首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rising global demand for animal products and the growing public concerns about the environment and animal welfare require dairy farms to improve their efficiency and apply more sustainable farming systems. Precision Livestock Farming (PLF) could represent a valuable support in addressing these challenges. In recent years, dairy farms have been modernising and introducing new sensors and automatic systems for managing the herd. However, the diffusion of new technologies in Italian dairy farms is still limited and farmers are reluctant to invest in precision systems. The aim of the study was to investigate the presence of PLF tools in Italian dairy farms, the motivations, benefits and limits of technological investments from the farmers’ point of view and the factors affecting the diffusion of technology. From November 2020 to June 2021, an online questionnaire was distributed and 52 responses were obtained. About 79% of the farms were located in Lombardy. The more represented milking system was the conventional milking parlour (73%), followed by automatic milking (19%). The average age of respondents was quite low: 35% of them was less than 40 years old and more than 50% was between 40 and 60. Statistical analyses were performed to evaluate the effects of different factors on the presence of technology at farm. The age of the farmer, the milk production level and the presence of an automatic milking system influenced the technological level of the farm. Precision systems that provide information on animal activity for the management of reproduction and on milk yield and flow are the most popular and are considered among the most useful. Management of reproduction and milk production are the areas where farmers appear to show interest for future investments as well. Younger farmers appear to have implemented more PLF systems than older ones, and they show a propensity to invest in latest generation precision tools. Farmers seem to have a growing interest in PLF, but some limits have been identified: the investment costs, followed by the lack of time to check information from sensor systems and the difficulty in data interpretation. As PLF technologies can play an important role in the development of sustainable, animal-friendly and efficient livestock production, further improvements and efforts are necessary to increase the propensity to PLF of dairy farmers. Results can be useful in the Italian context but also in other countries where dairy farming is rapidly intensifying but PLF is encountering resistance.  相似文献   

2.
Precision Livestock Farming (PLF) encompasses the combined application of single technologies or multiple tools in integrated systems for real-time and individual monitoring of livestock. In grazing systems, some PLF applications could substantially improve farmers’ control of livestock by overcoming issues related to pasture utilisation and management, and animal monitoring and control. A focused literature review was carried out to identify technologies already applied or at an advanced stage of development for livestock management in pastures, specifically cattle, sheep, goats, pigs, poultry. Applications of PLF in pasture-based systems were examined for cattle, sheep, goats, pigs, and poultry. The earliest technology applied to livestock was the radio frequency identification tag, allowing the identification of individuals, but also for retrieving important information such as maternal pedigree. Walk-over-weigh platforms were used to record individual and flock weights. Coupled with automatic drafting systems, they were tested to divide the animals according to their needs. Few studies have dealt with remote body temperature assessment, although the use of thermography is spreading to monitor both intensively reared and wild animals. Global positioning system and accelerometers are among the most applied technologies, with several solutions available on the market. These tools are used for several purposes, such as animal location, theft prevention, assessment of activity budget, behaviour, and feed intake of grazing animals, as well as for reproduction monitoring (i.e., oestrus, calving, or lambing). Remote sensing by satellite images or unmanned aerial vehicles (UAVs) seems promising for biomass assessment and herd management based on pasture availability, and some attempts to use UAVs to monitor, track, or even muster animals have been reported recently. Virtual fencing is among the upcoming technologies aimed at grazing management. This system allows the management of animals at pasture without physical fences but relies on associative learning between audio cues and an electric shock delivered if the animal does not change direction after the acoustic warning. Regardless of the different technologies applied, some common constraints have been reported on the application of PLF in grazing systems, especially when compared with indoor or confined livestock systems. Battery lifespan, transmission range, service coverage, storage capacity, and economic affordability were the main factors. However, even if the awareness of the existence and the potential of these upcoming tools are still limited, farmers’ and researchers’ demands are increasing, and positive outcomes in terms of rangeland conservation, animal welfare, and labour optimisation are expected from the spread of PLF in grazing systems.  相似文献   

3.
Over the past 50 years, the scale and intensity of livestock farming have increased significantly. At the same time, Western societies have become more urbanised and fewer people have close relatives involved in farming. As a result, most citizens have little knowledge or direct experience of what farming entails. In addition, more people are expressing concerns over issues such as farm animal welfare. This has led to increasing public demand for more sustainable ways of livestock farming. To date, little research has been carried out on the social pillar of sustainable livestock farming. The aim of this study is to provide insights into the sociocultural sustainability of livestock farming systems. This study reviews the key findings of earlier published interdisciplinary research about the social perceptions of dairy farming in the Netherlands and Norway (Boogaard et al., 2006, 2008, 2010a and 2010b) and synthesises the implications for sociocultural sustainability of livestock farming. This study argues that the (sociocultural) sustainable development of livestock farming is not an objective concept, but that it is socially and culturally constructed by people in specific contexts. It explains the social pillar of the economics/ecological/social model sustainability in terms of the fields of tensions that exist between modernity, traditions and naturality - 'the MTN knot' - each of which has positive and negative faces. All three angles of vision can be seen in people's attitudes to dairy farming, but the weight given to each differs between individuals and cultures. Hence, sociocultural sustainability is context dependent and needs to be evaluated according to its local meaning. Moreover, sociocultural sustainability is about people's perceptions of livestock farming. Lay people might perceive livestock farming differently and ascribe different meanings to it than experts do, but their 'reality' is just as real. Finally, this study calls for an ongoing collaboration between social and animal scientists in order to develop livestock farming systems that are more socioculturally sustainable.  相似文献   

4.
Automatic milking systems (AMS), one of the earliest precision livestock farming developments, have revolutionized dairy farming around the world. While robots control the milking process, there have also been numerous changes to how the whole farm system is managed. Milking is no longer performed in defined sessions; rather, the cow can now choose when to be milked in AMS, allowing milking to be distributed throughout a 24 h period. Despite this ability, there has been little attention given to milking robot utilization across 24 h. In order to formulate relevant research questions and improve farm AMS management there is a need to determine the current knowledge gaps regarding the distribution of robot utilization. Feed, animal and management factors and their interplay on levels of milking robot utilization across 24 h for both indoor and pasture-based systems are here reviewed. The impact of the timing, type and quantity of feed offered and their interaction with the distance of feed from the parlour; herd social dynamics, climate and various other management factors on robot utilization through 24 h are provided. This novel review draws together both the opportunities and challenges that exist for farm management to use these factors to improved system efficiency and those that exist for further research.  相似文献   

5.
6.
Livestock is a major driver in most rural landscapes and economics, but it also polarises debate over its environmental impacts, animal welfare and human health. Conversely, the various services that livestock farming systems provide to society are often overlooked and have rarely been quantified. The aim of analysing bundles of services is to chart the coexistence and interactions between the various services and impacts provided by livestock farming, and to identify sets of ecosystem services (ES) that appear together repeatedly across sites and through time. We review three types of approaches that analyse associations among impacts and services from local to global scales: (i) detecting ES associations at system or landscape scale, (ii) identifying and mapping bundles of ES and impacts and (iii) exploring potential drivers using prospective scenarios. At a local scale, farming practices interact with landscape heterogeneity in a multi-scale process to shape grassland biodiversity and ES. Production and various ES provided by grasslands to farmers, such as soil fertility, biological regulations and erosion control, benefit to some extent from the functional diversity of grassland species, and length of pasture phase in the crop rotation. Mapping ES from the landscape up to the EU-wide scale reveals a frequent trade-off between livestock production on one side and regulating and cultural services on the other. Maps allow the identification of target areas with higher ecological value or greater sensitivity to risks. Using two key factors (livestock density and the proportion of permanent grassland within utilised agricultural area), we identified six types of European livestock production areas characterised by contrasted bundles of services and impacts. Livestock management also appeared to be a key driver of bundles of services in prospective scenarios. These scenarios simulate a breakaway from current production, legislation (e.g. the use of food waste to fatten pigs) and consumption trends (e.g. halving animal protein consumption across Europe). Overall, strategies that combine a reduction of inputs, of the use of crops from arable land to feed livestock, of food waste and of meat consumption deliver a more sustainable food future. Livestock as part of this sustainable future requires further enhancement, quantification and communication of the services provided by livestock farming to society, which calls for the following: (i) a better targeting of public support, (ii) more precise quantification of bundles of services and (iii) better information to consumers and assessment of their willingness to pay for these services.  相似文献   

7.
8.
Acute myeloid leukemia (AML) is a fatal hematopoietic malignancy and has a prognosis that varies with its genetic complexity. However, there has been no appropriate integrative analysis on the hierarchy of different AML subtypes. Using Microwell-seq, a high-throughput single-cell mRNA sequencing platform, we analyzed the cellular hierarchy of bone marrow samples from 40 patients and 3 healthy donors. We also used single-cell single-molecule real-time (SMRT) sequencing to investigate the clonal heterogeneity of AML cells. From the integrative analysis of 191727 AML cells, we established a single-cell AML landscape and identified an AML progenitor cell cluster with novel AML markers. Patients with ribosomal protein high progenitor cells had a low remission rate. We deduced two types of AML with diverse clinical outcomes. We traced mitochondrial mutations in the AML landscape by combining Microwell-seq with SMRT sequencing. We propose the existence of a phenotypic “cancer attractor” that might help to define a common phenotype for AML progenitor cells. Finally, we explored the potential drug targets by making comparisons between the AML landscape and the Human Cell Landscape. We identified a key AML progenitor cell cluster. A high ribosomal protein gene level indicates the poor prognosis. We deduced two types of AML and explored the potential drug targets. Our results suggest the existence of a cancer attractor.  相似文献   

9.
Livestock farming is criticized for negatively impacting the environment, concerns about animal welfare and the impact of excessive meat consumption on human health. However, livestock farming provides other underappreciated and poorly communicated benefits to society in terms of employment, product quality, cultural landscapes and carbon storage by grasslands. Few attempts have been made so far to simultaneously consider the services and impacts provided by livestock production. Here, we propose an integrated graphical tool, called the ‘barn’ to explicitly summarize the synergies and trade-offs between services and impacts provided by livestock farming. It illustrates livestock farming interacting with its physical, economic and social environment along five interfaces: (i) Markets, (ii) Work and employment, (iii) Inputs, (iv) Environment and climate, (v) Social and cultural factors. This graphical tool was then applied by comparing two contrasting livestock production areas (high livestock density v. grassland-based), and the dominant v. a niche system within a crop-livestock area. We showed the barn could be used for cross-comparisons of services and impacts across livestock production areas, and for multi-level analysis of services and impacts of livestock farming within a given area. The barn graphically summarizes the ecological and socio-economic aspects of livestock farming by explicitly representing multiple services and impacts of different systems in a simple yet informative way. Information for the five interfaces relies on available quantitative assessments from the literature or data sets, and on expert-knowledge for more qualitative factors, such as social and cultural ones. The ‘barn’ can also inform local stakeholders or policy-makers about potential opportunities and threats to the future of livestock farming in specific production areas. It has already been used as a pedagogical tool for teaching the diversity of services and impacts of livestock systems across Europe and is currently developed as a serious game for encouraging knowledge exchange and sharing different viewpoints between stakeholders.  相似文献   

10.
Biological cells on microchips: new technologies and applications   总被引:1,自引:0,他引:1  
Integration of various chemical devices and complex operations onto a microchip, which is often referred to as a micro total analysis system (mu-TAS) or lab-on-a-chip, creates extremely efficient devices that exploit the advantages of a microspace. Furthermore, as the scale of the fluidic microvolume is roughly proportional to living cell sizes and processing capabilities, cells and micro chemical systems can be combined to develop practical prototypical microdevices. This approach has led to development of tools for investigating cellular functions, biochemical reactors and bioassay systems, as well as hybrid bio/artificial tissue engineered organs. Recently, bio-microactuators exploiting mechanical properties of cells powered without external energy sources have also been reported. This review focuses on new technologies involving cell-based devices on microchips, with a special emphasis on bio-microactuators. Firstly, we review systems to place and handle cells on a microchip. Secondly, we review bio-microactuators developed using single or a few driving cells. Finally, we review bio-microactuators developed using numerous cells or tissue to generate stronger forces. Understanding fundamental concepts behind the distinct features and performance characteristics of these cell-based micro-systems will lead to development of new devices that will be exploited in various fields in the future.  相似文献   

11.
Dairy cows are high value farm animals requiring careful management to achieve the best results. Since the advent of robotic and high throughput milking, the traditional few minutes available for individual human attention daily has disappeared and new automated technologies have been applied to improve monitoring of dairy cow production, nutrition, fertility, health and welfare. Cows milked by robots must meet legal requirements to detect healthy milk. This review focuses on emerging technical approaches in those areas of high cost to the farmer (fertility, metabolic disorders, mastitis, lameness and calving). The availability of low cost tri-axial accelerometers and wireless telemetry has allowed accurate models of behaviour to be developed and sometimes combined with rumination activity detected by acoustic sensors to detect oestrus; other measures (milk and skin temperature, electronic noses, milk yield) have been abandoned. In-line biosensors have been developed to detect markers for ovulation, pregnancy, lactose, mastitis and metabolic changes. Wireless telemetry has been applied to develop boluses for monitoring the rumen pH and temperature to detect metabolic disorders. Udder health requires a multisensing approach due to the varying inflammatory responses collectively described as mastitis. Lameness can be detected by walk over weigh cells, but also by various types of video image analysis and speed measurement. Prediction and detection of calving time is an area of active research mostly focused on behavioural change.  相似文献   

12.
Protein fibers are fundamental building blocks of life playing an essential role in motility, elasticity, scaffolding, stabilization and the protection of cells, tissues and organisms. Despite nearly a century of research into the assembly mechanisms and structures of fibrous proteins, only limited information is still available. Within the past decade, however, insights have been provided into how some fibrous proteins assemble and how they function in biology. In addition, efforts are increasingly being made to employ protein fibers as performance molecules in man-made medical and technical applications.  相似文献   

13.
Meat and dairy products derived from grassland carry premium values and sensory and nutritional qualities that aroused much interest for authentication methods to guarantee grassland origin claims. This article reviews the current state of knowledge on the authentication of meat and dairy of grassland origin from food analysis in both cattle and sheep. A range of methods alone or combined, involving analysis of elemental or molecular constituents of food product and fingerprinting profiling combined with chemometrics, have been developed and proved useful to differentiate contrasted feeding regimes and authenticate grass-fed meat and dairy. Their robustness and discriminatory reliability in more complex feeding conditions, such as in the case of dietary switches or when grass only makes up part of the animal’s diet, are under active investigation. Our review highlights the possibilities and limitations of these methods, the latter being chiefly posed by variations in the quantity, characteristics and composition of grassland feedstuffs consumed by animals, which are nevertheless inherent to grassland-based production systems, variations in animal responses within and across breeds, and difficulties in detecting the consumption of non-grass feedstuffs by the animal. It also highlights a number of issues for consideration, points of caution and caveats in applying these methods. Scientists agree that much of the research carried out so far has been a ‘proof of concept’ type and that efforts should be made in the future to develop more databases to help gain genericity and robustness.  相似文献   

14.
Grasslands dominate land cover nationally and globally, and their composition, structure and habitat value are strongly influenced by the actions of domestic and wild grazing animals that feed on them. Different pastures are characterised by varying opportunities for selective feeding by livestock; agronomically improved, sown swards generally consist of a limited range of plant species whereas longer-term leys and semi-natural grasslands are characterised by a more diverse mixture of plants. In the case of botanically diverse permanent pastures/grazing lands, the dietary preferences of different grazers have a more pronounced effect on the botanical composition of the sward in the longer term. Selection of a dominant species within the sward can give less abundant components a chance to compete, increasing community evenness and species richness. Conversely, the selection of minor components reduces sward compositional heterogeneity and hence plant species richness and evenness. Body size, gut type (foregut vs hindgut fermentation), physiological status (growing, pregnant, lactating), metabolic status (extent of body reserves) and environmental conditions all influence the nutrient requirements of a given animal and related foraging priorities. The diet selected is also strongly influenced by the availability of preferred food items, and their vertical and horizontal distribution within the sward. In general, larger animals, such as cattle and horses, are less selective grazers than smaller animals, such as sheep and goats. They are quicker to switch to consuming less-preferred sward components as the availability of preferred resources declines due to their greater forage demands, and as a result can be very effective in controlling competitive plant species consistently avoided by more selective grazers. As a result, low-intensity mixed grazing of cattle and sheep has been shown to improve the diversity and abundance of a range of taxa within grazed ecosystems. Mixed/co-species grazing with different animals exploiting different grassland resources is also associated with increased pasture use efficiency in terms of the use of different sward components and related improvements in nutritional value. In situations where cattle are not available, for example if they are not considered commercially viable, alternative species such as goats, ponies or South American camelids may offer an opportunity to diversify income streams and maintain productive and biodiverse pastures/grazing lands. Stocking rate and timing of grazing also have a considerable role in determining the impact of grazing. Regardless of the species grazing or the pasture grazed, grazing systems are dynamic since selective grazing impacts the future availability of sward components and subsequently dietary choices. New technologies under development provide opportunities to monitor plant/animal interactions more closely and in real time, which will in future support active management to deliver targeted biodiversity gains from specific sites.  相似文献   

15.
《Biotechnology advances》2017,35(5):521-529
Three-dimensional (3D) printers are a developing technology penetrating a variety of markets, including the medical sector. Since its introduction to the medical field in the late 1980s, 3D printers have constructed a range of devices, such as dentures, hearing aids, and prosthetics. With the ultimate goals of decreasing healthcare costs and improving patient care and outcomes, neurosurgeons are utilizing this dynamic technology, as well. Digital Imaging and Communication in Medicine (DICOM) can be translated into Stereolithography (STL) files, which are then read and methodically built by 3D Printers. Vessels, tumors, and skulls are just a few of the anatomical structures created in a variety of materials, which enable surgeons to conduct research, educate surgeons in training, and improve pre-operative planning without risk to patients. Due to the infancy of the field and a wide range of technologies with varying advantages and disadvantages, there is currently no standard 3D printing process for patient care and medical research. In an effort to enable clinicians to optimize the use of additive manufacturing (AM) technologies, we outline the most suitable 3D printing models and computer-aided design (CAD) software for 3D printing in neurosurgery, their applications, and the limitations that need to be overcome if 3D printers are to become common practice in the neurosurgical field.  相似文献   

16.
《Small Ruminant Research》2008,80(2-3):137-145
Innovation in feeding systems involves replacing conventional feeds with alternatives and, in many cases, the modification of distribution devices. The labour demand of feeding management is one of the basic limitations faced by meat sheep production in Spain and other Mediterranean countries. In the region of Aragón, a sheep farmers cooperative has designed a new feeding technology for self-service complete-diet feed (SSCDF) rations. The objectives of this study were (i) to evaluate the effects of the adoption of the new SSCDF system and (ii) to assess its economic viability in farms that used traditional feeding systems. For the first objective, all of the farms (n = 23) that used this system for more than 3 years were assessed directly using a questionnaire. In addition, we analysed the information obtained from a sample of 79 meat sheep farms that did not use the SSCDF (all 102 farms were participating in a technical-economic data network of the cooperative aforementioned). In order to assess the economic implications of adopting SSCDF, a typology was established using multivariate analysis with structural indicators, feeding costs and reproductive variables. Finally, an economic study was carried out for each type considering four different scenarios. Almost all farmers that adopted the SSCDF system felt an improvement in their quality of life. However, the new technology was not advisable on all types of farms from the economic point of view. In general, the greatest economic profitability was obtained if the implementation of SSCDF reduced labour requirements and increased technical performance; however, if the SSCDF implied only a reduction of labour requirements, Net Present Value and Internal Rate of Return were considerably lower for all types of farms and, in some cases, the investment was not justified. Our study showed that the adoption of the SSCDF led to positive changes in farm structure, particularly in terms of flock size, and could contribute to the social sustainability of sheep farms in the region. The economic interest of adopting this feeding system depended largely on the expected improvements of technical results and on the increment of feeding costs that SSCDF involved.  相似文献   

17.
The field of microbiology has traditionally been concerned with and focused on studies at the population level. Information on how cells respond to their environment, interact with each other, or undergo complex processes such as cellular differentiation or gene expression has been obtained mostly by inference from population-level data. Individual microorganisms, even those in supposedly "clonal" populations, may differ widely from each other in terms of their genetic composition, physiology, biochemistry, or behavior. This genetic and phenotypic heterogeneity has important practical consequences for a number of human interests, including antibiotic or biocide resistance, the productivity and stability of industrial fermentations, the efficacy of food preservatives, and the potential of pathogens to cause disease. New appreciation of the importance of cellular heterogeneity, coupled with recent advances in technology, has driven the development of new tools and techniques for the study of individual microbial cells. Because observations made at the single-cell level are not subject to the "averaging" effects characteristic of bulk-phase, population-level methods, they offer the unique capacity to observe discrete microbiological phenomena unavailable using traditional approaches. As a result, scientists have been able to characterize microorganisms, their activities, and their interactions at unprecedented levels of detail.  相似文献   

18.
Insight into current scientific applications of Big Data in the precision dairy farming area may help us to understand the inflated expectations around Big Data. The objective of this invited review paper is to give that scientific background and determine whether Big Data has overcome the peak of inflated expectations. A conceptual model was created, and a literature search in Scopus resulted in 1442 scientific peer reviewed papers. After thorough screening on relevance and classification by the authors, 142 papers remained for further analysis. The area of precision dairy farming (with classes in the primary chain (dairy farm, feed, breed, health, food, retail, consumer) and levels for object of interest (animal, farm, network)), the Big Data-V area (with categories on Volume, Velocity, Variety and other V’s) and the data analytics area (with categories in analysis methods (supervised learning, unsupervised learning, semi-supervised classification, reinforcement learning) and data characteristics (time-series, streaming, sequence, graph, spatial, multimedia)) were analysed. The animal sublevel, with 83% of the papers, exceeds the farm sublevel and network sublevel. Within the animal sublevel, topics within the dairy farm level prevailed with 58% over the health level (33%). Within the Big Data category, the Volume category was most favoured with 59% of the papers, followed by 37% of papers that included the Variety category. None of the papers included the Velocity category. Supervised learning, representing 87% of the papers, exceeds unsupervised learning (12%). Within supervised learning, 64% of the papers dealt with classification issues and exceeds the regression methods (36%). Time-series were used in 61% of the papers and were mostly dealing with animal-based farm data. Multimedia data appeared in a greater number of recent papers. Based on these results, it can be concluded that Big Data is a relevant topic of research within the precision dairy farming area, but that the full potential of Big Data in this precision dairy farming area is not utilised yet. However, the present authors expect the full potential of Big Data, within the precision dairy farming area, will be reached when multiple Big Data characteristics (Volume, Variety and other V’s) and sources (animal, groups, farms and chain parts) are used simultaneously, adding value to operational and strategic decision.  相似文献   

19.
20.
Hardin S 《Genome biology》2001,2(5):reports4012.1-reports40123
A report on the Association of Biomolecular Resource Facilities (ABRF) meeting, San Diego, USA, 24-27 February, 2001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号