased by the inhibition of VEGFR1 and 2, Src, PKC and p38 MAPK. On coculturing with VEGF-prestimulated RA synovial fibroblasts, the monocytes differentiated into osteoclasts, and the osteoclastogenesis decreased by inhibition of Src and PKC pathways. VEGF plays dual roles on osteoclastogenesis in RA: direct induction of osteoclastogenesis from the precursors and stimulation of RANKL production in synovial fibroblasts, which is mediated by Src and PKC pathways. The axis of VEGF and RANKL could be a potential therapeutic target for RA-associated bone destruction.  相似文献   

13.
We previously reported that galectin-9 (Gal-9), an immunomodulatory animal lectin, could bind to insoluble collagen preparations and exerted direct cytocidal effects on immune cells. In the present study, we found that mature insoluble elastin is capable of binding Gal-9 and other members of the human galectin family. Lectin blot analysis of a series of commercial water-soluble elastin preparations, PES-(A) ~ PES-(E), revealed that only PES-(E) contained substances recognized by Gal-9. Gal-9-interacting substances in PES-(E) were affinity-purified, digested with trypsin and then analyzed by reversed-phase HPLC. Peptide fragments derived from five members of the small leucine-rich repeat proteoglycan family, versican, lumican, osteoglycin/mimecan, prolargin, and fibromodulin, were identified by N-terminal amino acid sequence analysis. The results indicate that Gal-9 and possibly other galectins recognize glycans attached to small leucine-rich repeat proteoglycans associated with insoluble elastin and also indicate the possibility that mature insoluble elastin serves as an extracellular reservoir for galectins.  相似文献   

14.
The role of adenosine in the regulation of cardiovascular function has long been acknowledged, but only recently has its importance in angiogenesis been appreciated, most notably, through its direct regulation of the proangiogenic growth factor, VEGF. Recent work has established that proangiogenic and antiangiogenic factors, specifically VEGF and and the soluble VEGF receptor fms-like tyrosine kinase-1 (sFlt-1), are directly influenced by hypoxia in placental ischemia. While adenosine has been reported to be an important regulator of VEGF in vascular tissue, the importance of adenosine in regulating VEGF and sFlt-1 in placental tissue is unclear. Here, we have investigated the role of adenosine in the secretion of VEGF and the antiangiogenic protein sFlt-1 in placental villous explants. Under normoxic conditions (6% oxygen), the nonspecific adenosine receptor antagonist, 8-sulphophenyltheophylline (8-SPT) had no effect on either VEGF (P = 0.38) or sFlt-1 (P = 0.56) secretion. However, under hypoxic conditions (1% oxygen), 8-SPT attenuated the increase in the secretion of both VEGF and sFlt-1 (P < 0.05 and P < 0.005, respectively). Exogenous and the adenosine transporter inhibitor dipyridamole (which increases extracellular levels of adenosine) showed differential effects under normoxic conditions: sFlt-1 levels in media increased significantly (P < 0.05), whereas VEGF was unaffected (P = 0.67 and P = 0.19, respectively). These data indicate that extracellular adenosine can regulate VEGF and sFlt-1 secretion in the hypoxic placenta and could, therefore, control the balance of these competing angiogenic factors in diseases characterized by placental ischemia.  相似文献   

15.
Corneal neovascularization represents a key step in the blinding inflammatory stromal keratitis (SK) lesion caused by ocular infection with herpes simplex virus (HSV). In this report, we describe a novel approach for limiting the angiogenesis caused by HSV infection of the mouse eye. We show that topical or systemic administration of the Src kinase inhibitor (TG100572) that inhibits downstream molecules involved in the vascular endothelial growth factor (VEGF) signaling pathway resulted in markedly diminished levels of HSV-induced angiogenesis and significantly reduced the severity of SK lesions. Multiple mechanisms were involved in the inhibitory effects. These included blockade of IL-8/CXCL1 involved in inflammatory cells recruitment that are a source of VEGF, diminished cellular infiltration in the cornea, and reduced proliferation and migration of CD4(+) T cells into the corneas. As multiple angiogenic factors (VEGF and basic fibroblast growth factor [bFGF]) play a role in promoting angiogenesis during SK and since Src kinases are involved in signaling by many of them, the use of Src kinase inhibition represents a promising way of limiting the severity of SK lesions the most common cause of infectious blindness in the Western world.  相似文献   

16.
17.
Cytotoxic CD8+ T cells are major players of anti-tumor immune responses, as their functional activity can limit tumor growth and progression. Data show that cytotoxic T cells efficiently control the proliferation of tumor cells through major histocompatibility complex class I-mediated mechanisms; nevertheless, the presence of tumor-infiltrating CD8+ T cells in lesional tissue does not always correlate with better prognosis and increased survival of cancer patients. Similarly, adoptive transfer of tumor-specific cytotoxic T cells has only shown marginal improvement in life spans of patients with metastatic disease. In this report, we discuss experimental evidence showing that expression of tumor-derived galectins, galectin (Gal)-1, Gal-3 and Gal-9, and concomitant presence of their ligands on the surface of anti-tumor immunocytes directly compromise anti-tumor CD8+ T cell immune responses and, perhaps, undermine the promise of adoptive CD8+ T cell immunotherapy. Furthermore, we describe novel strategies designed to counteract Gal-1-, Gal-3- and Gal-9-mediated effects and highlight their targeting potential for creating more effective anti-tumor immune responses. We believe that Gal and their ligands represent an efficacious targeted molecular paradigm that warrants clinical evaluation.  相似文献   

18.
Lee JS  Kim IS  Ryu JS  Yun CY 《Cytokine》2008,42(3):365-371
The house dust mite (Dermatophagoides pteronissinus) plays an important role in the pathogenesis of allergic diseases, including atopic dermatitis, and asthma. Monocyte chemotactic protein 1 (MCP-1/CCL2)/IL-6/IL-8 (CXCL8) plays a pivotal role in mediating the infiltration of various cells into the skin of atopic dermatitis and psoriasis. The aim of this study was to investigate the effect of D. pteronissinus extract (DpE) on expression of MCP-1/IL-6/IL-8 mRNA and protein and the signal transduction in the human monocytic cell line, THP-1. The mRNA and protein expression of MCP-1/CCL2, IL-6, and IL-8 were elevated by DpE in a time and dose-dependent manner in THP-1 cells. The increased expression of MCP-1, IL-6, and IL-8 was not affected by aprotinin (serine protease inhibitor) or E64 (cysteine protease inhibitor). We found that MCP-1 and IL-6 expression due to DpE was related to Src, protein kinase C δ (PKC δ), extracellular-signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) and IL-8 expression was involved in Src family tyrosine kinase, PKC δ, ERK. DpE increased the phosphorylation of ERK and p38 MAPK after 5 min and peaked at 30 min. The activation was significantly blocked by PP2, an inhibitor of Src family tyrosine kinase and rottlerin, an inhibitor of PKC δ (p < 0.01). DpE increases MCP-1, IL-6, and IL-8 expression and transduces its signal via Src family tyrosine kinase, PKC, and ERK in a protease-independent manner. This finding may contribute to the elucidation of the pathogenic mechanism triggered by DpE .  相似文献   

19.
VEGF is a key angiogenic cytokine and a major target in anti-angiogenic therapeutic strategies. In endothelial cells (ECs), VEGF binds VEGF receptors and activates ERK1/2 through the phospholipase γ (PLCγ)-PKCα-B-Raf pathway. Our previous work suggested that influx of extracellular Ca(2+) is required for VEGF-induced ERK1/2 activation, and we hypothesized that this could occur through reverse mode (Ca(2+) in and Na(+) out) Na(+)-Ca(2+) exchange (NCX). However, the role of NCX activity in VEGF signaling and angiogenic functions of ECs had not previously been described. Here, using human umbilical vein ECs (HUVECs), we report that extracellular Ca(2+) is required for VEGF-induced ERK1/2 activation and that release of Ca(2+) from intracellular stores alone, in the absence of extracellular Ca(2+), is not sufficient to activate ERK1/2. Furthermore, inhibitors of reverse mode NCX suppressed the VEGF-induced activation of ERK1/2 in a time- and dose-dependent manner and attenuated VEGF-induced Ca(2+) transients. Knockdown of NCX1 (the main NCX isoform in HUVECs) by siRNA confirmed the pharmacological data. A panel of NCX inhibitors also significantly reduced VEGF-induced B-Raf activity and inhibited PKCα translocation to the plasma membrane and total PKC activity in situ. Finally, NCX inhibitors reduced VEGF-induced HUVEC proliferation, migration, and tubular differentiation in surrogate angiogenesis functional assays in vitro. We propose that Ca(2+) influx through reverse mode NCX is required for the activation and the targeting of PKCα to the plasma membrane, an essential step for VEGF-induced ERK1/2 phosphorylation and downstream EC functions in angiogenesis.  相似文献   

20.
Bian CF  Zhang Y  Sun H  Li DF  Wang DC 《PloS one》2011,6(9):e25007
The Thomsen-Friedenreich (TF or T) antigen, Galβ1-3GalNAcα1-O-Ser/Thr, is the core 1 structure of O-linked mucin type glycans appearing in tumor-associated glycosylation. The TF antigen occurs in about 90% of human cancer cells and is a potential ligand for the human endogenous galectins. It has been reported that human galectin-1 (Gal-1) and galectin-3 (Gal-3) can perform their cancer-related functions via specifically recognizing TF antigen. However, the detailed binding properties have not been clarified and structurally characterized. In this work, first we identified the distinct TF-binding abilities of Gal-1 and Gal-3. The affinity to TF antigen for Gal-3 is two orders of magnitude higher than that for Gal-1. The structures of Gal-3 carbohydrate recognition domain (CRD) complexed with TF antigen and derivatives, TFN and GM1, were then determined. These structures show a unique Glu-water-Arg-water motif-based mode as previously observed in the mushroom galectin AAL. The observation demonstrates that this recognition mode is commonly adopted by TF-binding galectins, either as endogenous or exogenous ones. The detailed structural comparisons between Gal-1 and Gal-3 CRD and mutagenesis experiments reveal that a pentad residue motif ((51)AHGDA(55)) at the loop (g1-L4) connecting β-strands 4 and 5 of Gal-1 produces a serious steric hindrance for TF binding. This motif is the main structural basis for Gal-1 with the low affinity to TF antigen. These findings provide the intrinsic structural elements for regulating the TF-binding activity of Gal-1 in some special conditions and also show certain target and approach for mediating some tumor-related bioactivities of human galectins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号